首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), is one of the most devastating insect pests of wheat (Triticum spp.) and barley (Hordeum spp.) in the world. Yield losses and control costs are valued at several hundred million dollars each year. The use of D. noxia-resistant cultivars is an ecologically, economically, and biologically sound method of managing this pest. Several D. noxia resistance (Dn) genes from wheat have been used to develop cultivars resistant to D. noxia. However, a new U.S. D. noxia biotype (biotype 2) in Colorado is virulent to all known Dn genes except the Dn7 gene from rye (Secale spp.). Hence, there is an immediate need to identify and characterize unique sources of D. noxia resistance to biotypes. In this article, we report resistance to D. noxia biotype 2, identified in a selection from wheat cereal introduction (CItr) 2401, that is controlled by two dominant genes. CItr2401 has a strong antibiosis effect that is exhibited as a reduced intrinsic rate of increase of D. noxia biotype 2. CItr2401 plants also exhibit tolerance to leaf rolling and chlorosis. No antixenosis was detected in CItr2401.  相似文献   

2.
Host plant resistance can effectively manage Russian wheat aphid (Diuraphis noxia) Kurdjumov (Homoptera: Aphididae) in areas where it is an economically important pest of wheat. However, biotypes of D. noxia virulent on wheat containing resistance gene Dn4 have been reported in both the United States and South Africa. Thirty wheat genotypes, including susceptible Yuma, resistant CItr2401, as well as 25 genotypes containing Dn4 and three genotypes containing Dny were planted under greenhouse conditions in Bethlehem, South Africa, and screened with D. noxia biotype RWASA3. RWASA3 caused susceptible damage symptoms in MTRWA92‐145, Ankor, Halt, Bond CL, 18FAWWON‐SA 262, Prowers99, 18FAWWON‐SA 264, Hatcher, Yumar, Corwa and Thunder CL all reported to contain the Dn4 resistance gene. Genotypes PI586956, Stanton and 18FAWWON‐SA 257, containing the Dny‐resistance gene were susceptible to RWASA3. Similarly, coinciding development of virulence to resistance genes Dn4 and Dny was reported in the United States. However, in this study, 13 Dn4‐containing genotypes showed moderate resistance when screened with RWASA3 alluding to a more complex biotype‐gene‐interaction. These findings could indicate that Dn4 and Dny may be related and possibly share a similar or common resistance factor. Further studies will be aimed at explaining these results investigating the possibility of an allelic cluster or series for Dn4, possibly including Dny.  相似文献   

3.
4.
Knowledge of the physiological responses of barley, Hordeum vulgare L., to the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae) is critical to understanding the defense response of barley to aphid injury and identifying resistance mechanisms. This study documented the impact of D. noxia feeding on resistant (‘Sidney’) and susceptible (‘Otis’) barley through chlorophyll fluorescence measurements, chlorophyll content, and carbon assimilation (A–Ci) curves recorded at 1, 3, 6, 10, and 13 days after aphid introduction. All chlorophyll fluorescence parameters evaluated were similar between aphid-infested and control plants for both cultivars. A–Ci curves showed that D. noxia feeding negatively impacts the photosynthetic capacity in both cultivars, but this effect was greater in the susceptible plants. From the A–Ci curves, it is apparent that compensation occurs in resistant barley by day 10, but by the conclusion of the experiment, aphid populations reached levels that overwhelmed the resistant barley seedlings. Differences observed in carbon assimilation curves between control and infested plants show that D. noxia feeding impacts the dark reaction, specifically rubisco activity and RuBP regeneration. It is likely that declines in the photochemical efficiency and chlorophyll content of the plants may be a secondary effect and not the primary trigger of declines in host plant function.  相似文献   

