首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We quantified putamen and prefrontal cortex metabolites in macaques with simian immunodeficiency virus infection and searched for virological and histological correlates. Fourteen asymptomatic macaques infected since 8-78 months (median: 38) were compared with eight uninfected ones. Absolute concentrations of acetate, alanine, aspartate, choline, creatine, GABA, glutamate, glutamine, lactate, myo-inositol, N-acetylaspartate, taurine and valine were determined by ex vivo proton magnetic resonance spectroscopy. Glutamate concentration in the CSF was determined by HPLC. Gliosis was assessed by glial fibrillary acidic protein and CD68 immunohistochemistry. Glutamate concentration was slightly increased in the prefrontal cortex (19%, p = 0.0152, t-test) and putamen (13%, p = 0.0354, t-test) of the infected macaques, and was unaffected in the CSF. Myo-inositol concentration was increased in the prefrontal cortex only (27%, p = 0.0136). The concentrations of glutamate and myo-inositol in the prefrontal cortex were higher in the animals with marked or intense microgliosis (p = 0.0114). The other studied metabolites, including N-acetylaspartate, were not altered. Glutamate concentration may thus increase in the cerebral parenchyma in asymptomatic animals, but is not accompanied by a detectable decrease in N-acetylaspartate concentration (neuronal dysfunction). Thus, there are probably compensatory mechanisms that may limit glutamate increase and/or counterbalance its effects.  相似文献   

2.
The neurochemical profile of the striatum of R6/2 Huntington's disease mice was examined at different stages of pathogenesis using in vivo(1)H NMR spectroscopy at 9.4 T. Between 8 and 12 weeks, R6/2 mice exhibited distinct changes in a set of 17 quantifiable metabolites compared with littermate controls. Concentrations of creatine, glycerophosphorylcholine, glutamine and glutathione increased and N-acetylaspartate decreased at 8 weeks. By 12 weeks, concentrations of phosphocreatine, taurine, ascorbate, glutamate, and myo-inositol increased and phophorylethanolamine decreased. These metabolic changes probably reflected multiple processes, including compensatory processes to maintain homeostasis, active at different stages in the development of HD. The observed changes in concentrations suggested impairment of neurotransmission, neuronal integrity and energy demand, and increased membrane breakdown, gliosis, and osmotic and oxidative stress. Comparisons between metabolite concentrations from individual animals clearly distinguished HD transgenics from non-diseased littermates and identified possible markers of disease progression. Metabolic changes in R6/2 striata were distinctly different from those observed previously in the quinolinic acid and 3NP models of HD. Longitudinal monitoring of changes in these metabolites may provide quantifiable measures of disease progression and treatment effects in both mouse models of HD and patients.  相似文献   

3.
The changes in 16 cerebral metabolites produced by cardiac arrest and subsequent room temperature autolysis were studied using high-resolution proton nuclear magnetic resonance spectroscopy. Biopsies of rabbit cerebral cortex, cerebral white matter, and cerebellum were quantitatively analyzed for acetate, alanine, gamma-aminobutyric acid, creatine, glutamate, glycine, inositol, lactate, N-acetylaspartate, phosphocreatine, succinate, taurine, and threonine. Of these, N-acetylaspartate and the total creatine pool are the best candidates for use as concentration reference standards linking in vitro to in vivo 1H nuclear magnetic resonance measurements. Both changed little immediately after death, and they varied in a distinctive way among cortex, white matter, and cerebellum.  相似文献   

