共查询到20条相似文献,搜索用时 0 毫秒
1.
H Hayashi D F Nutting K Fujimoto J A Cardelli D Black P Tso 《Journal of lipid research》1990,31(9):1613-1625
Intestinal lipid absorption is associated with marked increases in the synthesis and secretion of apolipoprotein A-IV (apoA-IV) by the small intestine. Whether the increased intestinal apoA-IV synthesis and secretion results from increased fat uptake, increased cellular triglyceride (TG) content, or increased secretion of TG-rich lipoproteins by the enterocytes is unknown. Previous work from this laboratory has shown that a hydrophobic surfactant, Pluronic L-81 (L-81), is a potent inhibitor of intestinal formation of chylomicrons (CM), without reducing fat uptake or re-synthesis to TG. Furthermore, this inhibition can be reversed quickly by the cessation of L-81 infusion. Thus L-81 offers a unique opportunity to study the relationship between lymphatic TG, apoA-I and A-IV secretion. In this study, we studied the lymphatic transport of TG, apoA-I, and apoA-IV during both the inhibitory phase (L-81 infused together with lipid) and the subsequent unblocking phase (saline infusion). Two groups of lymph fistula rats were used, the control and the experimental rats. In the experimental rats, a phosphate-buffered taurocholate-stabilized emulsion containing 40 mumol [3H]triolein, 7.8 mumol of phosphatidylcholine, and 1 mg L-81 per 3 ml was infused at 3 ml/h for 8 h. This was then replaced by glucose-saline infusion for an additional 12 h. The control rats received the same lipid emulsion as the experimental rats, but without L-81 added, for 8 h. Lymph lipid was determined both by radioactivity and by glyceride-glycerol determination, and the apoA-I and apoA-IV concentrations were determined by rocket electroimmunophoresis assay. L-81 inhibited the rise in lymphatic lipid and apoA-IV output in the experimental rats after the beginning of lipid + L-81 infusion. Upon cessation of L-81 infusion, the mucosal lipid accumulated as a result of L-81 treatment was rapidly cleared into lymph as CM. This was associated with a marked increase in apoA-IV output; the maximal output was about 3 times that of the fasting level. There was a time lag of 4-5 h between the peak lymph lipid output and the peak lymph apoA-IV output during the unblocking phase in the experimental rats. There was also a comparable time lag between the maximal lipid and apoA-IV outputs in the control animals. Incorporation studies using [3H]leucine showed that apoA-IV synthesis was not stimulated during lipid + L-81 infusion, perhaps explaining the lack of increase in lymphatic A-IV secretion.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
2.
G M Dallinga-Thie A van Tol F M van't Hooft P H Groot 《Biochimica et biophysica acta》1986,876(1):108-115
The distribution of apolipoproteins A-I and A-IV among lymph lipoprotein fractions was studied after separation by molecular sieve chromatography, avoiding any ultracentrifugation. Lymph was obtained from rats infused either with a glucose solution or with a triacylglycerol emulsion. Relative to glucose infusion, triacylglycerol infusion caused a 20-fold increase in the output of triacylglycerol, coupled with a 4-fold increase in output of apolipoprotein A-IV. The output of apolipoprotein A-I was only elevated 2-fold. Chromatography on 6% agarose showed that lymph apolipoproteins A-I and A-IV are present on triacylglycerol-rich particles and on particles of the size of HDL. In addition, apolipoprotein A-IV is also present as 'free' apolipoprotein A-IV. The increase in apolipoprotein A-I output is caused by a higher output of A-I associated with large chylomicrons only, while the increase in apolipoprotein A-IV output is reflected by an increased output in all lymph lipoprotein fractions, including lymph HDL and 'free' apolipoprotein A-IV. The increased level of 'free' A-IV, seen in fatty lymph, may contribute to, and at least partly explain, the high concentrations of 'free' apolipoprotein A-IV present in serum obtained from fed animals. 相似文献
3.
