首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
In an effort to understand the relationship between Vibrio and vibriophage populations, abundances of Vibrio spp. and viruses infecting Vibrio parahaemolyticus (VpVs) were monitored for a year in Pacific oysters and water collected from Ladysmith Harbor, British Columbia, Canada. Bacterial abundances were highly seasonal, whereas high titers of VpVs (0.5 x 10(4) to 11 x 10(4) viruses cm(-3)) occurred year round in oysters, even when V. parahaemolyticus was undetectable (< 3 cells cm(-3)). Viruses were not detected (<10 ml(-1)) in the water column. Host-range studies demonstrated that 13 VpV strains could infect 62% of the V. parahaemolyticus strains from oysters (91 pairings) and 74% of the strains from sediments (65 pairings) but only 30% of the water-column strains (91 pairings). Ten viruses also infected more than one species among V. alginolyticus, V. natriegens, and V. vulnificus. As winter approached and potential hosts disappeared, the proportion of host strains that the viruses could infect decreased by approximately 50% and, in the middle of winter, only 14% of the VpV community could be plated on summer host strains. Estimates of virus-induced mortality on V. parahaemolyticus indicated that other host species were required to sustain viral production during winter when the putative host species was undetectable. The present study shows that oysters are likely one of the major sources of viruses infecting V. parahaemolyticus in oysters and in the water column. Furthermore, seasonal shifts in patterns of host range provide strong evidence that the composition of the virus community changes during winter.  相似文献   

2.
Total Vibrio parahaemolyticus densities and the occurrence of pathogenic strains in shellfish were determined following outbreaks in Washington, Texas, and New York. Recently developed nonradioactive DNA probes were utilized for the first time for direct enumeration of V. parahaemolyticus in environmental shellfish samples. V. parahaemolyticus was prevalent in oysters from Puget Sound, Wash.; Galveston Bay, Tex.; and Long Island Sound, N.Y., in the weeks following shellfish-associated outbreaks linked to these areas. However, only two samples (one each from Washington and Texas) were found to harbor total V. parahaemolyticus densities exceeding the level of concern of 10,000 g−1. Pathogenic strains, defined as those hybridizing with tdh and/or trh probes, were detected in a few samples, mostly Puget Sound oysters, and at low densities (usually <10 g−1). Intensive sampling in Galveston Bay demonstrated relatively constant water temperature (27.8 to 31.7°C) and V. parahaemolyticus levels (100 to 1,000 g−1) during the summer. Salinity varied from 14.9 to 29.3 ppt. A slight but significant (P < 0.05) negative correlation (−0.25) was observed between V. parahaemolyticus density and salinity. Based on our data, findings of more than 10,000 g−1 total V. parahaemolyticus or >10 g−1 tdh- and/or trh-positive V. parahaemolyticus in environmental oysters should be considered extraordinary.  相似文献   

3.
Phages infecting Vibrio vulnificus were abundant (>104 phages g of oyster tissue−1) throughout the year in oysters (Crassostrea virginica) collected from estuaries adjacent to the Gulf of Mexico (Apalachicola Bay, Fla.; Mobile Bay, Ala.; and Black Bay, La.). Estimates of abundance ranged from 101 to 105 phages g of oyster tissue−1 and were dependent on the bacterial strain used to assay the sample. V. vulnificus was near or below detection limits (<0.3 cell g−1) from January through March and was most abundant (103 to 104 cells g−1) during the summer and fall, when phage abundances also tended to be greatest. The phages isolated were specific to strains of V. vulnificus, except for one isolate that caused lysis in a few strains of V. parahaemolyticus. Based on morphological evidence obtained by transmission electron microscopy, the isolates belonged to the Podoviridae, Styloviridae, and Myoviridae, three families of double-stranded DNA phages. One newly described morphotype belonging to the Podoviridae appears to be ubiquitous in Gulf Coast oysters. Isolates of this morphotype have an elongated capsid (mean, 258 nm; standard deviation, 4 nm; n = 35), with some isolates having a relatively broad host range among strains of V. vulnificus. Results from this study indicate that a morphologically diverse group of phages which infect V. vulnificus is abundant and widely distributed in oysters from estuaries bordering the northeastern Gulf of Mexico.  相似文献   