4.
Abstract: The recently developed controlled cortical impact model of brain injury in rats may be an excellent tool by which to attempt to understand the neurochemical mechanisms mediating the pathophysiology of traumatic brain injury. In this study, rats were subjected to lateral controlled cortical impact brain injury of low grade severity; their brains were frozen in situ at various times after injury to measure regional levels of lactate, high energy phosphates, and norepinephrine. Tissue lactate concentration in the injury site left cortex was increased in injured animals by sixfold at 30 min and twofold at 2.5 h and 24 h after injury ( p < 0.05). At all postinjury times, lactate concentration was also increased in injured animals by about twofold in the cortex and hippocampus adjacent to the injury site ( p < 0.05). No significant changes occurred in the levels of ATP and phosphocreatine in most of the brain regions of injured animals. However, in the primary site of injury (left cortex), phosphocreatine concentration was decreased by 40% in injured animals at 30 min after injury ( p < 0.05). The norepinephrine concentration was decreased in the injury site left cortex of injured animals by 38% at 30 min, 29% at 2.5 h, and 30% at 24 h after injury ( p < 0.05). The level of norepinephrine was also reduced by ∼20% in the cortex adjacent to the injury site in injured animals. The present results suggest that controlled cortical impact brain injury produces disorder in the neuronal oxidative and norepinephrine metabolism.  相似文献   

5.
We have generated a transgenic mouse line strikingly overexpressing the human ornithine decarboxylase (ODC) gene in their brain. Brain ODC activity was increased in the transgenic animals by a factor of 70 in comparison with their nontransgenic littermates. The content of brain putrescine, the product of ODC, was greater than 60 mumol/g of tissue in the transgenic mice, whereas in the normal animals it was below the level that could be detected by an HPLC method. The concentrations of the higher polyamines (spermidine and spermine) were not significantly different from control values. 31P nuclear magnetic resonance (31P NMR) spectroscopy analyses revealed a significantly reduced (40%) free Mg2+ concentration as calculated from the chemical shift differences of the nucleoside triphosphate alpha and beta peaks in the brains of the transgenic animals. The lower free Mg2+ concentration in the brains of ODC transgenic mice was not a consequence of altered intracellular pH or changes in cellular high-energy metabolites. 1H NMR showed no differences in brain choline/N-acetylaspartate and total creatine/N-acetylaspartate ratios between the two animal groups. These ODC transgenic animals may serve as models in vivo for studies on cerebral postischemic events and on epilepsy, as polyamines are supposed to be involved in these processes.  相似文献   

6.
The effects of insulin-induced hypoglycemic stupor and subsequent treatment with glucose on mouse cerebral cortical, cerebellar and brain stem levels of glucose, glycogen, ATP, phosphocreatine, glutamate, aspartate and GABA and on cerebral cortical and cerebellar levels of cyclic AMP and cyclic GMP have been measured. Hypoglycemia decreased glucose, glycogen and glutamate levels and had no effect on ATP levels in all three regions of brain. GABA levels were decreased only in cerebellum. Aspartate levels rose in cerebral cortex and brain stem, and creatine phosphate increased in cerebral cortex and cerebellum. In the hypoglycemic stuporous animals, cyclic GMP levels were elevated in cerebral cortex and depressed in cerebellum whereas cyclic AMP levels were unchanged from control values. Intravenous administration of 2.5-3.5 mmol/kg of glucose to the hypoglycemic stuporous animals produced recovery of near normal neurological function within 45 s. Only brain glucose and aspartate levels returned to normal prior to behavioral recovery. These results suggest that of the several substances examined in this study, only glucose and perhaps aspartate have important roles in the biochemical mechanisms producing neurological abnormalities in hypoglycemic animals.  相似文献   

7.
8.
Gonadal steroidogenesis can be influenced by direct neural links between the central nervous system and the gonads. It is known that androgen receptor (AR) is expressed in many areas of the rat brain involved in neuroendocrine control of reproduction,such as the cerebral cortex.It has been recently shown that the occipital cortex exerts an inhibitory effect on testicular stereoidogenesis by a pituitary-independent neural mechanism. Moreover, the complete transection of the corpus callosum leads to an increase in testosterone (T) secretion of hemigonadectomized rats. The present study was undertaken to analyze the possible corticocortical influences regulating male reproductive activities. Adult male Wistar rats were divided into 4 groups: 1) intact animals as control; 2) rats undergoing sham callosotomy; 3) posterior callosotomy; 4) gonadectomy and posterior callosotomy. Western blot analysis showed no remarkable variations in cortical AR expression in any of the groups except in group I where a significant decrease in AR levels was found. Similarly, both immunocytochemical study and cell count estimation showed a lower AR immunoreactivity in occipital cortex of callosotomized rats than in other groups. In addition, there was no difference in serum T and LH concentration between sham-callosotomized and callosotomized rats. In conclusion, our results showthat posterior callosotomy led to a reduction in AR in the right occipital cortex suggesting a putative inhibiting effect of the contralateral cortical area.  相似文献   