High density lipoprotein (HDL) from human serum was subfractionated into HDL2 and HDL3 by rate-zonal density gradient ultracentrifugation. The orientation of apoproteins (apo) A-I and A-II in these subfractions was investigated by use of the photosensitive glycolipid probes, 2-(4-azido-2-nitrophenoxy)-palmitoyl[1-14C]glucosamine (compound A) and 12-(4-azido-2-nitrophenoxy)-stearoyl[1-14C]glucosamine (compound B). Both probes were added to the HDL-structures in a ratio of two or three probe molecules per particle and were photoactivated by irradiation at a wavelength above 340 nm. After delipidation the probe-apoprotein adducts were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both the "shallow" probe (compound A) and the "depth" probe (compound B) were coupled for 10-14% (of the label added) to apoA-I and apoA-II from HDL3 and for about 6% to apoA-I and apoA-II from HDL2. By taking into account the relative amounts of apoA-I and apoA-II, it was estimated that the "shallow" probe labeled apoA-I 40% more effectively than apoA-II in both HDL2 and HDL3; the "depth" probe labeled apoA-I and apoA-II equally well in both subfractions. The data suggest that towards the surface HDL2 and HDL3 contain a relatively larger portion of apoA-I than apoA-II, whilst towards the core both subfractions are occupied by an equal portion of apoA-I and apoA-II. Application of these photolabels has failed to point out differences in the structural organization of HDL2 and HDL3. 相似文献
4.
We have found that in vitro lipolysis of human very low density lipoproteins (VLDL) by purified bovine milk lipoprotein lipase (LpL) promotes degradation of the apolipoprotein (apo) B moiety of VLDL. Analysis by sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis showed that lipolysis of VLDL by purified LpL for 1 h at 37 degrees C induced the selective degradation of the high Mr apo-B (apo-B-100) from most hypertriglyceridemic VLDL and from a few normolipidemic VLDL into several small fragments with molecular weights ranging from 90,000-490,000. No detectable degradation of apo-B occurred in control VLDL when incubated without LpL. The apo-E moiety of VLDL from certain individuals was also degraded following lipolysis of VLDL, and the extent of degradation of apo-B and -E in VLDL was varied among the individual VLDL. The major degradation products of apo-E, identified from the gel, were 31,000- and/or 28,000-Da species. In contrast to the apo-E moiety of VLDL, purified apo-E was not degraded when incubated with LpL. Incubation of low density lipoproteins (LDL) with LpL showed only a minimal effect on the apoproteins of LDL. When high density lipoprotein (HDL) was included in the lipolysis mixture as an acceptor of lipolytic surface remnants, the apoproteins of HDL remained unaltered, while the apo-B moiety of VLDL remnants in the mixture was degraded. Inclusion of protease inhibitors in the lipolysis mixture prevented the degradation of apo-B, but the hydrolysis of VLDL-triglyceride was minimally affected. A selective degradation of apo-B in VLDL also occurred during lipolysis of VLDL when VLDL was perfused through rat hearts. These results suggest that conformational changes in apo-B and apo-E caused by VLDL lipolysis may increase the susceptibility of apo-B and apo-E to degradation by the proteases co-isolated with VLDL. The consequences of the lipolysis-induced degradation of apo-B and apo-E on changes in metabolic properties of VLDL remnants remain to be determined. 相似文献
5.
It was shown that cholesterol can interact with some guanidine group-containing compounds (guanidine proper, arginine, metformine and dodecylguanidine bromide) as well as with the arginine-rich proteins--apoproteins A-1 and E. In the latter case this interaction results in the formation of cholesterol-apoprotein complexes. Analysis of such complexes revealed that one apo-A-1 molecule binds 17-22, whereas one apo-E molecule--30-35 sterol molecules, which approximately correspondence to the amount of arginine residues in these proteins. The formation of cholesterol-apoprotein complexes seems to be due to: (1) formation of hydrogen bonds and ion-dipole interactions between the hydroxyl groups of cholesterol and the guanidine groups of the apoprotein arginine residues and, presumably, the carboxylic groups of aspartic or glutamic acids, eventually resulting in the production of chelate complexes; (2) hydrophobic interaction of the cholesterol aliphatic chain with the nonpolar side chains of the amino acids occupying the third position from arginine in the protein molecule. 相似文献
6.
