首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular forms of chylomicrons, very low density lipoprotein (VLDL) and high density lipoprotein (HDL) have previously been isolated from the rat intestine. These intracellular particles are likely to be nascent precursors of secreted lipoproteins. To study the distribution of intracellular apolipoprotein among nascent lipoproteins, a method to isolate intracellular lipoproteins was developed and validated. The method consists of suspending isolated enterocytes in hypotonic buffer containing a lipase inhibitor, rupturing cell membranes by nitrogen cavitation, and isolating lipoproteins by sequential ultracentrifugation. ApoB and apoA-I mass are determined by radioimmunoassay and newly synthesized apolipoprotein characterized following [3H]leucine intraduodenal infusion. Intracellular chylomicron, VLDL, low density lipoprotein (LDL), and HDL fractions were isolated and found to contain apoB, and apoA-IV, and apoA-I. In the fasted animal, less than 10% of total intracellular apoB and apoA-I was bound to lipoproteins and 7% of apoB and 35% of apoA-I was contained in the d 1.21 g/ml infranatant. The remainder of intracellular apolipoprotein was in the pellets of centrifugation. Lipid feeding doubled the percentage of intracellular apoA-I bound to lipoproteins and increased the percentage of intracellular apoB bound to lipoproteins by 65%. Following lipid feeding, the most significant increase was in the chylomicron apoB and HDL apoA-I fractions. These data suggest that in the fasting state, 90% of intracellular apoB and apoA-I is not bound to lipoproteins. Lipid feeding shifts intracellular apolipoprotein onto lipoproteins, but most intracellular apolipoprotein remains non-lipoprotein bound. The constant presence of a large non-lipoprotein-bound pool suggests that apolipoprotein synthesis is not the rate limiting step in lipoprotein assembly or secretion.  相似文献   

2.
Apoproteins of chylomicrons, very low density lipoprotein (VLDL), and a low density + high density fraction secreted by proximal and distal rat small intestine into mesenteric lymph were examined during triglyceride (TG) absorption. Apoprotein output and composition were determined and the turnover rates of labeled non-apoB (soluble) apoproteins in lipoprotein fractions were measured after an intraluminal [(3)H]leucine pulse during stable TG transport into lymph. The output of VLDL apoproteins exceeded that of chylomicrons during the absorption of 45 micro mol of TG per hour. More [(3)H]leucine was incorporated into VLDL than into chylomicrons and the decay of newly synthesized VLDL apoproteins was more rapid than that of chylomicrons, in part due to higher concentrations of apoA-I and apoA-IV with a rapid turnover rate. Chylomicrons from proximal intestine contained more apoA-I and less C peptides than chylomicrons from distal intestine. Ninety percent of [(3)H]leucine incorporated into soluble apoproteins was in apoA-I and apoA-IV, but little apoARP was labeled. The turnover rate of apoA-I and apoA-IV differed significantly in the lymph lipoproteins examined. Although total C peptide labeling was small, evidence for intestinal apoC-II formation and differing patterns of apoC-III subunit labeling was obtained. [(3)H]Leucine incorporation and apoprotein turnover rates in lipoprotein secreted by proximal and distal intestine were similar. The different turnover rates of apoA-I and apoA-IV in individual lipoproteins suggest that these A apoproteins are synthesized independently in the intestine.-Holt, P. R., A-L. Wu, and S. Bennett Clark. Apoprotein composition and turnover in rat intestinal lymph during steady-state triglyceride absorption.  相似文献   

