首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidized nucleotide precursors 7, 8-dihydro-8-oxo-dGTP (8-oxo-dGTP) and 1, 2-dihydro-2-oxo-dATP (2-oxo-dATP) are readily incorporated into nascent DNA strands during replication, which would cause base substitution mutations. E. coli MutT and human homologue hMTH1 hydrolyze 8-oxo-dGTP, thereby preventing mutations. In this study, we searched for hMTH1 homologues in the ascidian Ciona intestinalis using the NCBI-BLAST database. Among several candidates, we focused on one open reading frame, designated as CiMutT, because of its high degree of identity (41.7%) and similarity (58.3%) to the overall amino acid sequence of hMTH1, including the Nudix box. CiMutT significantly suppressed the mutator activity of E. coli mutT mutant. Purified CiMutT had a pyrophosphohydrolase activity that hydrolyzed 8-oxo-dGTP to 8-oxo-dGMP and inorganic pyrophosphate. It had a pH optimum of 9.5 and Mg(++) requirement with optimal activity at 5 mM. The activity of CiMutT for 8-oxo-dGTP was comparable to that of hMTH1, while it was 100-fold lower for 2-oxo-dATP than that of hMTH1. These facts indicate that CiMutT is a functional homologue of E. coli MutT. In addition, the enzyme hydrolyzed all four of the unoxidized nucleoside triphosphates, with a preference for dATP. The specific activity for 8-oxo-dGTP was greater than that for unoxidized dATP and dGTP. These results suggest that CiMutT has the potential to prevent mutations by 8-oxo-dGTP in C. intestinalis.  相似文献   

2.
The hMTH1 protein, a human homologue of E. coli MutT protein, is an enzyme converting 8-oxo-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) to 8-oxo-2'-deoxyguanosine 5'-monophosphate (8-oxo-dGMP) and inorganic pyrophosphate. It is thought to play an antimutagenic role by preventing the incorporation of promutagenic 8-oxo-dGTP into DNA. As found in our previous investigations, 8-oxo-2'-deoxyguanosine 5'-diphosphate (8-oxo-dGDP) strongly inhibited 8-oxo-dGTPase activity of MTH1. Following this finding, in the present study we have tested the canonical ribo- and deoxyribonucleoside 5'-diphosphates (NDPs and dNDPs) for possible inhibition of 8-oxo-dGTP hydrolysis by hMTH1 extracted from CCRF-CEM cells (a human leukemia cell line). Among them, the strongest inhibitors appeared to be dGDP (Ki=74 microM), dADP (Ki=147 microM), and GDP (Ki=502 microM). Other dNDPs and NDPs, such as dCDP, dTDP, ADP, CDP, and UDP were much weaker inhibitors, with Ki in the millimolar range. Based on the present results and published data, we estimate that the strongest inhibitors, dGDP and dADP, at physiological concentrations not exceeding 5 microM and GDP at mean concentration of 30 microM, taken together, can decrease the cellular hMTH1 enzymatic activity vs. 8-oxo-dGTP (expected to remain below 500 pM) by up to 15%. The other five NDPs and dNDPs tested cannot markedly affect this activity.  相似文献   

3.
MTH1 hydrolyzes oxidized purine nucleoside triphosphates such as 8-oxo-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP) and 2-hydroxy-2'-deoxyadenosine 5'-triphosphate (2-OH-dATP) and thus protects cells from damage caused by their misincorporation into DNA. In the present study, we established MTH1-null mouse embryo fibroblasts that were highly susceptible to cell dysfunction and death caused by exposure to H2O2, with morphological features of pyknosis and electron-dense deposits accumulated in mitochondria. The cell death observed was independent of both poly(ADP-ribose) polymerase and caspases. A high performance liquid chromatography tandem mass spectrometry analysis and immunofluorescence microscopy revealed a continuous accumulation of 8-oxo-guanine both in nuclear and mitochondrial DNA after exposure to H2O2. All of the H2O2-induced alterations observed in MTH1-null mouse embryo fibroblasts were effectively suppressed by the expression of wild type human MTH1 (hMTH1), whereas they were only partially suppressed by the expression of mutant hMTH1 defective in either 8-oxo-dGTPase or 2-OH-dATPase activity. Human MTH1 thus protects cells from H2O2-induced cell dysfunction and death by hydrolyzing oxidized purine nucleotides including 8-oxo-dGTP and 2-OH-dATP, and these alterations may be partly attributed to a mitochondrial dysfunction.  相似文献   