Lee J Tauscher A Seo DW Oram JF Kuver R 《American journal of physiology. Gastrointestinal and liver physiology》2003,285(3):G630-G641
Gallbladder epithelial cells (GBEC) are exposed to high and fluctuating concentrations of biliary cholesterol on their apical (AP) surface. GBEC absorb and efflux cholesterol, but the mechanisms of cholesterol uptake, intracellular trafficking, and efflux in these cells are not known. We previously reported that ATP binding cassette (ABC)A1 mediates basolateral (BL) cholesterol efflux in cultured polarized GBEC. In addition, the nuclear hormone receptors liver X receptor (LXR)alpha and retinoid X receptor (RXR) mediate both AP and BL cholesterol efflux. An interesting finding from our previous study was that apolipoprotein (apo)A-I applied to the AP surfaces of cells elicited BL ABCA1-mediated cholesterol efflux. Because ABCA1-mediated cholesterol efflux requires the presence of a cholesterol acceptor, we hypothesized that GBEC synthesize and secrete endogenous apo into the BL compartment. Here, we demonstrate that cholesterol loading of cells with model bile and AP apoA-I treatment is associated with an increase in the synthesis of apoE mRNA and protein. Furthermore, apoE is secreted into the BL compartment. LXRalpha/RXR ligands stimulate the synthesis of endogenous apoA-I mRNA and protein, as well as apoE mRNA. BL secretion of apoA-I is elicited by LXRalpha/RXR ligands. Therefore, GBEC synthesize apoA-I and -E and efflux cholesterol using ABCA1- and non-ABCA1- mediated pathways. These processes may alter gallbladder biliary cholesterol concentrations and thereby influence gallstone formation. 相似文献
7.
Characterization of two lipoproteins containing apolipoproteins B and E from lesion-free human aortic intima 总被引:8,自引:0,他引:8
S Yl?-Herttuala O Jaakkola C Ehnholm M J Tikkanen T Solakivi T S?rkioja T Nikkari 《Journal of lipid research》1988,29(5):563-572
Lesion-free areas of aortic intimas from seven men, 30 to 49 years old, were extracted with aqueous buffer within a few hours after an accidental or sudden death. Two lipoprotein fractions could be isolated by density gradient ultracentrifugation from all cases. The mean composition of fraction I (d less than 1.012 g/ml) resembled that reported for the cholesteryl ester-rich, beta-migrating very low density lipoprotein (beta-VLDL); the composition of fraction II (d 1.021-1.046 g/ml) resembled that of plasma low density lipoprotein (LDL). Mean diameter of the particles was 35 +/- 8 nm in fraction I and 25 +/- 5 nm in fraction II (22 +/- 2 nm in plasma LDL). Both fractions contained apolipoproteins B (apoB) and E (apoE), and had increased electrophoretic mobilities and reduced contents of linoleic acid. The immunoreactivity of apoB to a polyclonal and two monoclonal antibodies in both fractions was not different from that of plasma lipoproteins. The apoE isoform patterns in both fractions were similar to those obtained from the respective postmortem plasmas. When incubated with mouse peritoneal macrophages, fractions I and II enhanced the incorporation of radioactive oleate into cholesteryl esters by 10- to 20-fold and 3- to 4-fold, respectively, in comparison to plasma LDL. In conclusion, our results indicate that lesion-free human aortic intima contains two types of apoB- and apoE-containing lipoprotein particles, both of which might be potentially atherogenic. 相似文献
8.