9.
The metabolic changes in hippocampus, temporal cortex and prefrontal cortex in SD rats along with aging were explored using a metabonomic approach, which based on high resolution “magic angle spinning” 1H NMR spectroscopy. The metabolite profiles were analyzed by partial least squares-discriminant analysis, and the results showed that the metabolites of the above three brain regions in old rats were dramatically different from that in the adult and young rats. The old rats showed increased myo-inositol and lactate in all of the three brain regions, and decreased N-acetylaspartate in temporal and frontal cortex, Glutamate–GABA level became imbalance in temporal cortex of old rats. In addition, compared with the adult female rats, male rats had higher levels of N-acetylaspartate, taurine, and creatine in temporal or frontal cortex. The age-related metabolic changes may indicate the early functional alterations of neural cells in these brain regions, especially the temporal cortex. The gender-related metabolic changes suggest the significance of the hormonal regulation in brain metabolism. Our work highlights the potential of metabolic profiling to enhance our understanding of biological mechanisms of brain aging.  相似文献   

10.
Age-related differences in the multichemical proton magnetic resonance spectroscopy (1H-MRS) profile of the human brain have been reported for several age groups, and most consistently for ages from neonates to 16-year-olds. Our recent 1H-MRS study demonstrated a significant age-related increase of total chemical concentration (relative to creatine) in the prefrontal and sensorimotor cortices within young adulthood (19-31-year-olds). In the present study we test the hypothesis that the level of brain chemicals in the same cortices, which show increased chemical levels during normal development, are reduced with normal aging after young adulthood. The multichemical 1H-MRS profile of the brain was compared between 19 young and 16 middle-aged normal subjects across multiple brain regions for all chemicals of 1H-MRS spectra. Chemical concentrations were measured relative to creatine. Over all age groups the total relative chemical concentration was highest in the prefrontal cortex. Middle-aged subjects demonstrated a significant decrease of total relative chemical concentration in the dorsolateral prefrontal (F = 54.8, p < 10(-7), ANOVA), orbital frontal (F = 3.7, p < 0.05) and sensorimotor (F = 15.1, p < 0.0001) cortices, as compared with younger age. Other brain regions showed no age-dependent differences. The results indicate that normal aging alters multichemical 1H-MRS profile of the human brain and that these changes are region-specific, with the largest changes occuring in the dorsolateral prefrontal cortex. These findings provide evidence that the processes of neuronal maturation of the human brain, and neurotransmitters and other chemical changes as the marker of these neuronal changes are almost finished by young adulthood and then reduced during normal aging toward middle age period of life. The present data also support the notion of heterochronic regressive changes of the aging human brain, where the multichemical brain regional profile seems to inversely recapitulate cortical chemical maturation within normal development.  相似文献   

11.
In this study, we examined the neurochemical profiles of selected brain regions (cerebral hemispheres, diencephalon/brainstem) in fetal (day 14 to 18 gestation) trisomy 19 (Ts19) mice. The neurochemical characteristics we observed in Ts19 mice were quite different from those we observed previously in Ts16 mice. Choline acetyltransferase (ChAT) activity was reduced significantly in the cerebral hemispheres, but not in the brainstem/diencephalon, of the fetal Ts19 mouse brain, suggesting a selective vulnerability of telencephalic cholinergic neurons. Additionally, the activity of glutamic acid decarboxylase (GAD) was reduced significantly in both hemispheres and diencephalon/brainstem of late gestation Ts19 fetuses, suggesting a selective vulnerability of GABAergic neurons as well. While the levels of catecholaminergic and dopaminergic markers were reduced significantly at late gestational ages, the relative rate of turnover of dopamine (DA), measured by the ratio of DOPAC/DA, was elevated significantly in Ts19 mice. Neither reduction in the thickness of various cellular zones of the cerebral cortex nor reduced cell density of the cerebral cortex accounts for the alterations in neurochemical parameters observed in Ts19 mice. These results suggest that the effects of the triplication of specific genes on the respective chromosomes, rather than a generalized disruption of developmental homeostasis resulting from extra chromosomal material, may produce selective alterations in neurochemical and neuroanatomical markers observed in these two mouse trisomies.  相似文献   