5.
Activities of the detoxification enzymes esterase, glutathione S‐transferase, and of superoxide dismutase in aphids and aphid‐infested cereal leaves were assayed using polyacrylamide gel electrophoresis and a spectrophotometer to elucidate the enzymatic mechanisms of aphid resistance in cereal plants. A chlorosis‐eliciting Russian wheat aphid, Diuraphis noxia (Mordvilko), and non‐chlorosis‐eliciting bird cherry‐oat aphid, Rhopalosiphum padi (L.), and four cereals were used in this study. The four cereal genotypes were ‘Arapahoe’ (susceptible) and ‘Halt’ (resistant) wheat (Triticum aestivum L.), ‘Morex’ (susceptible) barley (Hordeum vulgare L.), and ‘Border’ (resistant) oat (Avena sativa L.). Esterase isozymes differed between the two aphid species, although glutathione S‐transferase and superoxide dismutase did not. Esterase, glutathione S‐transferase, and superoxide dismutase activities in either aphid species were not affected by the level of resistance of a cereal to D. noxia. The assays of cereal leaf samples showed that D. noxia feeding elicited an increase in esterase activity in all four cereal genotypes, although R. padi feeding did not. The increase of esterase activity in cereals, however, was not correlated to aphid resistance in the cereals. The time‐series assays of aphid‐infested cereal leaves showed that D. noxia‐infested Morex barley had a significant increase in esterase activity on all sampling dates (3, 6, and 9 days) in comparison with either uninfested or R. padi‐infested barley. No difference in glutathione S‐transferase activity was detected among either aphid infestations or sampling dates. The electrophoretic assays, however, revealed that aphid feeding elicited a significant increase in superoxide dismutase activity, which served as the control of glutathione S‐transferase activity assays. The increase in esterase and superoxide dismutase activities suggested that D. noxia feeding imposes not only toxic, but also oxidative stresses on the cereals. The ramification of using these enzyme activity data to understand the etiology of D. noxia‐elicited chlorosis is discussed.  相似文献   

6.
Russian wheat aphid,Diuraphis noxia(Mordvilko), as a pest of small grains, has prompted research into biological control and host plant resistance. In the presence of Russian wheat aphid, leaves of a susceptible barley (Morex) are curled and chlorotic and sustain large densities of this aphid, while leaves of a resistant barley (STARS-9301B) remain flat and green and sustain fewer aphids. Might parasitism of Russian wheat aphid byAphelinus albipodusHayat & Fatima andDiaeretiella rapaeMcIntosh be affected differently by these plant types? When presented the plants separately and based on parasitism rate relative to aphid density, the largerD. rapaewas more effective in parasitizing relatively high densities of aphids within curled leaves of Morex than relatively low densities of aphids on uncurled leaves of STARS-9301B. Parasitism byA. albipodusdid not significantly differ among the plants. When given a choice of plants, approximately equal rates of parasitism occurred on the two plant lines for both parasitoid species, and parasitism byD. rapaewas greater thanA. albipodus.These data indicate that using parasitoid size as an indicator of success in a physically restricted environment may be misleading, when considered in a plant environment responsive in several manners to aphids (chlorosis, curling, and ability to sustain Russian wheat aphid). We expect that use of resistant barley will result in decreased parasitoid abundance as aphid densities decrease. However, parasitism rates are expected to be approximately equal on resistant and susceptible barley. In this system, plant resistance and biocontrol are compatible management strategies.  相似文献   

7.
Effective pest management is greatly facilitated by knowledge of the genetic structure and host adaptation of the pest species in question. The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko) (Homoptera: Aphididae: Macrosiphini), is an important economic pest in many cereal‐growing areas of the world, and in this study we investigated these aspects of its populations, using microsatellite markers and host plant response assays. Diuraphis noxia was sampled from 38 locations in Iran and genotyped at four polymorphic microsatellite loci that had been isolated from various Sitobion species. We identified 50 multilocus genotypes in 376 individuals. The overall observed heterozygosity was 0.134. F‐statistics showed a regional partitioning in D. noxia populations with overall FST = 0.231. In addition, there was a significant correlation between genetic and geographic distances. In order to test for the ecological consequences of genetic variability in D. noxia, biotypic variation amongst the isolates collected from wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) was evaluated on a number of resistant and susceptible wheat varieties. The plant variables we measured were damage rating (based on leaf chlorosis, leaf rolling, wilting, and death of the host plant), host plant dry weight, and root length. Damage rating was the best criterion for detecting biotypic variation in D. noxia. Discriminant analysis correctly classified the isolates in respective groups in 80–91.8% of the cases. The barley isolate showed no differences in performance on resistant and susceptible wheat, indicating a lack of gene‐by‐gene relationship with wheat plants. In contrast, wheat isolates differentially damaged the resistant and susceptible plants and showed moderate to severe virulence.  相似文献   