4.
Oxidative stress is considered to be one of the most important phenomena involved in the process of aging and age-related diseases. 8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) has been frequently used as a marker for oxidative stress. However, the origin of extracellular 8-oxo-dG is not well understood. The aim of this work was to investigate the nucleotide pool and the role of the human mutT homologue protein (hMTH1) in the appearance of extracellular 8-oxo-dG in a cellular model system. For this purpose we used primary human fibroblast cells, which were transfected by siRNAs homologous to hMTH1. Extracellular 8-oxo-dG in cell culture media after exposure of the cells to ionizing radiation was measured as enzyme-linked immunosorbent assay reactivity. Our results demonstrate the profound effect of both hMTH1 expression and nucleotide pool size on the cellular excretion of 8-oxo-dG, suggesting that the nucleotide pool is a significant target for the formation of extracellular 8-oxo-dG.  相似文献   

5.
Kim JE  Hyun JW  Hayakawa H  Choi S  Choi J  Chung MH 《Mutation research》2006,596(1-2):128-136
7,8-Dihydro-8-oxoguanine (8-oxo-Gua) and its nucleoside in cytosol are derived from the repair of oxidative DNA and the cleanup of oxidatively damaged DNA precursors, respectively. While the harmful effects of 8-oxo-Gua present in DNA have been studied extensively, few have reported its effects on cytosolic function. Our previous study showed that the addition of 8-oxo-dG to culture media caused an accumulation of 8-oxo-Gua in nuclear DNA in several leukemic cells including KG-1, which lack 8-oxoguanine glycosylase 1 (OGG1) activity due to mutational loss. However, the mechanism underlying 8-oxo-Gua level increases in DNA has not been addressed. In this study, we elucidated the metabolic fate of 8-oxo-Gua-containing nucleotide and the effect of exogenous 8-oxo-dG on DNA synthesis in KG-1 cells. We found that 8-oxo-dGMP was rapidly dephosphorylated to 8-oxo-dG rather than phosphorylated to 8-oxo-dGDP, thus indicating that 8-oxo-Gua-containing molecule is not used as a substrate for DNA synthesis in KG-1 cells. In fact, radiolabeled 8-oxo-dG was incubated but radioactivity was not detected in nuclear DNA of KG-1 cells, showing that 8-oxo-dG is not directly incorporated into DNA. Interestingly, the activity of DNA polymerase beta, which synthesize DNA with low fidelity increased in KG-1 cells treated with 8-oxo-dG, whereas the expression of DNA polymerase alpha decreased. In addition, the accumulation of 8-oxo-Gua in KG-1 DNA was completely inhibited by a specific inhibitor of DNA polymerase beta. Thus, our findings address that the insertion of 8-oxo-dG into KG-1 DNA is not due to the direct incorporation of exogenous 8-oxo-dG, but rather to the inaccurate incorporation of endogenous 8-oxo-dGTP by DNA polymerase beta. It further suggests that 8-oxo-dG in the cytosol may function as an active molecule itself and perturb the well-defined DNA synthesis.  相似文献   

6.
Mammalian homologues of Escherichia coli MutT, a protein having 8-oxo-2'-deoxyguanosine 5'-triphosphate pyrophosphohydrolase (8-oxo-dGTPase) activity, are thought to play the same role in preventing the incorporation of promutagenic 8-oxo-2'-deoxyguanosine (8-oxo-dG) into DNA. One could thus expect that higher activity of 8-oxo-dGTPase should correlate with a lower background level of 8-oxo-dG in nuclear DNA. During transplacental carcinogenesis experiments, in control healthy Swiss mice on day 18 of gestation we found consistently lower levels of 8-oxo-dG in DNA in fetal livers and lungs (1.74+/-0.04 SE and 1.49+/-0.08 SE 8-oxo-dG/10(5) dG, respectively; pooled organs of fetuses of 8 dams) as compared with maternal organs (3.05+/-0.20 SE and 3.08+/-0.17 SE 8-oxo-dG/10(5) dG, respectively; n = 8). The 8-oxo-dGTPase activity determination in the same organs revealed that the lower levels of 8-oxo-dG in fetal DNA did, indeed, coincide with higher 8-oxo-dGTPase activity (48.8+/-2.6 SE and 52.5+/-2.5 SE U/mg protein in livers and lungs, respectively); and vice versa, higher 8-oxo-dG levels in DNA of maternal organs were associated with lower levels of 8-oxo-dGTPase activity (24.3+/-1.3 SE and 4.7+/-0.6 SE U/mg protein, as above). Without excluding other reasons for the relatively low 8-oxo-dG background in DNA of fetal tissues (e.g., higher level of antioxidants and antioxidative enzymes; more efficient DNA repair), this inverse relationship may support or at least does not contradict the concept of a guardian role of 8-oxo-dGTPase against 8-oxo-dGTP mutagenicity in mammalian cells.  相似文献   