12.
In the development of the human cerebellum, the intracellular metabolites were monitored during the period from the fetus to childhood by in vitro high resolution proton (1H) magnetic resonance (MR) spectroscopy. The spectra from fetus (15-30 post-menstrual weeks; n = 3), infant (1-24 months of age; n = 6) and child (7-14 years of age; n = 5) groups showed resonances from seventeen different metabolites. The level of N-acetylaspartate (NAA), one of the metabolites, was observed in age-dependent increases, two- and three-fold increases for infant and child groups from the NAA of the fetus group, respectively. The rapid increases in the creatine (Cre) level (approximately three-fold) in the fetus and infant groups were observed in the child group (approximately four-fold). Taurine (Tau) was noted at the highest concentration in the fetus group. Slight increases in concentrations of alanine, glutamate, glutamine, and glycine and a significant increase in the concentration of N-acetylaspartylglutamate were also noted in the fetus and infant groups. Other metabolite concentrations did not change significantly throughout the studied age groups. These findings indicate that synthesis of metabolites, especially of NAA and Cre, during the development of the cerebellum are closely correlated with mitochondrial energy metabolism, and as such, may reflect mitochondrial integrity in the cerebellum.  相似文献   

13.
The aim of this study was to investigate whether fatty acid profile is a suitable marker for diagnostic purposes in mouse melanoma. Twelve C57Bl/6 male mice were implanted with B16 mouse melanoma cells (106 cells/animal) orthotopically (subcutaneously). After the implantation 4-4 animals were bled by cardiac puncture following narcosis, at days 7, 14, and 21. In order to investigate fatty acid profiles a method based on extraction and HPLC-MS was developed. Signal intensities of 14 fatty acids were determined by mass spectrometry in tumor-free animals as well as tumor bearing animals at the three time points. Mathematical analysis showed non-significant profile changes when control (tumor-free) animals were compared to tumor-implanted ones as well as during tumor progression on week 1, 2 and 3. In case of three fatty acids (myristic acid, palmitoleic acid and eicosadienoic acid) a trend was observed during tumor progression but its statistical significance cannot be evaluated without further investigations. The fatty acid profile cannot be used for early diagnoses in mouse melanoma.  相似文献   

14.
Increased excitatory output from medial prefrontal cortex is an important component in the development of cocaine sensitization. Activation of GABAergic systems in the prefrontal cortex can decrease glutamatergic activity. A recent study suggested that sensitization might be associated with a decrease in GABAB receptor responsiveness in the medial prefrontal cortex. Therefore, the present study examined whether repeated exposure to cocaine-modified neurochemical changes in the mesocorticolimbic dopamine system induced by infusion of baclofen into the medial prefrontal cortex. In vivo microdialysis studies were conducted to monitor dopamine, glutamate and GABA levels in the medial prefrontal cortex and glutamate levels in the ipsilateral nucleus accumbens and ventral tegmental area during the infusion of baclofen into medial prefrontal cortex. Baclofen minimally affected glutamate levels in the medial prefrontal cortex, nucleus accumbens or ventral tegmental area of control animals, but dose-dependently increased glutamate levels in each of these regions in animals sensitized to cocaine. This effect was not the result of changes in GABAB receptor-mediated modulation of dopamine or GABA in the medial prefrontal cortex. The data suggest that alterations in GABAB receptor modulation of medial prefrontal cortical excitatory output may play an important role in the development of sensitization to cocaine.  相似文献   