8.
Biotype 2 of the Russian wheat aphid, Diuraphis noxia (Mordvilko), was identified in the United States in 2003 and is virulent to all commercially available cultivars of winter wheat, Triticum aestivum L., that are resistant to biotype 1. We compared the development and reproduction of biotype 2 D. noxia at 21.7 +/- 0.12 degrees C on 'Trego' (PI 612576), a susceptible commercial cultivar, and on lines CI 2401 and 03GD1378027 that represent putative resistance sources. CI 2401 is a pure wheat line originating in the former USSR (Tajikistan), whereas 03GD1378027 is a USDA-ARS breeding line originally developed from crosses with a South African line that carried a large rye translocation conferring D. noxia resistance. Both lines previously showed resistance to biotype 1 and are currently being used in the development of D. noxia-resistant wheat cultivars. Both solitary apterous virginoparae of biotype 2 and their progeny experienced a reduction in survival and prolonged developmental times on CI 2401 and 03GD1378027 compared with Trego, but the former lines did not differ significantly from each other with respect to either measure of aphid performance. Progeny developed faster than did their foundress mothers on CI 2401 and Trego, but not on 03GD1378027. Mean foundress fecundity did not differ between CI 2401 and 03GD1378027 but was reduced on these lines relative to Trego. Foundresses also were more often found off plants of CI 2401 and 03GD1378027 than Trego. Estimates of intrinsic rate of increase were higher on Trego than on either CI 2401 or 03GD1378027, the latter two lines yielding similar values. The negative impacts of CI 2401 and 03GD1378027 on development and reproduction of biotype 2 indicate that these lines represent sources of resistance effective against this biotype.  相似文献   

9.
10.
Susceptible and resistance wheat cultivars, Triticum aestivum L, were presented to two biotypes of Russian wheat aphid, Diuraphis noxia (Mordvilko), in multiple choice tests to assay their relative acceptability as host plants. Both apterae (third and fourth instars) and alate adults were offered plants at the two-leaf stage in different cultivar combinations at 22±1℃ and 16:8 (L: D) hour photoperiod. Apterae were released from Petri dishes in the center of a circle of test plants, whereas alatae dispersed from a mature aphid colony to settle on plants arranged in rows. Both alatae and apterous nymphs of both biotypes readily colonized all cultivars tested:‘2137', ‘Akron',‘Ankor’,‘ Halt’ ,‘ Jagger’ ,‘ Prairie Red’ , ‘Stanton',‘TAM 107',‘TAM 110',‘Trego', ‘ Yuma', and ‘Yumar'. Fewer biotype I apterae responded (settled and fed) in the combination containing more resistant (Dn4- and Dny-expressing) cultivars, compared to the combinations that had fewer. The reverse was true for biotype 2 apterae; more aphids responded in the combination containing the largest number of Dn4 expressing cultivars. Differential colonization of cultivars was observed in only one combination, in which biotype 2 apterae colonized Akron and Yumar in larger numbers than they did Stanton and Yuma. A separate experiment confirmed that, 48 hours after infestation, more biotype 2 apterae abandoned plants of Yuma than plants of Yumar. This differential response was likely due to genetic differences between the two ' near isogenic' lines that include the lack of Dn4 expression in Yuma. Choice tests with alatae did not result in differential rates of cultivar colonization by either biotype in any combination tested. These results suggest that young wheat plants appear to lack any meaningful antixenosis toward D. noxia, even though the aphids appear to perceive, and sometimes respond to, certain differences in cultivar suitability.  相似文献   