7.
8.
Youn CK  Jun JY  Hyun JW  Hwang G  Lee BR  Chung MH  Chang IY  You HJ 《DNA Repair》2008,7(11):1809-1823
Although the accumulation of 8-oxo-dGTP in DNA is associated with apoptotic cell death and mutagenesis, little is known about the exact mechanism of hMTH1-mediated suppression of oxidative-stress-induced cell death. Therefore, we investigated the regulation of DNA-damage-related apoptosis induced by oxidative stress using control and hMTH1 knockdown cells. Small interfering RNA (siRNA) was used to suppress hMTH1 expression in p53-proficient GM00637 and H460 cells, resulting in a significant increase in apoptotic cell death after H(2)O(2) exposure; however, p53-null, hMTH1-deficient H1299 cells did not exhibit H(2)O(2)-induced apoptosis. In addition, hMTH1-deficient GM00637 and H460 cells showed increased caspase-3/7 activity, cleaved caspase-8, and Noxa expression, and gamma-H2AX formation in response to H(2)O(2). In contrast, the caspase inhibitors, p53-siRNA, and Noxa-siRNA suppressed H(2)O(2)-induced cell death. Moreover, in 8-week (long-term) cultured H460 and H1299 cells, hMTH1 suppression increased cell death, Noxa expression, and gamma-H2AX after H(2)O(2) exposure, compared to 3-week (short-term) cultured cells. These data indicate that hMTH1 plays an important role in protecting cells against H(2)O(2)-induced apoptosis via a Noxa- and caspase-3/7-mediated signaling pathway, thus conferring a survival advantage through the inhibition of oxidative-stress-induced DNA damage.  相似文献   

9.
Accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG) in DNA is associated with mutagenesis and cell death. Little attention has been given to the biological significance of 8-oxo-dG accumulation in cardiovascular tissues during the different stage of hypertension and its prevention. We thus investigated the levels and localization of both 8-oxo-dG accumulation and expression of MTH1, which hydrolyzes 8-oxo-dGTP to prevent its incorporation into DNA, in the thoracic aorta prepared from stroke-prone spontaneously hypertensive rats (SHRSP) and age-matched Wister-Kyoto rats (WKY), aged 5-32 weeks. HPLC-MS/MS analysis revealed that the levels of nuclear 8-oxo-dG in the aorta increased significantly in SHRSP, but not WKY, with aging. Immunohistochemical study revealed that both TUNEL reactivity and 8-oxo-dG immunoreactivity were increased in smooth muscle cells (SMC) and endothelial cells (EC) of the aorta with aging, and they exhibited similar distributions in serial sections. The number of 8-oxo-dG and TUNEL positive cells in EC, but not in SMC, was significantly higher in SHRSP than WKY at 32 weeks of age. In contrast, the expression levels of Mth1mRNA and MTH1 protein in the aorta were similarly decreased both in SHRSP and WKY with aging. However, the number of MTH1 expressing EC was remarkably increased in the older SHRSP compared to the younger ones or age-matched WKY. Hypertension significantly increased not only 8-oxo-dG accumulation but also the expression of MTH1 in EC of the aorta during aging. While accumulation of 8-oxo-dG in SMC of the aorta was slightly increased, the expression of MTH1 protein in SMC was rather decreased by hypertension. We thus suggest that MTH1 may protect EC in the aorta from the oxidative damage increased by hypertension.  相似文献   

10.
8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dG), a common oxidative DNA lesion, favors a syn-conformation in DNA, enabling formation of stable 8-oxo-dG.A base mispairs resulting in G.C --> T.A transversion mutations. When human DNA polymerase (pol) beta was used to copy a short single-stranded gap containing a site-directed 8-oxo-dG lesion, incorporation of dAMP opposite 8-oxo-dG was slightly favored over dCMP depending on "downstream" sequence context. Unexpectedly, however, a significant increase in dCMP.A and dGMP.A mispairs was also observed at the "upstream" 3'-template site adjacent to the lesion. Errors at these undamaged template sites occurred in four sequence contexts with both gapped and primed single-stranded DNA templates, but not when pol alpha replaced pol beta. Error rates at sites adjacent to 8-oxo-dG were roughly 1% of the values opposite 8-oxo-dG, potentially generating tandem mutations during in vivo short-gap repair synthesis by pol beta. When 8-oxo-dG was replaced with 8-bromo-2'-deoxyguanosine, incorporation of dCMP was strongly favored by both enzymes, with no detectable misincorporation occurring at neighboring template sites.  相似文献   