15.
Free fatty acids (FFA) and lactic acid are markers of secondary cellular injury following traumatic brain injury (TBI). We previously showed that animals fed a creatine (Cr)-enriched diet are afforded neuroprotection following TBI. To further characterize the neuroprotective Cr diet, we studied neurochemical changes in cortex and hippocampus following a moderate injury. Adult rats were fed either a control or Cr-supplemented diet (0.5%, 1%) for 2 weeks before TBI. At 30 min or 6 h after injury, tissue was processed for quantitative analysis of neurochemical changes. Both lactate and FFA were significantly increased in all tissues ipsilateral to the injury. Cr-fed animals had significantly lower levels, although the levels were elevated compared to sham controls. Animals fed a 1% Cr-diet were afforded greater neuroprotection than animals fed a 0.5% Cr diet. These results support the idea that a Cr-enriched diet can provide substantial neuroprotection in part by suppressing secondary brain injury.  相似文献   

16.
Intrauterine growth restricted (IUGR) infants are at increased risk for neurodevelopmental deficits that suggest the hippocampus and cerebral cortex may be particularly vulnerable. Evaluate regional neurochemical profiles in IUGR and normally grown (NG) 7-day old rat pups using in vivo 1H magnetic resonance (MR) spectroscopy at 9.4 T. IUGR was induced via bilateral uterine artery ligation at gestational day 19 in pregnant Sprague–Dawley dams. MR spectra were obtained from the cerebral cortex, hippocampus and striatum at P7 in IUGR (N = 12) and NG (N = 13) rats. In the cortex, IUGR resulted in lower concentrations of phosphocreatine, glutathione, taurine, total choline, total creatine (P < 0.01) and [glutamate]/[glutamine] ratio (P < 0.05). Lower taurine concentrations were observed in the hippocampus (P < 0.01) and striatum (P < 0.05). IUGR differentially affects the neurochemical profile of the P7 rat brain regions. Persistent neurochemical changes may lead to cortex-based long-term neurodevelopmental deficits in human IUGR infants.  相似文献   

17.
Abstract: The in situ freezing technique has been widely used to fix labile metabolites and cellular second messengers in cerebral cortex. In this study, we isolated specific brain regions at 0°C from coronal sections of frozen heads following in situ brain freezing and measured regional concentrations of labile metabolites and cellular messengers. These levels in the cortex were compared with those in cortical punches obtained at freezing temperature (less than −40°C) from the same in situ frozen brains and those of cortex dissected from decapitated animals. In both isoflurane- and pentobarbital-anesthetized animals, we observed that the levels of lactate, free fatty acids, inositol 1,4,5-trisphosphate, and diacylglycerol, as well as the proportion of protein kinase C associated with the membrane fraction, were similar in cortical punches taken at freezing temperature and those dissected at 0°C. However, with animals decapitated at room temperature, cortical and hippocampal levels of lactate, free fatty acids, and inositol 1,4,5-trisphosphate and the proportion of membrane protein kinase C were significantly higher than those of corresponding brain regions isolated at 0°C from in situ frozen brains ( p < 0.05). These results indicate that dissection of cortex and hippocampus at 0°C following in situ freezing will eliminate decapitation-induced production of artifacts and changes in the levels of cellular second messengers such as inositol 1,4,5-trisphosphate, diacylglycerol, and protein kinase C. The present technique, used in conjunction with in situ freezing, will fix cellular second messengers and labile metabolites in several regions of brain and may facilitate accurate characterization of molecular and cellular mechanisms underlying CNS function.  相似文献   

18.
Young adult rats received either unilateral or bilateral ibotenic acid infusions in their nucleus basalis, destroying most of the cholinesterase-staining neurons in that region. Cerebral cortex levels of choline acetyltransferase, somatostatin, neuropeptide Y, and monoamines were then assayed 2.5 and 10 months after bilateral lesions, or, 2.5, 10, and 14 months after unilateral lesions. Entorhinal and cerebral cortex levels of several amino acid transmitters were also measured. As expected, choline acetyltransferase activity was decreased in the frontal cortex ipsilateral to the ibotenic acid infusion in unilaterally or bilaterally lesioned animals. Parietal cortex concentrations of somatostatin and neuropeptide Y were altered by lesioning in a complicated, time-dependent manner. Thus, while unilateral lesions transiently decreased or had no effect on these neuropeptide levels, bilateral lesions elevated the level of each neuropeptide by over 100% at 10 months. Other cortical transmitter systems investigated appeared to be less affected by nucleus basalis-lesions. Unilateral lesions had no effect on prefrontal cortex norepinephrine, serotonin, or dopamine content at 14 months post-lesioning. These different neurochemical effects of unilateral and bilateral nucleus basalis lesions may be important for developing a model for the trans-synaptic effects of cortical cholinergic deafferentation.  相似文献   