3.
Apolipoprotein A-I isoforms in human lymph: effect of fat absorption   总被引:2,自引:0,他引:2  
The effect of fat feeding (100 g of cream) on the apoA-I isoproteins distribution has been analyzed by two-dimensional gel electrophoresis in the chylomicrons, VLDL, LDL, and HDL isolated from the thoracic duct lymph of patients undergoing lymph drainage for immunosuppression, Isoforms apoA-I3 and apoA-I4 are the most abundant apoA-I isoproteins in plasma lipoproteins as well as in lymph lipoproteins collected in the fasting state. Fat feeding, on the other hand, results in a marked change in the apoA-I isoform pattern in lymph chylomicrons and VLDL, with a significant increase in the relative concentration of the apoA-I1 isoform. As a result the total concentration of this isoprotein in the lymph increased. The data indicate that fat feeding is associated with major changes in the distribution of the apoA-I isoforms in the lymph (d less than 1.006 g/ml lipoproteins), which may be of significance in their plasma catabolism.  相似文献   

4.
The effect of two different levels of dietary cholesterol (0.16 mg/Kcal and 0.79 mg/cal) on the composition of thoracic lymph duct lipoproteins was studied in two species of nonhuman primates, Ceropithecus aethiops (African green monkey) and Macaca fascicularis (cynomolgus monkey). Diet was infused intraduodenally at a constant rate to facilitate comparisons among animals. The higher level of dietary cholesterol resulted in an increase in the amount of cholesteryl ester in lymph chylomicrons and VLDL. Cholesteryl oleate was the predominant cholesteryl ester present in lymph d less than 1.006 g/ml lipoproteins and it was the predominant cholesteryl ester formed from exogenous radiolabeled cholesterol. The percentage of saturated and monounsaturated cholesteryl esters in lymph chylomicrons and VLDL significantly increased with the higher dietary cholesterol level. The apoprotein distribution of chylomicrons and VLDL was qualitatively similar during infusions of both diets. The apoprotein B of intestinal chylomicrons and VLDL, termed apoprotein B2, was qualitatively similar during low and high cholesterol diet infusion and was significantly smaller than that of plasma LDL apoB, termed apoprotein B1, as indicated by its electrophoretic mobility in SDS-polyacrylamide gels. The major phospholipid present in lymph chylomicrons and VLDL was phosphatidylcholine and the phospholipid composition of the particles was not affected by diet. Lymph d greater than 1.006 g/ml lipoproteins were separated and the cholesterol mass distribution among lipoprotein fractions was found to be similar during both diet infusions. With an increase in the level of dietary cholesterol, the percentage esterification of cholesterol mass and of exogenous cholesterol radioactivity increased in LDL and HDL from lymph. Lymph LDL and HDL contained less free and esterified cholesterol when their composition was compared to that for these lipoproteins in plasma. We conclude that the primary effect of increased dietary cholesterol level was to increase the cholesteryl ester content of all lymph lipoproteins; cholesterol distribution among lymph lipoproteins was unaffected.  相似文献   

5.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

6.
Uniformly fatty livers from orotic acid-fed rats secreted almost no very low density lipoproteins (VLDL) but normal amounts of nascent high density lipoproteins (HDL) accumulated in perfusates. When lecithin:cholesterol acyltransferase (LCAT) was inhibited, nascent HDL were uniformly discoidal and lacked cholesteryl esters. Lipid and apoprotein compositions of nascent HDL from normal and fatty livers were similar whether LCAT was inhibited or not. Apolipoprotein B-100 was not detected in perfusates of uniformly fatty livers, but small amounts of apolipoprotein B-48 were present in HDL2 fractions. Nascent lipoproteins were not seen in Golgi compartments, but lipid-rich particles were clearly evident in endoplasmic reticulum cisternae adjacent to the cis face of the Golgi complex, suggesting that orotic acid blocks VLDL secretion by preventing translocation of nascent particles from the endoplasmic reticulum to the cis Golgi compartment. The accumulation of normal amounts of discoidal HDL in liver perfusates despite virtual absence of triglyceride-rich lipoproteins in Golgi secretory compartments, the space of Disse, and the perfusate is inconsistent with the concept that nascent HDL are exclusively a product of surface remnants cast off during lipolysis of chylomicrons and VLDL.  相似文献   