We examined the effect of lipid-free apolipoprotein A-I (apoA-I) and apoA-II on the structure of reconstituted high density lipoproteins (rHDL) and on their reactivity as substrates for lecithin:cholesterol acyltransferase (LCAT). First, homogeneous rHDL were prepared with either apoA-I or apoA-II using palmitoyloleoylphosphatidylcholine (POPC) and cholesterol. Lipid-free apoA-I and apoA-II were labeled with the fluorescent probe dansyl chloride (DNS). The binding kinetics of apoA-I-DNS to A-II-POPCrHDL and of apoA-II-DNS to A-I-POPCrHDL were monitored by fluorescence polarization, adding the lipid-free apolipoproteins to the rHDL particles in a 1:1 molar ratio. For both apolipoproteins, the binding to rHDL was rapid, occurring within 5 min. Next, the effect on rHDL structure and particle size was determined after incubations of lipid-free apolipoproteins with homogeneous rHDL at 37 degrees C from 0.5 to 24 h. The products were analyzed by non-denaturing gradient gel electrophoresis followed by Western blotting. The effect of apoA-I or apoA-II on 103 A A-II-POPCrHDL was a rearrangement into 78 A particles containing apoA-I and/or apoA-II, and 90 A particles containing only apoA-II. The effect of apoA-I or apoA-II on 98 A A-I-POPCrHDL was a rearrangement into complexes ranging in size from 78 A to 105 A containing apoA-I and/or apoA-II, with main particles of 78 A, 88 A, and 98 A. Finally, the effect of lipid-free apoA-I and apoA-II on rHDL as substrates for LCAT was determined. The addition of apoA-I to A-II-POPCrHDL increased its reactivity with LCAT 24-fold, reflected by a 4-fold increase in apparent V(m)ax and a 6-fold decrease in apparent K(m), while the addition of apoA-II to A-II-POPCrHDL had no effect on its minimal reactivity with LCAT. In contrast, the addition of apoA-II to A-I-POPCrHDL decreased the reaction with LCAT by about one-half. The inhibition was due to a 2-fold increase in apparent K(m); there was no significant change in apparent V(m)ax. Likewise, the addition of apoA-I to A-I-POPCrHDL inhibited the reaction with LCAT to about two-thirds that of A-I-POPCrHDL without added apoA-I. In summary, both lipid-free apoA-I and apoA-II can promote the remodeling of rHDL into hybrid particles of primarily smaller size. Both apoA-I and apoA-II affect the reactivity of rHDL with LCAT, when added to the reaction in lipid-free form. These results have important implications for the roles of lipid-free apoA-I and apoA-II in HDL maturation and metabolism. 相似文献
9.
Previous studies have provided detailed information on the formation of spherical high density lipoproteins (HDL) containing apolipoprotein (apo) A-I but no apoA-II (A-I HDL) by an lecithin:cholesterol acyltransferase (LCAT)-mediated process. In this study we have investigated the formation of spherical HDL containing both apoA-I and apoA-II (A-I/A-II HDL). Incubations were carried out containing discoidal A-I reconstituted HDL (rHDL), discoidal A-II rHDL, and low density lipoproteins in the absence or presence of LCAT. After the incubation, the rHDL were reisolated and subjected to immunoaffinity chromatography to determine whether A-I/A-II rHDL were formed. In the absence of LCAT, the majority of the rHDL remained as either A-I rHDL or A-II rHDL, with only a small amount of A-I/A-II rHDL present. By contrast, when LCAT was present, a substantial proportion of the reisolated rHDL were A-I/A-II rHDL. The identity of the particles was confirmed using apoA-I rocket electrophoresis. The formation of the A-I/A-II rHDL was influenced by the relative concentrations of the precursor discoidal A-I and A-II rHDL. The A-I/A-II rHDL included several populations of HDL-sized particles; the predominant population having a Stokes' diameter of 9.9 nm. The particles were spherical in shape and had an electrophoretic mobility slightly slower than that of the alpha-migrating HDL in human plasma. The apoA-I:apoA-II molar ratio of the A-I/A-II rHDL was 0.7:1. Their major lipid constituents were phospholipids, unesterified cholesterol, and cholesteryl esters. The results presented are consistent with LCAT promoting fusion of the A-I rHDL and A-II rHDL to form spherical A-I/A-II rHDL. We suggest that this process may be an important source of A-I/A-II HDL in human plasma. 相似文献
10.