4.
Vibriosis is a leading cause of seafood-associated morbidity and mortality in the United States. Typically associated with consumption of raw or undercooked oysters, vibriosis associated with clam consumption is increasingly being reported. However, little is known about the prevalence of Vibrio spp. in clams. The objective of this study was to compare the levels of Vibrio cholerae, Vibrio vulnificus, and Vibrio parahaemolyticus in oysters and clams harvested concurrently from Long Island Sound (LIS). Most probable number (MPN)–real-time PCR methods were used for enumeration of total V. cholerae, V. vulnificus, V. parahaemolyticus, and pathogenic (tdh+ and/or trh+) V. parahaemolyticus. V. cholerae was detected in 8.8% and 3.3% of oyster (n = 68) and clam (n = 30) samples, with levels up to 1.48 and 0.48 log MPN/g in oysters and clams, respectively. V. vulnificus was detected in 97% and 90% of oyster and clam samples, with median levels of 0.97 and −0.08 log MPN/g, respectively. V. parahaemolyticus was detected in all samples, with median levels of 1.88 and 1.07 log MPN/g for oysters and clams, respectively. The differences between V. vulnificus and total and pathogenic V. parahaemolyticus levels in the two shellfish species were statistically significant (P < 0.001). These data indicate that V. vulnificus and total and pathogenic V. parahaemolyticus are more prevalent and are present at higher levels in oysters than in hard clams. Additionally, the data suggest differences in vibrio populations between shellfish harvested from different growing area waters within LIS. These results can be used to evaluate and refine illness mitigation strategies employed by risk managers and shellfish control authorities.  相似文献   

5.
The purpose of this study was to characterize Vibrio parahaemolyticus viruses (VpVs) isolated from different environments within and adjacent to the Strait of Georgia, and to examine the relative influences of distance and environment on host-range and genetic richness. Nearly all seawater enrichment cultures (29/31) generated isolates, implying that VpVs were widespread in the virioplankton, yet at low abundances (< 1 l(-1)). Viruses were not detected in sediments (n = 99). Fourteen of the 16 viruses characterized were siphoviruses, with genome sizes ranging from approximately 45-106 kb, and half were capable of infecting other Vibrio species. The VpVs infected bacteria isolated from oysters and sediments fairly well (55% and 46% of the host-virus combinations, respectively), but were unable to infect many of the bacteria isolated from the water column (< 13% of 112 combinations). When compared with VpVs from oysters, it was clear that the major determinant of phenotypic (host-range) and genetic richness (by the DP-RAPD assay) was not geography, but the source environment from which the VpVs originated. Therefore, the VpV population within the Strait of Georgia is a highly diverse mixture of phenotypes and genotypes.  相似文献   

6.
Even if many Vibrio spp. are endemic to coastal waters, their distribution in northern temperate and boreal waters is poorly studied. To identify environmental factors regulating Vibrio populations in a salinity gradient along the Swedish coastline, we combined Vibrio-specific quantitative competitive PCR with denaturant gradient gel electrophoresis-based genotyping. The total Vibrio abundance ranged from 4 × 103 to 9.6 × 104 cells liter−1, with the highest abundances in the more saline waters of the Skagerrak Sea. Several Vibrio populations were present throughout the salinity gradient, with abundances of single populations ranging from 5 × 102 to 7 × 104 cells liter−1. Clear differences were observed along the salinity gradient, where three populations dominated the more saline waters of the Skagerrak Sea and two populations containing mainly representatives of V. anguillarum and V. aestuarianus genotypes were abundant in the brackish waters of the Baltic Sea. Our results suggest that this apparent niche separation within the genus Vibrio may also be influenced by alternate factors such as nutrient levels and high abundances of dinoflagellates. A V. cholerae/V. mimicus population was detected in more than 50% of the samples, with abundances exceeding 103 cells liter−1, even in the cold (annual average water temperature of around 5°C) and low-salinity (2 to 4‰) samples from the Bothnian Bay (latitude, 65°N). The unsuspected and widespread occurrence of this population in temperate and boreal coastal waters suggests that potential Vibrio pathogens may also be endemic to cold and brackish waters and hence may represent a previously overlooked health hazard.  相似文献   