7.
Peripheral lymph lipoproteins have been characterized in animals, but there is little information about their composition, and none about their ultrastructure, in normal humans. Therefore, we collected afferent leg lymph from 16 healthy males and quantified lipids and apolipoproteins in fractions separated by high performance-size exclusion chromatography. Apolipoprotein B (apoB) was found almost exclusively in low density lipoproteins. The distribution of apoA-I, particularly in lipoprotein A-I (LpA-I) without A-II particles, was shifted toward larger particles relative to plasma. The fractions containing these particles were also enriched in apoA-II, apoE, total cholesterol, and phospholipids and had greater unesterified cholesterol-to-cholesteryl ester ratios than their counterparts in plasma. Fractions containing smaller apoA-I particles were enriched in phospholipid. Most apoA-IV was lipid poor or lipid free. Most apoC-III coeluted with large apoA-I-containing particles. Electron microscopy showed that lymph contained discoidal particles not seen in plasma. These findings support other evidence that high density lipoproteins (HDL) undergo extensive remodeling in human tissue fluid. Total cholesterol concentration in lymph HDL was 30% greater (P < 0.05) than could be explained by the transendothelial transfer of HDL from plasma, providing direct confirmation that HDL acquire cholesterol in the extravascular compartment. Net transport rates of new HDL cholesterol in the cannulated vessels corresponded to a mean whole body reverse cholesterol transport rate via lymph of 0.89 mmol (344 mg)/day.  相似文献   

8.
Isolated livers from rhesus monkeys (Macaca mulatta) were perfused in order to asses the nature of newly synthesized hepatic lipoprotein. Perfusate containing [3H]leucine was recirculated for 1.5 hr, followed by an additional 2.5-hr perfusion with fresh perfusate. Equilibrium density gradient ultracentrifugation clearly separated VLDL from LDL. The apoprotein composition of VLDL secreted by the liver was similar to that of serum VLDL. The perfusate LDL contained some poorly radiolabeled, apoB-rich material, which appeared to be contaminating serum LDL. There was also some material of an LDL-like density, which was rich in radiolabeled apoE. Rate zonal density gradient ultracentrifugation fractionated HDL. All perfusate HDL fractions had a decreased cholesteryl ester/unesterified cholesterol ratio, compared to serum HDL. Serum HDL distributed in one symmetric peak near the middle of the gradient, with coincident peaks of apoA-I and apoA-II. The least dense fractions of the perfusate gradient were rich in radiolabeled apoE. The middle of the perfusate gradient contained particles rich in radiolabeled apoA-I and apoA-II. The peak of apoA-I was offset from the apoA-II peak towards the denser end of the gradient. The dense end of the HDL gradient contained lipoprotein-free apoA-I, apoE, and small amounts of apoA-II, probably resulting from the relative instability of nascent lipoprotein compared to serum lipoprotein. Perfusate HDL apoA-I isoforms were more basic than serum apoA-I isoforms. Preliminary experiments, using noncentrifugal methods, suggest that some hepatic apoA-I is secreted in a lipoprotein-free form. In conclusion, the isolated rhesus monkey liver produces VLDL similar to serum VLDL, but produces LDL and HDL which differ in several important aspects from serum LDL and HDL.  相似文献   

9.
Apolipoprotein A-I regulates lipid hydrolysis by hepatic lipase   总被引:2,自引:0,他引:2  
Association of hepatic lipase (HL) with pure heparan sulfate proteoglycans (HSPG) has little effect on hydrolysis of high density lipoprotein (HDL) particles, but significantly inhibits (>80%) the hydrolysis of low (LDL) and very low density lipoproteins (VLDL). Lipolytic inhibition is associated with a differential ability of the lipoproteins to remove HL from the HSPG. LDL and VLDL are unable to displace HL, whereas HDL readily displaces HL from the HSPG. These data show that HSPG-bound HL is inactive. Purified apolipoprotein (apo) A-I is more efficient than HDL at liberating HL from HSPG, and HL displacement is associated with the direct binding of apoA-I to HSPG. However, displacement of HL by apoA-I does not enhance hydrolysis of VLDL particles. This appears due to the direct inhibition of HL by apoA-I. Both apoA-I and HDL are able to inhibit VLDL lipid hydrolysis by up to 60%. Inhibition of VLDL hydrolysis is associated with the binding of apoA-I to the surface of the VLDL particle and a concomitant decreased affinity for HL. These data show that apoA-I can regulate lipid hydrolysis by HL by liberating/activating the enzyme from cell surface proteoglycans and by directly modulating lipoprotein binding and hydrolysis.  相似文献   