L A Zech E J Schaefer T J Bronzert R L Aamodt H B Brewer 《Journal of lipid research》1983,24(1):60-71
The metabolism of radioiodinated apolipoproteins (apo) A-I and A-II have been examined using the techniques of compartmental modeling. The model for apoA-I contains two plasma compartments decaying at different rates. One component of apoA-I has a residence time of 3.8 days and the second has a residence time of 6.1 days. In contrast, the apoA-II model has only one plasma component, with a residence time of 5.5 days, which decays through two distinct pathways. Twenty-seven percent of apoA-II decays through a pathway that takes 1.1 days longer to reach the urine than the remaining 73% which decays through the more direct path. These differences in the metabolism exist in both male and female populations. Comparison of fasting and nonfasting concentrations of apoA-I revealed that apoA-I concentration was elevated 0.5 standard deviations in the nonfasting samples while there was no significant difference in the apoA-II concentrations. The fasting apoA-I concentrations were found to be less stable over the study period when compared to fasting apoA-II concentrations. These findings are interpreted as indicating that apoA-I and apoA-II each have a separate metabolism which overlaps when they are present on the same lipoprotein particle. Furthermore, these findings are consistent with the concept that apoA-I metabolism is influenced more by perturbations such as dietary modulation. 相似文献
11.
Cloning and sequencing of bovine apolipoprotein A-I cDNA and molecular evolution of apolipoproteins A-I and B-100 总被引:1,自引:0,他引:1
We have cloned and sequenced bovine apoA-I cDNA. Comparison with the apoA-I sequences of six other vertebrates shows the bovine gene to be most similar to that of the dog. Estimates of substitution rates show that apoA-I evolves approximately 25% faster than an average gene in mammalian lineages. All portions of the coding region evolve at roughly similar rates, suggesting that global conformation is conserved. However, a region of the rat protein has evolved rapidly both relative to other portions of the rat sequence and relative to homologous regions in other mammals. To extend our analysis to other apolipoproteins, we compared four vertebrate apoB-100 sequences. Conserved regions were found to include two putative LDL receptor binding domains, in addition to several regions of unidentified function. Comparison of the apoA-I sequences and the apoB-100 sequences indicates that the latter evolve approximately 40% faster than the former and at twice the average rate for mammalian proteins. 相似文献
12.
G M Dallinga-Thie F M van't Hooft A van Tol 《The International journal of biochemistry》1986,18(4):383-388
Rat apolipoprotein (apo) A-I and A-IV, isolated from both lymph chylomicrons and serum high density lipoproteins (HDL) were analyzed by isoelectric focusing. Lymph chylomicron apo A-I consisted for 81 +/- 2% of the pro form and for 19 +/- 2% of the mature form, while apo A-I isolated from serum HDL was present for 36 +/- 4% in the pro form and for 64 +/- 4% in the mature form. Apo A-IV also showed two major protein bands after analysis by isoelectric focusing. The most prominent component is the more basic protein that amounts to 80 +/- 2% in apo A-IV isolated from lymph chylomicrons and to 60 +/- 3% in apo A-IV isolated from serum HDL. Apo A-I (or apo A-IV), isolated from both sources (lymph chylomicrons or serum HDL), was iodinated and the radioactive apolipoproteins were incorporated into rat serum lipoproteins. The resulting labeled HDL was isolated from serum by molecular sieve chromatography on 6% agarose columns and injected intravenously into rats. No difference in the fractional turnover rate or the tissue uptake of the two labeled HDL preparations was observed, neither for apo A-I nor for apo A-IV. It is concluded that the physiological significance of the extracellular pro apo A-I conversion or the post-translational modification of apo A-IV is not related to the fractional turnover rate in serum or to the rate of catabolism in liver and kidneys. 相似文献
13.