7.
This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus and Vibrio vulnificus were assessed in natural seawater and in the Eastern oyster, Crassostrea virginica. The pathogens examined were V. vulnificus strain VV1003, V. parahaemolyticus O1:KUT (KUT stands for K untypeable), and V. parahaemolyticus O3:K6 and corresponding O3:K6 mutants deficient in the toxRS virulence regulatory gene or the rpoS alternative stress response sigma factor gene. Vibrios were selected for streptomycin resistance, which facilitated their enumeration. In natural seawater, oysters bioconcentrated each Vibrio strain for 24 h at 22°C; however, counts rapidly declined to near negligible levels by 72 h. In natural seawater with or without oysters, vibrios decreased more than 3 log units to near negligible levels within 72 h. Neither toxRS nor rpoS had a significant effect on Vibrio levels. In autoclaved seawater, V. parahaemolyticus O3:K6 counts increased 1,000-fold over 72 h. Failure of the vibrios to persist in natural seawater and oysters led to screening of the water samples for VPB on lawns of V. parahaemolyticus O3:K6 host cells. Many VPB, including Bdellovibrio and like organisms (BALOs; Bdellovibrio bacteriovorus and Bacteriovorax stolpii) and Micavibrio aeruginosavorus-like predators, were detected by plaque assay and electron microscopic analysis of plaque-purified isolates from Atlantic, Gulf Coast, and Hawaiian seawater. When V. parahaemolyticus O3:K6 was added to natural seawater containing trace amounts of VPB, Vibrio counts diminished 3 log units to nondetectable levels, while VPB increased 3 log units within 48 h. We propose a new paradigm that VPB are important modulators of pathogenic vibrios in seawater and oysters.  相似文献   

8.
Between October 2008 and June 2009, 15 samples of 10 live oysters each (Crassostrea rhizophorae) measuring 8.31–10.71 cm were purchased from a restaurant on the seashore of Fortaleza, Brazil. The Vibrio count ranged from 75 (estimated) to 43,500 CFU/g. Fourteen species were identified among the 56 isolated Vibrio strains, with V. parahaemolyticus as the most prevalent. Two of the 17 V. parahaemolyticus strains were urease-positive and tdh- and trh-positive on multiplex PCR, but neither produced β-hemolysis halos in Wagatsuma agar. Thus, fresh oysters served in natura in Fortaleza, Brazil, were found to contain Vibrio strains known to cause gastroenteritis in humans.  相似文献   

9.
A tetrazolium dye reduction assay was used to study factors governing the killing of bacteria by oyster hemocytes. In vitro tests were performed on bacterial strains by using hemocytes from oysters collected from the same location in winter and summer. Vibrio parahaemolyticus strains, altered in motility or colonial morphology (opaque and translucent), and Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, and phospholipase activities were examined in winter and summer. Vibrio vulnificus strains, opaque and translucent (with and without capsules), were examined only in summer. Among V. parahaemolyticus and L. monocytogenes, significantly (P < 0.05) higher levels of killing by hemocytes were observed in summer than in winter. L. monocytogenes was more resistant than V. parahaemolyticus or V. vulnificus to the bactericidal activity of hemocytes. In winter, both translucent strains of V. parahaemolyticus showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. In summer, only one of the V. parahaemolyticus translucent strains showed significantly (P < 0.05) higher susceptibility to killing by hemocytes than did the wild-type opaque strain. No significant differences (P > 0.05) in killing by hemocytes were observed between opaque (encapsulated) and translucent (nonencapsulated) pairs of V. vulnificus. Activities of 19 hydrolytic enzymes were measured in oyster hemolymph collected in winter and summer. Only one enzyme, esterase (C4), showed a seasonal difference in activity (higher in winter than in summer). These results suggest that differences existed between bacterial genera in their ability to evade killing by oyster hemocytes, that a trait(s) associated with the opaque phenotype may have enabled V. parahaemolyticus to evade killing by the oyster’s cellular defense, and that bactericidal activity of hemocytes was greater in summer than in winter.  相似文献   

10.
Vibrio parahaemolyticus is an indigenous bacterium of marine environments. It accumulates in oysters and may reach levels that cause human illness when postharvest temperatures are not properly controlled and oysters are consumed raw or undercooked. Predictive models were produced by injecting Pacific oysters (Crassostrea gigas) with a cocktail of V. parahaemolyticus strains, measuring viability rates at storage temperatures from 3.6 to 30.4°C, and fitting the data to a model to obtain parameter estimates. The models were evaluated with Pacific and Sydney Rock oysters (Saccostrea glomerata) containing natural populations of V. parahaemolyticus. V. parahaemolyticus viability was measured by direct plating samples on thiosulfate-citrate-bile salts-sucrose (TCBS) agar for injected oysters and by most probable number (MPN)-PCR for oysters containing natural populations. In parallel, total viable bacterial counts (TVC) were measured by direct plating on marine agar. Growth/inactivation rates for V. parahaemolyticus were −0.006, −0.004, −0.005, −0.003, 0.030, 0.075, 0.095, and 0.282 log10 CFU/h at 3.6, 6.2, 9.6, 12.6, 18.4, 20.0, 25.7, and 30.4°C, respectively. The growth rates for TVC were 0.015, 0.023, 0.016, 0.048, 0.055, 0.071, 0.133, and 0.135 log10 CFU/h at 3.6, 6.2, 9.3, 14.9, 18.4, 20.0, 25.7, and 30.4°C, respectively. Square root and Arrhenius-type secondary models were generated for V. parahaemolyticus growth and inactivation kinetic data, respectively. A square root model was produced for TVC growth. Evaluation studies showed that predictive growth for V. parahaemolyticus and TVC were “fail safe.” The models can assist oyster companies and regulators in implementing management strategies to minimize V. parahaemolyticus risk and enhancing product quality in supply chains.  相似文献   