10.
We have studied apolipoprotein synthesis, intracellular modification and secretion by primary adult rat hepatocyte cultures using continuous pulse or pulse chase labeling with [35S]methionine, immunoprecipitation and two-dimensional isoelectric focusing/polyacrylamide gel electrophoresis. The flotation properties of the newly secreted apolipoproteins were studied by discontinuous density gradient ultracentrifugation and one- and two-dimensional polyacrylamide gel electrophoresis. These studies showed that rat hepatocyte apoE is modified intracellularly to produce minor isoproteins that differ in size and charge. One of these minor isoproteins represents a monosialated apoE form (apoE3s1). Similarly, apoCIII is modified intracellularly to produce a disialated apoCIII form (apoCIIIs2), whereas newly synthesized apoA-I and apoA-IV are not glycosylated and overlap on two-dimensional gels with the proapoA-I and the plasma apoA-IV form, respectively. Both unmodified and modified apolipoproteins are secreted into the medium. Separation of secreted apolipoproteins by density gradient ultracentrifugation has shown that 50% of apoE, 80% of apoA-I, and more than 90% of apoA-IV and apoCIII are secreted in a lipid-poor form, whereas apoB-100 and apoB-48 are 100% associated with lipids. ApoB-100 floats in the VLDL and IDL regions, whereas apoB-48 is found in all lipoprotein fractions. ApoE and small amounts of apoA-I, apoA-IV and apoCIII float in the HDL region. Small amounts of apoE and apoCIII are also found in the VLDL and IDL regions, and apoE in the LDL region. Ultracentrifugation of nascent lipoproteins in the presence of rat serum promoted flotation of apoA-I and apoA-IV in the HDL fraction and resulted in increased flotation and distribution of apoE and apoCs in VLDL, IDL and LDL regions. These observations are consistent with the hypothesis that intracellular assembly of lipoproteins involves apoB-48 and apoB-100 forms, whereas a large portion of apoA-I, apoCIII and apoA-IV can be secreted in a lipid-poor form, which associates extracellularly with preexisting lipoproteins.  相似文献   