11.
12.
MutT-related proteins, including the Escherichia coli MutT and human MutT homologue 1 (MTH1) proteins, degrade 8-oxo- 7,8-dihydrodeoxyguanosine triphosphate (8-oxo-dGTP) to a monophosphate, thereby preventing mutations caused by the misincorporation of 8-oxoguanine into DNA. Here, we report that human cells have another mechanism for cleaning up the nucleotide pool to ensure accurate DNA replication. The human Nudix type 5 (NUDT5) protein hydrolyses 8-oxo-dGDP to monophosphate with a Km of 0.77 µM, a value considerably lower than that for ADP sugars, which were originally identified as being substrates of NUDT5. NUDT5 hydrolyses 8-oxo-dGTP only at very low levels, but is able to substitute for MutT when it is defective. When NUDT5 is expressed in E. coli mutT cells, the increased frequency of spontaneous mutations is decreased to normal levels. Considering the enzymatic parameters of MTH1 and NUDT5 for oxidized guanine nucleotides, NUDT5 might have a much greater role than MTH1 in preventing the occurrence of mutations that are caused by the misincorporation of 8-oxoguanine in human cells.  相似文献   

13.
The tumor suppressor gene Ras association domain family 1A (RASSF1A) is highly methylated in a wide range of human sporadic tumors. The current study investigated the hypermethylation of RASSF1A, the expression of RASSF1A protein, and the correlation between these and the clinicopathological features of gallbladder (GB) cancer in Korean patients. Formalin-fixed, paraffin-embedded tumors and non-neoplastic GB tissues (22 carcinomas, 8 adenomas, 26 normal epithelia) were collected from patients who had undergone surgical resection. The methylation status of two regions of the RASSF1A CpG island was determined by methylation-specific PCR (MSP), and the expression of RASSF1A protein was examined by immunohistochemistry using tissue microarrays. The K-RAS mutation was analyzed by direct sequencing. Methylation of the RASSF1A promoter (region 1) was detected in 22.7% (5/22) of carcinomas, 12.5% (1/8) of adenomas, and 0% (0/26) of normal gallbladder epithelia (P = 0.025). Methylation of the first exon (region 2) was found in 36.4% (8/22) of carcinomas, 25.0% (2/8) of adenomas, and 8.0% (2/26) of normal gallbladder epithelia (P = 0.038). K-RAS mutations were present in 4.5% (1/22) of carcinomas and 25% (2/8) of adenomas. RASSF1A methylaton was not associated with clinicopathological factors or K-ras mutation. Reduction or loss of RASSF1A expression was observed in most methylated adenocarcinomas. Three RASSF1A-expressing human biliary tract cancer cell lines examined contained unmethylated promoters and exons 1. These results suggest that downregulation of RASSF1A expression by DNA hypermethylation may be involved in GB carcinogenesis.  相似文献   

14.
Aquaporin-1 (AQP1) is the main water channel responsible for water transport through many epithelia and endothelia. The latest evidence pointed toward an important role of this protein also in gas permeation, angiogenesis, cell proliferation and migration. In the present work we studied the expression of AQP1 by immunohistochemical staining of 92 lung biopsies from patients diagnosed with a pleuro-pulmonary tumor (71 lung and 21 pleural neoplasms). AQP1 expression was analyzed comparing the results among the different histological patterns and against 9 control cases (5 parenchyma and 4 healthy pleura). Clear staining of AQP1 was detected in 39 of the 92 tumors analyzed. In parenchyma, AQP1 was more frequently detected in primary lung adenocarcinomas (55%, P<0.001); in contrast, small cell carcinomas were the least AQP1 expressive tumors studied (93% of negative staining, P<0.05). Carcinomas analyzed in pleura (mesotheliomas and metastatic adenocarcinomas) also revealed strong expression of AQP1. High expression of this protein was detected in small capillaries in areas near or surrounding the tumor, and novel intense AQP1 immunostaining was detected over thicker alveolar walls in alveoli inside or next to the tumoral tissue regardless of the tumor type. An important role of AQP1 in tumor angiogenesis is sustained by the abundant expression of this protein in the endothelia of tumor capillaries. Further studies are necessary to elucidate the potential pathophysiological role of this protein in pleuro-pulmonary neoplasms.  相似文献   