19.
目的:利用氢质子MRS(1H-MRS)探讨重度阻塞性呼吸睡眠暂停综合症(Severe obstructive sleep apnea syndrome,S-OSAS)患者前额叶皮质及岛叶脑代谢产物特征。方法:选择18例S-OSAS患者(S-OSAS组)和15名健康志愿者(HC组)行左侧前额叶皮质及岛叶1H-MRS检查,测量两组左侧前额叶皮质区及岛叶N-乙酰天冬氨酸/肌酸(NAA/Cr)、胆碱/肌酸(Cho/Cr)值。对患S-OSAS累计时间与前额叶皮质及岛叶NAA/Cr作直线相关分析。结果:与正常对照组相比,S-OSAS患者左侧前额叶皮质、岛叶NAA/Cr比值降低,分别为1.43±0.47、1.34±0.06,对照组分别为1.51±0.65、1.45±0.07;S-OSAS组患者左侧前额叶皮质、岛叶Cho/Cr分别为0.90±0.08、1.19±0.13,对照组分别为0.87±0.07、1.09±0.02,两组差异有统计学意义。前额叶皮质及岛叶代谢物NAA/Cr与患S-OSAS累计时间成负相关性(r值分别为-0.965、-0.955,P<0.01)。结论:1H-MRS显示S-OSAS患者前额叶皮质及岛叶病理生理变化,从该区代谢物的改变反应出S-OSAS患者执行及情感功能的异常,其NAA/Cr改变程度与患S-OSAS累计时间相关。  相似文献   

20.
Reelin is a glycoprotein (~400 kDa) secreted by GABAergic neurons into the extracellular matrix of the neocortex and hippocampus as well as other areas of adult rodent and nonhuman primate brains. Recent findings indicate that the heterozygote reeler mouse (haploinsufficient for the reeler gene) shares several neurochemical and behavioral abnormalities with schizophrenia and bipolar disorder with mania. These include (1) a downregulation of both reelin mRNA and the translated proteins, (2) a decrease in the number of dendritic spines in cortical and hippocampal neurons, (3) a concomitant increase in the packing density of cortical pyramidal neurons, and (4) an age-dependent decrease in prepulse inhibition of startle. Interestingly, the heterozygous reeler mouse does not exhibit the unstable gait or the neuroanatomy characteristic of the null mutant reeler mouse. Immunocytochemical studies of the expression of reelin in mice have been primarily limited to light microscopy. In this study we present new immunoelectron microscopy data that delineates the subcellular localization of reelin in the cortex and hippocampus of the wild-type mouse, and compares these results to reelin expression in the heterozygous reeler mouse. In discontinuous areas of cortical layers I and II and the inner blade area of the dentate gyrus of the wild type mouse, extracellular reelin is associated with dendrites and dendritic spine postsynaptic specializations. Similar associations have been detected in the CA1 stratum oriens and other areas of the hippocampus. In the hippocampus, reelin expression is more expansive and more widespread than in cortical layers I and II. In contrast, extracellular reelin immunoreactivity is greatly diminished in all areas examined in the heterozygous reeler mouse. However, some cell bodies of GABAergic neurons in the cortex and hippocampus demonstrate an increased accumulation of reelin in the Golgi and endoplasmic reticulum. We suggest that in the heterozygous reeler mouse a downregulation of reelin biosynthesis results in a decreased rate of secretion into the extracellular space. This inhibits dendritic spine maturation and plasticity and leads to dissociation of dendritic postsynaptic density integrity and atrophy of spines. We speculate that the haploinsufficient reeler mouse may provide a model for future studies of the role of reelin, as it may be related to psychosis vulnerability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号