11.
We have recently evaluated the in vivo role of the liver in lipoprotein homeostasis in the preruminant calf (Bauchart, D., D. Durand, P. M. Laplaud, P. Forgez, S. Goulinet, and M. J. Chapman, 1989. J. Lipid Res. 30: 1499-1514). We now present the partial characterization of lipoprotein particles in postprandial intestinal lymph at peak lipid absorption (i.e., 10 h after a meal) in the preruminant calf fed a curdled milk replacer. Intestinal lymph from four male preruminant calves was analyzed for its content of lipids and fractionated by sequential and density gradient ultracentrifugation into chylomicrons (Sf greater than 400), very low density lipoproteins (VLDL) (Sf less than 400; d less than 1.006 g/ml), and a series of lipoprotein subfractions with d greater than 1.006 g/ml. Postprandial lymph contained predominantly triglycerides (1099 +/- 611 mg/100 ml), with lesser amounts of phospholipids (197 +/- 107 mg/100 ml) and cholesterol (52 +/- 30 mg/100 ml). The most abundant particles were triglyceride-rich chylomicrons and VLDL which accounted for approximately 76% and approximately 19%, respectively, of total d less than 1.21 g/ml lipoproteins. As judged by negative stain electron microscopy, chylomicron particle diameters ranged from 650 to 2400 A, while VLDL were smaller and distributed over a distinct size range (340-860 A). These two lipoprotein classes each presented protein components with Mr comparable to those of human apoB-48, apoA-I, and C apoproteins, together with an Mr 52,000 protein resembling human beta 2-glycoprotein-I. In addition, VLDL exhibited a polypeptide with Mr approximately 61,000. Lymph lipoproteins with d greater than 1.006 g/ml consisted primarily (approximately 81% of total) of particles distributed over the 1.053-1.119 g/ml density range. Electrophoretic analysis of the latter lipoprotein fraction showed it to be heterogeneous, including particles with the migration characteristics of low and of high density lipoproteins, respectively. Subfractions in the d 1.053-1.076 g/ml range were dominated by particles with Stokes diameters typical of high density lipoproteins (HDL), but also contained three different populations of low density lipoprotein-like particles. The high molecular weight apolipoproteins in these same cholesteryl ester-rich (greater than 30% of lipoprotein mass) subfractions comprised components with Mr resembling those of human apoB-100 and apoB-48, respectively, and with the latter protein predominating to a varying degree. A counterpart to human apoA-I was the major protein component over the entire density range from d 1.053 to 1.119 g/ml.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The heterogeneity of serum lipoproteins (excluding very low density (VLDL) and intermediate density (IDL) lipoproteins) and that of lipoproteins secreted by HepG2 cells has been studied by immunoblot analysis of the apolipoprotein composition of the particles separated by polyacrylamide gradient gel electrophoresis (GGE) under nondenaturing conditions. The reactions of antibodies to apoA-I, apoA-II, apoE, apoB, apoD, and apoA-IV have revealed discrete bands of particles which differ widely in size and apolipoprotein composition. GGE of native serum lipoproteins demonstrated that apoA-II is present in lipoproteins of limited size heterogeneity (apparent molecular mass 345,000 to 305,000) and that apoB is present in low density lipoproteins (LDL) and absent from all smaller or denser lipoproteins. In contrast, serum apoA-I, E, D, and A-IV are present in very heterogeneous particles. Serum apoA-I is present mainly in particles of 305 to 130 kDa where it is associated with apoA-II, and in decreasing order of immunoreactivity in particles of 130-90 kDa, 56 kDa, 815-345 kDa, and finally within the size range of LDL, all regions where there is little detectable apoA-II. Serum apoE is present in three defined fractions, one within the size range of LDL, one containing heterogeneous particles between 640 and 345 kDa, and one defined fraction at 96 kDa. Serum apoD is also present in three defined fractions, one comigrating with LDL, one containing heterogeneous particles between 390 and 150 kDa, and one band on the migration front. Most of serum apoA-IV is contained in a band comigrating with albumin. GGE of centrifugally prepared LDL shows the presence of apoB, apoE, and apoD, but not that of apoA-I. However, the particles containing apoA-I, which, in serum, migrated within the LDL size range and as bands of 815 to 345 kDa, were recovered upon centrifugation in the d greater than 1.21 g/ml fraction. GGE of high density lipoproteins (HDL) indicated that most of apoA-I, A-II, and A-IV were present in lipoproteins of the same apparent molecular mass (390-152 kDa). ApoD tended to be associated with large HDL, and this was also significant for HDL apoE, which is present in lipoproteins ranging from 640 to 275 kDa. GGE of very high density lipoproteins (VHDL) presented some striking features, one of which was the occurrence of apolipoproteins in very discrete bands of different molecular mass. ApoA-II was bimodally distributed at 250-175 kDa and 175-136 kDa, the latter fraction also containing apoA-I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Lipoprotein lipase (LPL)-mediated hydrolysis of triglycerides (TG) contained in chylomicrons requires the presence of a cofactor, apolipoprotein (apo) C-II. The physiological mechanism by which chylomicrons gain apoC-II necessary for LPL activation in whole plasma is not known. Using a gum arabic stabilized TG emulsion, activation of LPL by lipoprotein apoC-II was studied. Hydrolysis of TG by LPL was greater in the presence of serum than with addition of either high density lipoproteins (HDL) or very low density lipoproteins (VLDL). LPL activation by either VLDL or HDL increased with addition of the lipoprotein-free fraction of plasma. A similar increase in LPL activity by addition of the lipoprotein-free fraction together with HDL or VLDL was observed when another TG emulsion (Intralipid) or TG-rich lipoproteins from an apoC-II deficient subject were used as a substrate. Human apoA-IV, apoA-I, apoE, and cholesteryl ester transfer protein were assessed for their ability to increase LPL activity in the presence of VLDL. At and below physiological concentrations, only apoA-IV increased LPL activity. One hundred percent of LPL activity measured in the presence of serum was achieved using VLDL plus apoA-IV. In the absence of an apoC-II source, apoA-IV had no effect on LPL activity. Removal of greater than 80% of the apoA-IV from the nonlipoprotein-containing fraction of plasma by incubation with Intralipid markedly reduced its ability to activate LPL in the presence of VLDL or HDL. Gel filtration chromatography demonstrated that incubation of the nonlipoprotein-containing fraction of plasma with HDL and the TG emulsion caused increased transfer of apoC-II to the emulsion and association of apoA-IV with HDL. Our studies demonstrate that apoA-IV increases LPL activation in the presence of lipoproteins. We hypothesize that apoA-IV is required for efficient release of apoC-II from either HDL or VLDL, which then allows for LPL-mediated hydrolysis of TG in nascent chylomicrons.  相似文献   