11.
Recent Vibrio parahaemolyticus outbreaks associated with consumption of raw shellfish in the United States focused attention on the occurrence of this organism in shellfish. From March 1999 through September 2000, paired oyster samples were collected biweekly from two shellfish-growing areas in Mobile Bay, Ala. The presence and densities of V. parahaemolyticus were determined by using DNA probes targeting the thermolabile hemolysin (tlh) and thermostable direct hemolysin (tdh) genes for confirmation of total and pathogenic V. parahaemolyticus, respectively. V. parahaemolyticus was detected in all samples with densities ranging from <10 to 12,000 g−1. Higher V. parahaemolyticus densities were associated with higher water temperatures. Pathogenic strains were detected in 34 (21.8%) of 156 samples by direct plating or enrichment. Forty-six of 6,018 and 31 of 6,992 V. parahaemolyticus isolates from enrichments and direct plates, respectively, hybridized with the tdh probe. There was an apparent inverse relationship between water temperature and the prevalence of pathogenic strains. Pathogenic strains were of diverse serotypes, and 97% produced urease and possessed a tdh-related hemolysin (trh) gene. The O3:K6 serotype associated with pandemic spread and recent outbreaks in the United States was not detected. The efficient screening of numerous isolates by colony lift and DNA probe procedures may account for the higher prevalence of samples with tdh+ V. parahaemolyticus than previously reported.  相似文献   

12.
Human Vibrio infections associated with consumption of raw shellfish greatly impact the seafood industry. Vibrio cholerae-related disease is occasionally attributed to seafood, but V. vulnificus and V. parahaemolyticus are the primary targets of postharvest processing (PHP) efforts in the United States, as they pose the greatest threat to the industry. Most successful PHP treatments for Vibrio reduction also kill the molluscs and are not suitable for the lucrative half-shell market, while nonlethal practices are generally less effective. Therefore, novel intervention strategies for Vibrio reduction are needed for live oyster products. Chitosan is a bioactive derivative of chitin that is generally recognized as safe as a food additive by the FDA, and chitosan microparticles (CMs) were investigated in the present study as a potential PHP treatment for live oyster applications. Treatment of broth cultures with 0.5% (wt/vol) CMs resulted in growth cessation of V. cholerae, V. vulnificus, and V. parahaemolyticus, reducing culturable levels to nondetectable amounts after 3 h in three independent experiments. Furthermore, a similar treatment in artificial seawater at 4, 25, and 37°C reduced V. vulnificus levels by ca. 7 log CFU/ml after 24 h of exposure, but 48 h of exposure and elevated temperature were required to achieve similar results for V. parahaemolyticus and V. cholerae. Live oysters that either were artificially inoculated or contained natural populations of V. vulnificus and V. parahaemolyticus showed significant and consistent reductions following CM treatment (5%) compared to the amounts in the untreated controls. Thus, the results strongly support the promising potential for the application of CMs as a PHP treatment to reduce Vibrio spp. in intact live oysters.  相似文献   

13.
Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >104 CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh+ and trh+ strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus.  相似文献   

14.
Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 103 most probable number (MPN)/liter, 0.7 to 2.1 × 103 MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 104 MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons.  相似文献   