15.
8-oxo-dGTP is generated in the nucleotide pool by direct oxidation of dGTP or phosphorylation of 8-oxo-dGDP. It can be incorporated into DNA during replication, which would result in mutagenic consequences. The frequency of spontaneous mutations remains low in cells owing to the action of enzymes degrading such mutagenic substrates. Escherichia coli MutT and human MTH1 hydrolyze 8-oxo-dGTP to 8-oxo-dGMP. Human NUDT5 as well as human MTH1 hydrolyze 8-oxo-dGDP to 8-oxo-dGMP. These enzymes prevent mutations caused by misincorporation of 8-oxo-dGTP into DNA. In this study, we identified a novel MutT homolog (NDX-1) of Caenorhabditis elegans that hydrolyzes 8-oxo-dGDP to 8-oxo-dGMP. NDX-1 did not hydrolyze 8-oxo-dGTP, 2-hydroxy-dATP or 2-hydroxy-dADP. Expression of NDX-1 significantly reduced spontaneous A:T to C:G transversions and mitigated the sensitivity to a superoxide-generating agent, methyl viologen, in an E. coli mutT mutant. In C. elegans, RNAi of ndx-1 did not affect the lifespan of the worm. However, the sensitivity to methyl viologen and menadione bisulfite of the ndx-1-RNAi worms was enhanced compared with that of the control worms. These facts indicate that NDX-1 is involved in sanitization of 8-oxo-dGDP and plays a critical role in defense against oxidative stress in C. elegans.  相似文献   

16.
17.
Human papillomavirus (HPV) infection is one of the risk factors contributing to the pathogenesis of lung cancer. The aim of the study was to determine the presence of HPV in non-small cell carcinomas of the lung. The study included 40 tumors: 22 squamous cell carcinomas, 13 adenocarcinomas and 5 large cell carcinomas. HPV was found in 4 cases (10%). High risk HPV was present in 3 tumors: in one squamous cell carcinoma, one large cell carcinoma and one adenocarcinoma, while low risk HPV was detected in one adenocarcinoma.  相似文献   

18.
Six new non-small-cell lung cancer (NSCLC) cell lines were established directly from human tissue or indirectly via nude mouse xenografts in serum-supplemented media with success rates of 8% and 13%, respectively. They comprised one adenocarcinoma (ADLC-5M2), two squamous cell carcinomas (EPLC-32M1, EPLC-65H), two large cell carcinomas (LCLC-97TM1, LCLC-103H), and one malignant biphasic mesothelioma (MSTO-211H). All cell lines grew adherent to culture vessels with population doubling times (PDT) of 16-40 h, formed colonies in soft agarose with efficiencies of 0.1%-5.1%, and all grew in athymic nude mice. Xenograft histologies appeared as follows: (a) undifferentiated carcinomas with feeble resemblance to the original tumors in the case of adenocarcinomas and squamous cell carcinomas; (b) large cell carcinoma with high resemblance to the original tumor; (c) an undifferentiated tumor with predominance of large epithelial cells and few fibrous cells in the case of mesothelioma. Human chorionic gonadotropin (HCG) was found by radioimmunoassay and high-affinity binding sites for epidermal growth factor (EGF) by radio-receptor assay in 4/4 cell lines. A very low activity of L-DOPA decarboxylase (DDC) was detectable only in the adenocarcinoma cell line. All cell lines overexpressed the c-myc protooncogene, and no gene rearrangement or amplification was observed. Chromosome analysis revealed modal chromosome numbers of 70-73 in ADLC-5M2, EPLC-32M1, EPLC-65H, and MSTO-211H. Cell lines derived from large cell carcinoma had modal values of 65 and 170 and a wider chromosome distribution than all other cell lines. A NSCLC specific chromosomal aberration has been undetectable until now. These cell lines may aid in elucidating the biology of NSCLC and its interrelationship to other lung tumors.  相似文献   

19.
20.
BACKGROUND: Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues. METHODOLOGY/ PRINCIPAL FINDINGS: We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA) assay. The results showed that 18 molecules were significantly different (p<0.05) by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery. CONCLUSIONS/ SIGNIFICANCE: Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号