14.
A total of six established human hepatoma-derived cell lines, including Hep3B, NPLC/PRF/5 (NPLC), Tong/HCC, Hep 10, huH1, and huH2, were screened for their ability to accumulate significant quantities of lipoproteins in serum-free medium. Only two cell lines, Hep3B and NPLC, secreted quantitatively significant amounts of lipoproteins. In a 24-h period the accumulated mass of apolipoproteins (apo) A-I, A-II, B, and E and albumin for Hep3B cells was 1.96, 1.01, 1.96, 1.90, and 53.2 micrograms/mg cell protein per 24 h, respectively. NPLC cells secreted no detectable albumin but the 24-h accumulated mass for apolipoproteins A-I, A-II, B, and E was 0.45, 0.05, 0.32, and 0.68 micrograms/mg cell protein per 24 h, respectively. Twenty four-hour serum-free medium of Hep3B cells contained lipoproteins corresponding to the three major density classes of plasma; percent protein distribution among the lipoprotein classes was 4%, 41%, and 56% for very low density lipoprotein ("VLDL"), low density lipoprotein ("LDL"), and high density lipoprotein ("HDL"), respectively. NPLC was unusual since most of the lipoprotein mass was in the d 1.063-1.235 g/ml range. Hep3B "LDL", compared with plasma LDL, contained elevated triglyceride, phospholipid, and free cholesterol. Nondenaturing gradient gel electrophoresis revealed that Hep3B "LDL" possessed a major component at 25.5 nm and a minor one at 18.3 nm. Immunoblots showed that the former contained only apoB while the latter possessed only apoE. Like plasma VLDL, Hep3B "VLDL" particles (30.5 nm diameter) isolated from serum-free medium contained apoB, apoC, and apoE. "HDL" harvested from Hep3B and NPLC medium were enriched in phospholipid and free cholesterol and poor cholesteryl ester which is similar to the composition of HepG2 "HDL." "HDL" from Hep3B and NPLC culture medium on gradient gel electrophoresis had peaks at 7.5, 10, and 11.9 nm which were comparable to major components found in HepG2 cell medium. Hep3B cells, in addition, possessed a particle that banded at 8.2 nm which appeared to be an apoA-II without apoA-I particle by Western blot analysis. The cell line also produced a subpopulation of larger-sized "HDL" not found in HepG2 medium. NPLC "HDL" had a distinct peak at 8.3 nm which by Western blot was an apoE-only particle. Electron microscopy revealed that "HDL" harvested from Hep3B and NPLC medium consisted of discoidal and small, spherical particles like those of HepG2. The "HDL" apolipoprotein content of each cell line was distinct from that of HepG2. ApoA-II at 35% of apolipoprotein distinguishes Hep3B "HDL" from HepG2, which contains only 10%.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Interactions of high density lipoproteins (HDL) with very low (VLDL) and low (LDL) density lipoproteins were investigated during in vitro lipolysis in the presence of limited free fatty acid acceptor. Previous studies had shown that lipid products accumulating on lipoproteins under these conditions promote the formation of physical complexes between apolipoprotein B-containing particles (Biochim. Biophys. Acta, 1987. 919: 97-110). The presence of increasing concentrations of HDL or delipidated HDL progressively diminished VLDL-LDL complex formation. At the same time, association of HDL-derived apolipoprotein (apo) A-I with both VLDL and LDL could be demonstrated by autoradiography of gradient gel electrophoretic blots, immunoblotting, and apolipoprotein analyses of reisolated lipoproteins. The LDL increased in buoyancy and particle diameter, and became enriched in glycerides relative to cholesterol. Both HDL2 and HDL3 increased in particle diameter, buoyancy, and relative glyceride content, and small amounts of apoA-I appeared in newly formed particles of less than 75 A diameter. Association of apoA-I with VLDL or LDL could be reproduced by addition of lipid extracts of lipolyzed VLDL or purified free fatty acids in the absence of lipolysis, and was progressively inhibited by the presence of increasing amounts of albumin. We conclude that lipolysis products promote multiple interactions at the surface of triglyceride-rich lipoproteins undergoing lipolysis, including physical complex formation with other lipoprotein particles and transfers of lipids and apolipoproteins. These processes may facilitate remodeling of lipoproteins in the course of their intravascular metabolism.  相似文献   