15.
The outer membrane protein-OmpK has been considered as a vaccine candidate for the prevention of infections due to Vibrio harveyi, Vibrio alginolyticus and Vibrio parahaemolyticus in fish. Interestingly, the polyclonal antibody raised against the recombinant OmpK from V. harveyi strain EcGs020802 recognized the OmpK homologues from other strains of Vibrio species by immunoblotting. The ompK genes from 19 Vibrio strains including V. harveyi (11), V. alginolyticus (6) and V. parahaemolyticus (2) were then cloned and sequenced. Alignment analysis based on the amino acid sequences indicated that the OmpK from V. harveyi strain EcGs020802 had 71.7–99.2% of identities with those from V. harveyi, V. alginolyticus and V. parahaemolyticus. Western blot analysis revealed that the corresponding native proteins ranged between 28 and 31 kDa, consistent with predicated molecular weight of OmpK in Vibrio strains. Furthermore, the cross-protective property of recombinant OmpK was evaluated through challenge with heterogeneous virulent Vibrio strains in Orange-spotted groupers (Epinephelus coioides). Orange-spotted groupers vaccinated with recombinant OmpK were more tolerant of the infection by virulent Vibrio strains and their relative percentage survival (RPS) was correlative with the degree of the identity of deduced amino acid sequences of their OmpK. Taken together, the OmpK is a conserved protective antigen among tested Vibrio species and might be a potentially versatile vaccine candidate for the prevention of infections due to V. harveyi, V. alginolyticus and V. parahaemolyticus.  相似文献   

16.
We raised monoclonal antibodies (MAbs) against Vibrio parahaemolyticus cell extracts. One of the MAbs, designated MAb-VP34, reacted in enzyme-linked immunosorbent assays (ELISAs) with 140 V. parahaemolyticus strains, regardless of serotype or origin. MAb-VP34 did not detectably react with 96 strains belonging to 27 other Vibrio species (except for Vibrio natriegens) or with 29 non-Vibrio species. These results show that MAb-VP34 is highly specific for V. parahaemolyticus. Western blotting and mass spectrometry analyses revealed that MAb-VP34 recognized V. parahaemolyticus F0F1 ATP synthase's delta subunit.Using MAb-VP34, a rapid and simple immunodot blotting assay (VP-Dot) was developed to determine whether bacterial colonies growing on selective agar, represented V. parahaemolyticus. To evaluate VP-Dot, 20 V. parahaemolyticus strains and 19 non-related strains were tested. The results indicated that VP-Dot is a reliable tool for identification of V. parahaemolyticus colonies. The simple VP-Dot procedure took 40 min, indicating that the MAb-VP34 based immunological method will greatly reduce labor, time, and costs required to verify V. parahaemolyticus colonies as compared with the conventional biochemical test.  相似文献   

17.
Monoclonal antibodies (MAbs) specific to Vibrio parahaemolyticus were successfully generated. According to the specificity of V. parahaemolyticus, MAbs can be classified into 5 groups. The MAbs VP-2D and VP-11H were specific to the O2 and O4 groups of V. parahaemolyticus, respectively. The MAb VP-11B reacted with 11 out of 30 isolates of V. parahaemolyticus used in this study. The MAb VP-516 bound to 27 out of 30 isolates of V. parahaemolyticus and cross reacted with all 10 isolates of V. alginolyticus. The MAb VP-618 demonstrated positive reactivity to 29 out of 30 isolates of V. parahaemolyticus and demonstrated slight cross reactivity to 3 out of 30 isolates of V. harveyi. The sensitivity of the MAbs ranged from 108 to 107 c.f.u. ml?1 for V. parahaemolyticus obtained from pure cultures and depended on the group of MAbs. However, the detection capability could be improved to be equivalent to that of the PCR technique following pre-incubation of the samples in alkaline peptone water (APW). Using these MAbs along with MAbs specific to V. alginolyticus (VA-165), V. cholerae (VC-63), V. harveyi (VH-9B and VH-20C) and Vibrio spp. (VC-201) from previous studies, V. parahaemolyticus could be identified and differentiated from Vibrio spp. in various seafood samples including shrimp, green mussels, blood clams and oysters by a simple dot blot immunoassay without the requirement for bacterial isolation or biochemical characterization.  相似文献   

18.
The United States has federal regulations in place to reduce the risk of seafood-related infection caused by the estuarine bacteria Vibrio vulnificus and Vibrio parahaemolyticus. However, data to support the development of regulations have been generated in a very few specific regions of the nation. More regionally specific data are needed to further understand the dynamics of human infection relating to shellfish-harvesting conditions in other areas. In this study, oysters and water were collected from four oyster harvest sites in North Carolina over an 11-month period. Samples were analyzed for the abundances of total Vibrio spp., V. vulnificus, and V. parahaemolyticus; environmental parameters, including salinity, water temperature, wind velocity, and precipitation, were also measured simultaneously. By utilizing these data, preliminary predictive management tools for estimating the abundance of V. vulnificus bacteria in shellfish were developed. This work highlights the need for further research to elucidate the full suite of factors that drive V. parahaemolyticus abundance.  相似文献   