14.
Rapid, large-scale isolation of human apolipoproteins A-I and A-II has been accomplished using two chromatographic procedures. The apolipoproteins adsorbed from plasma onto a column of phenyl-Sepharose are eluted with increasing propylene glycol concentrations. Apolipoproteins A-I and A-II can be resolved by elution with a linear 0 to 80% propylene glycol gradient. Homogeneous preparations of apo A-I and A-II are obtained following gel filtration in 3M guanidinium chloride. 相似文献
15.
W Vélez-Carrasco A H Lichtenstein P H Barrett Z Sun G G Dolnikowski F K Welty E J Schaefer 《Journal of lipid research》1999,40(9):1695-1700
Stable isotope methodology was used to determine the kinetic behavior of apolipoprotein (apo) A-I within the triglyceride-rich lipoprotein (TRL) fraction and to compare TRL apoA-I kinetics with that of apoA-I in high density lipoprotein (HDL) and TRL apoB-48. Eight subjects (5 males and 3 females) over the age of 40 were placed on a baseline average American diet and after 6 weeks received a primed-constant infusion of [5,5,5-(2)H(3)]-l-leucine for 15 h while consuming small hourly meals of identical composition. HDL and TRL apoA-I and TRL apoB-48 tracer/tracee enrichment curves were obtained by gas chromatography;-mass spectrometry. Data were fitted to a compartmental model to determine the fractional secretion rates of apoA-I and apoB-48 within each lipoprotein fraction. Mean plasma apoA-I levels in TRL and HDL fractions were 0. 204 +/- 0.057 and 134 +/- 15 mg/dl, respectively. The mean fractional catabolic rate (FCR) of TRL apoA-I was 0.250 +/- 0.069 and HDL apoA-I was 0.239 +/- 0.054 pools/day, with mean estimated residence times (RT) of 4.27 and 4.37 days, respectively. The mean TRL apoB-48 FCR was 5.2 +/- 2.0 pools/day and the estimated mean RT was 5.1 +/- 1.8 h. Our results indicate that apoA-I is catabolized at a slower rate than apoB-48 within TRL, and that apoA-I within TRL and HDL fractions are catabolized at similar rates. 相似文献
16.
G M Anantharamaiah T A Hughes M Iqbal A Gawish P J Neame M F Medley J P Segrest 《Journal of lipid research》1988,29(3):309-318
Purified apolipoprotein A-I has been separated by reversed-phase high performance liquid chromatography (HPLC) into multiple peaks and these peaks have been characterized. One peak, apoA-Ib had a relatively longer retention time on HPLC but its retention time could be shortened by treatment by hydrogen peroxide. CNBr cleavage studies indicated that the differences in apoA-Ib and in its oxidation product, apoA-Ia, were due to the different oxidation states of methionine. This phenomenon was also observed in apoA-II, where methionine oxidation produced two more forms of this apolipoprotein in addition to the native form. These isomers were found to have different secondary structures and affinities for lipid. Model peptide analogs of the amphipathic helix with the same sequence but with methionine and methionine sulfoxide at the nonpolar face of the amphipathic helix were synthesized and studied. It was found that the lipid affinities of these synthetic peptide isomers were very different. They also differed in their secondary structures as studied by circular dichroism (CD). We propose that methionine oxidation introduces hydrophilic residues at the nonpolar face of the amphipathic helical domains of these apolipoproteins and, therefore, alters their secondary structure and lipid affinity. 相似文献
17.