16.
Western blot analysis of the alloantisera (i.e., anti-Lpq1, anti-Lpq2, anti-Lpq3, and anti-Lpq4) which defined the three lpq genes of rabbit linkage group VIII showed that they reacted strongly with an apolipoprotein of molecular weight 320,000. They also cross-reacted with an apolipoprotein of molecular weight 220,000. The two apolipoproteins that reacted with the alloantisera were found by SDS-polyacrylamide gel electrophoresis to be present in very low density (VLDL), intermediate density (IDL), and low density (LDL) lipoprotein fractions and by Western blot analysis to react with an anti-apolipoprotein B antiserum. These results support the conclusion that the alloantisera react with allotypes associated with the B apolipoproteins. The distribution of the four allotypes among different lipoprotein fractions, however, differed. The quantitative competitive Enzyme Linked Immunosorbant Assay (ELISA) showed that the Lpq1, Lpq2, and Lpq4 allotypes were found in the highest concentration in VLDL, IDL, and LDL, and in significantly lower concentrations in plasma chylomicrons. The concentrations of these allotypes in high density lipoproteins (HDL) as measured in the ELISA were about 1% of the concentrations found in LDL. The Lpq3 allotype, on the other hand, was present in the highest concentrations only in IDL and LDL and in significantly lower concentrations in VLDL and plasma chylomicrons. Surprisingly, the concentration of the Lpq3 allotype in HDL was 20% of the level found in LDL.  相似文献   

17.
It is generally believed that vitamin E is absorbed along with chylomicrons. However, we previously reported that human colon carcinoma Caco-2 cells use dual pathways, apolipoprotein B (apoB)-lipoproteins and HDLs, to transport vitamin E. Here, we used primary enterocytes and rodents to identify in vivo vitamin E absorption pathways. Uptake of [(3)H]alpha-tocopherol by primary rat and mouse enterocytes increased with time and reached a maximum at 1 h. In the absence of exogenous lipid supply, these cells secreted vitamin E with HDL. Lipids induced the secretion of vitamin E with intermediate density lipoproteins, and enterocytes supplemented with lipids and oleic acid secreted vitamin E with chylomicrons. The secretion of vitamin E with HDL was not affected by lipid supply but was enhanced when incubated with HDL. Microsomal triglyceride transfer protein inhibition reduced vitamin E secretion with chylomicrons without affecting its secretion with HDL. Enterocytes from Mttp-deficient mice also secreted less vitamin E with chylomicrons. In vivo absorption of [(3)H]alpha-tocopherol by mice after poloxamer 407 injection to inhibit lipoprotein lipase revealed that vitamin E was associated with triglyceride-rich lipoproteins and small HDLs containing apoB-48 and apoA-I. These studies indicate that enterocytes use two pathways for vitamin E absorption. Absorption with chylomicrons is the major pathway of vitamin E absorption. The HDL pathway may be important when chylomicron assembly is defective and can be exploited to deliver vitamin E without increasing fat consumption.  相似文献   