19.
The food-borne pathogen Vibrio parahaemolyticus has been reported as being present in New Zealand (NZ) seawaters, but there have been no reported outbreaks of food-borne infection from commercially grown NZ seafood. Our study determined the current incidence of V. parahaemolyticus in NZ oysters and Greenshell mussels and the prevalence of V. parahaemolyticus tdh and trh strains. Pacific (235) and dredge (21) oyster samples and mussel samples (55) were obtained from commercial shellfish-growing areas between December 2009 and June 2012. Total V. parahaemolyticus numbers and the presence of pathogenic genes tdh and trh were determined using the FDA most-probable-number (MPN) method and confirmed using PCR analysis. In samples from the North Island of NZ, V. parahaemolyticus was detected in 81% of Pacific oysters and 34% of mussel samples, while the numbers of V. parahaemolyticus tdh and trh strains were low, with just 3/215 Pacific oyster samples carrying the tdh gene. V. parahaemolyticus organisms carrying tdh and trh were not detected in South Island samples, and V. parahaemolyticus was detected in just 1/21 dredge oyster and 2/16 mussel samples. Numbers of V. parahaemolyticus organisms increased when seawater temperatures were high, the season when most commercial shellfish-growing areas are not harvested. The numbers of V. parahaemolyticus organisms in samples exceeded 1,000 MPN/g only when the seawater temperatures exceeded 19°C, so this environmental parameter could be used as a trigger warning of potential hazard. There is some evidence that the total V. parahaemolyticus numbers increased compared with those reported from a previous 1981 to 1984 study, but the analytical methods differed significantly.  相似文献   

20.
Hemolymph and soft tissues of Pacific oysters (Crassostrea gigas) kept in sand-filtered seawater at temperatures between 1 and 8°C were normally found to contain bacteria, with viable counts (CFU) in hemolymph in the range 1.4 × 102 to 5.6 × 102 bacteria per ml. Pseudomonas, Alteromonas, Vibrio, and Aeromonas organisms dominated, with a smaller variety of morphologically different unidentified strains. Hemolymph and soft tissues of horse mussels (Modiolus modiolus), locally collected from a 6- to 10-m depth in the sea at temperatures between 4 and 6°C, also contained bacteria. The CFU in horse mussel hemolymph was of the same magnitude as that in oysters (mean, 2.6 × 104), and the bacterial flora was dominated by Pseudomonas (61.3%), Vibrio (27.0%), and Aeromonas (11.7%) organisms. In soft tissues of horse mussels, a mean CFU of 2.9 × 104 bacteria per g was found, with Vibrio (38.5%), Pseudomonas (33.0%), and Aeromonas (28.5%) constituting the major genera. After the challenge of oysters in seawater at 4°C to the psychrotrophic fish pathogen Vibrio salmonicida (strains NCIMB 2245 from Scotland and TEO 84001 from Norway) and a commensal Aeromonas sp. isolated from oysters, the viable count in hemolymph increased 1,000-fold to about 105 bacteria per ml. In soft tissues, about a 1,000-fold increase in CFU to 6 × 107 was observed. V. salmonicida NCIMB 2245 invaded hemolymph and soft tissues after 14 days and dominated these compartments after 41 days, whereas strain TEO 84001 did not invade soft tissues to the same extent. Challenge with V. salmonicida NCIMB 2245 resulted in 100% mortality, whereas about 50% of the oysters survived challenge with the Norwegian strain, TEO 84001. The commensal Aeromonas sp. invaded hemolymph and soft tissues and caused 100% mortality. Oyster hemolymph contained agglutinins for Vibrio anguillarum but not for V. salmonicida, whereas we did not find agglutinins for either of these bacteria in horse mussels. Agglutinins for horse and human erythrocytes were found in hemolymph from both animals. We found no differences in agglutinin titers in oysters from different Norwegian locations, and long-term challenge with bacteria in seawater did not result in changes of agglutinin activity. These studies demonstrate that bacteria exist in hemolymph and soft tissues of marine bivalves at temperatures below 8°C. Increased bacterial numbers in seawater at 4°C result in augmented invasion of bacteria in hemolymph and soft tissues. V. salmonicida, a bacterium pathogenic for fish at low temperatures, invades bivalve hemolymph and soft tissues, and thus bivalves may serve as a reservoir for pathogens of fish at low seawater temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号