L S Guo R L Hamilton J Goerke J N Weinstein R J Havel 《Journal of lipid research》1980,21(8):993-1003
The effect of rat whole blood plasma, serum, serum lipoproteins, and apolipoproteins on the stability of unilamellar liposomes prepared with French pressure cell was evaluated by measuring the release of entrapped carboxyfluorescein and by electron microscopy. In the absence of serum components, dye escaped very slowly (hours) from egg phosphatidylcholine and phosphatidylcholine-cholesterol (43 mol % cholesterol) vesicles without apparent change in liposomal structure. This slow release was both temperature- and size-dependent. serum and some of its constituents induced a far more rapid (seconds) loss of entrapped dye from phosphatidylcholine liposomes, associated with structural changes. For equal masses of protein the order of potency of this induced activity was: free apolipoproteins (apo A-I, apo E) > isolated lipoproteins (HDL and VLDL) > whole serum or whole plasma. Substantial activity was found in three preparations of bovine serum albumin. This activity could be attributed to small and variable amounts of contaminating lipoprotein-like particles and apolipoprotein A-I. Induced release of dye from liposomes by apolipoproteins was usually associated with rapid formation of discs although other structures were sometimes formed. Purified rat apolipoproteins A-I and E appeared to interact identically with liposomes to induce dye release. This effect was progressively impaired for both apoproteins by increasing amounts of cholesterol and was completely inhibited when liposomes contained 37 mol % cholesterol. 相似文献
18.
19.
David L. Rainwater Candace M. Kammerer Min-Lee Cheng Mary L. Sparks John L. VandeBerg 《Biochemical genetics》1992,30(3-4):143-158
A method for the quantitative assessment of apolipoprotein distributions among baboon serum lipoproteins is described. The
method combines the precise and reproducible separation of lipoproteins by polyacrylamide gradient gel electrophoresis with
the specificity of immunoblotting. The method permits the measurement of distributions for any apolipoprotein for which there
are antibodies available. Radioactive secondary antibodies are used to expose X-ray film, and distributions are determined
by densitometry. Absorbance is linearly related to both antigen and antibody concentrations. The method is reproducible, with
the mean coefficient of variation calculated to be 0.118, and has a high repeatability (r
2=0.97). The immunoblotting method can be employed to measure the fine details of lipoprotein phenotypes as they are influenced
by genotype and environment.
This work was supported in part by grant HL28972 and Contract No. HV53030 from the National Institutes of Health. 相似文献
20.
Interconversion of prebeta-migrating lipoproteins containing apolipoprotein A-I and HDL 总被引:1,自引:0,他引:1
Mouse plasma from strains C57BL/6J and C3H/HeJ includes a high density lipoprotein (HDL) fraction containing apolipoprotein A-I which migrates in the prebeta region upon agarose gel electrophoresis, similar to the prebeta HDL previously reported in humans. This prebeta A-I lipoprotein species has a buoyant density of 1.080-1.210 g/ml and has two molecular weight species, 65,000 and 71,000. It is lipid-poor and deficient in apolipoprotein E. When mice are fed a high fat and high cholesterol diet, the quantity of prebeta A-I increases in both strains as determined by quantitative densitometry of agarose gel immunoblots. Prebeta A-I species are highly unstable in plasma at 37 degrees C. Initially (0-1 h) levels decreased and with further incubation (1-8 h) levels increased. Nondenaturing polyacrylamide gel electrophoresis (PAGE) demonstrated that the prebeta HDL formed during prolonged incubation (1-8 h) was identical in size to HDL in unincubated samples. The initial decrease of prebeta HDL observed during the first hour of incubation, phase I, was inhibited by DTNB, suggesting that phase I is dependent on lecithin:cholesterol acyltransferase (LCAT); however, the subsequent increase, phase II, was unaffected by DTNB and appears LCAT-independent. The prebeta A-I species formed in plasma containing DTNB after a 4-h incubation resulted in a polydisperse particle size distribution. The two strains, the atherosclerosis-susceptible C57BL/6 and -resistant C3H, displayed a similar elevation and induction of prebeta HDL during a dietary switch from laboratory chow to an atherogenic diet with a transient peak occurring at 7 days even when total HDL in the susceptible strain was greatly reduced. 相似文献