18.
Like rat C apolipoproteins, each of the C apolipoproteins from human blood plasma (C-I, C-II, C-III-1, and C-III-2) bound to small chylomicrons from mesenteric lymph of estradiol-treated rats and inhibited their uptake by the isolated perfused rat liver. This inhibitory effect of the C apolipoproteins was independent of apolipoprotein E, which is present only in trace amounts in these chylomicrons. Addition of rat apolipoprotein E to small chylomicrons from mesenteric lymph of normal rats did not displace C apolipoproteins and had no effect on the uptake of these particles by the perfused liver, indicating that an increased ratio of E apolipoproteins to C apolipoproteins on chylomicron particles, unaccompanied by depletion of the latter, may not promote recognition by the chylomicron remnant receptor. The hepatic uptake of remnants of rat hepatic very low density lipoproteins (VLDL) and small chylomicrons, which had been produced in functionally eviscerated rats, was also inhibited by addition of C apolipoproteins. These observations are consistent with the hypothesis that the addition of all of the C apolipoproteins to newly secreted chylomicrons and VLDL inhibits premature uptake of these particles by the liver and that depletion of all of these apolipoproteins from remnant particles facilitates their hepatic uptake. Remnants of chylomicrons and VLDL incubated with rat C apolipoproteins efficiently took up C-III apolipoproteins, but not apolipoprotein C-II (the activator protein for lipoprotein lipase). Preferential loss of apolipoprotein C-II during remnant formation may regulate the termination of triglyceride hydrolysis prior to complete removal of triglycerides from chylomicrons and VLDL.  相似文献   

19.
The lecithin-cholesterol acyl transferase (LCAT) activity in rat mesenteric lymph was examined as a possible source of chylomicron cholesteryl ester. Lymph activity was only 2-3% of rat serum activity. Removal of d less than 1.006 lipoproteins increased lymph LCAT activity, but only to 6-8% of that of serum. Relative to total cholesterol in the d greater than 1.08 g/ml fractions, lymph LCAT activity in lymph from fasting rats was less than serum, but in lymph from nonfasting rats the ratio LCAT/HDL-cholesterol reached levels greater than serum, suggesting a contribution of enzyme from the gut. Both LCAT activity and HDL concentration in mesenteric lymph increased during feeding. Subfractions of lymph that inhibited serum LCAT were: chylomicrons, VLDL, chylomicron lipid, VLDL apoprotein, and HDL apoprotein. In the rat, the low LCAT activity of mesenteric lymph was in part due to the low enzyme concentration present, and the activity was apparently lowered further by lipid-rich lipoproteins that inhibited the reaction. Enzyme inhibition due to the apoprotein fractions of lipoproteins is probably minor in the rat in vivo.  相似文献   

20.
The selective and reversible adsorption of bovine low density lipoproteins (LDL) by heparin-Sepharose has been exploited as the critical step in a procedure for the preparative isolation of very low density lipoproteins (VLDL)/chylomicrons, LDL, and high density lipoproteins (HDL) from bovine plasma. Molecular size exclusion chromatography and isopycnic density gradient separation steps are also involved in the method described. The resulting HDL and LDL fractions are free from contamination by one another as judged by electrophoretic mobility in agarose gels. The major lipid and apolipoprotein compositions of the three resolved lipoprotein classes have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号