11.
The concentration of a hydroxamic acid, also known as DIMBOA (2,4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one), in 6-d old wheat seedlings was examined using reverse-phase high performance liquid chromatography (HPLC). Wheat plant introduction (PI) lines PI 137739 (Dn1 gene), PI 262660 (Dn2 gene), and PI 294994 (Dn5 gene), the corresponding near-isogenic lines`Betta'-Dn1, Betta-Dn2 and Betta-Dn5, and susceptible Betta wheat were used in the study. The Dn2 gene conferring Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae), tolerance was not related to DIMBOA concentration in wheat. Of the lines with Dn1 and Dn5 genes that confer antibiosis to D. noxia, only lines with the Dn5 gene showed increased DIMBOA accumulation. However, the Dn5 and the DIMBOA biosynthesis genes are not located in the same chromosome group. Possible relationship between the Dn5 gene and DIMBOA accumulation was discussed. This study indicates that DIMBOA concentration does not completely explain D. noxia resistance in the wheat lines examined and a comprehensive examination of other allelochemicals (e.g., phenolics) is necessary.  相似文献   

12.
13.
In South Africa a new biotype of the Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae), RWASA2, has appeared which exhibits an improved performance compared to the original biotype (RWASA1) on wheat containing the Dn1 resistance gene. We examined population growth rates as well as damage caused by RWASA1 and RWASA2, in addition to a different aphid species, the bird cherry‐oat aphid (BCA), Rhopalosiphum padi L. (Hemiptera: Aphididae), on three RWA‐resistant barley [Hordeum vulgare L. (Poaceae)] lines (STARS‐9577B, STARS‐0502B, and STARS‐9301B) and one susceptible control (PUMA). RWASA2 had a higher reproductive rate than RWASA1 on all barley lines tested, which is consistent with previous results on wheat. Two of the RWA‐resistant lines (STARS‐0502B and STARS‐9301B) also exhibited a similar resistance phenotype against BCA. In our experiments, severe chlorosis and leaf roll appeared earlier on the control PUMA barley variety as a result of RWASA2 feeding than was the case with RWASA1, probably due to the differences in reproductive rate. Although chlorosis appeared earlier on resistant plants after RWASA2 feeding, this symptom developed much faster during RWASA1 feeding on all three resistant lines tested. As chlorosis did not correlate well with aphid population numbers, we surmise that the differential chlorosis effects may be related to differences in the amount of saliva introduced by the two aphid clones during feeding. Our results indicate that the difference between RWASA2 and RWASA1 are broader than a ‘gene for gene’ interaction with the Dn1 resistance (R) gene in wheat, and that these biotypes also differ in important aspects of their biology.  相似文献   

14.
Chlorophyll degradation is a complex phenomenon that often accompanies insect feeding damage to plants. Loss of chlorophyll can be initiated by several reactions, including oxidative bleaching, chlorophyllase activity, and Mg-dechelatase activity. Extracts from the Russian wheat aphid [Diuraphis noxia (Mordvilko)], the bird cherry-oat aphid [Rhopalosiphum padi (L.)], and aphid-infested and uninfested wheat plants were assayed in vitro for activities involved in chlorophyll degradation. Although the initial infestation was the same (10 apterous adults) for both aphid species, D. noxia weight was significantly higher than R. padi after feeding for 12 days. Consequently, D. noxia feeding caused greater fresh leaf weight reduction than R. padi feeding. Chlorophyll degradation assays showed no activity from either D. noxia or R. padi extracts. Plant extract assays showed a significant difference in Mg-dechelatase activity, while no difference was detected in either the chlorophyllase or oxidative bleaching pathways among the aphid-infested or uninfested plant extracts. Diuraphis noxia-infested leaf extracts showed a greater increase of Mg-dechelatase activity than either R. padi-infested or the uninfested plants. The findings suggest that leaf chlorosis elicited by D. noxia feeding is different from the chlorophyll degradation that occurs in natural plant senescence. Aphid-elicited chlorosis might be the result of a Mg-dechelatase-driven catabolism of chlorophyll in challenged wheat seedlings, however, the factor(s) from D. noxia that elicited the increase of Mg-dechelatase activity still remain to be determined.  相似文献   

15.
Interactions among three trophic levels of resistant and susceptible slenderwheat grasses, Elymus trachycaulum (Link) Goule ex Shinners ex. H.F. Lewis, Russian wheat aphid, Diuraphis noxia (Mordvilko), and a hymenopterous parasitoid were studied in the laboratory and greenhouse. These relationships were compared with a commercial susceptible wheat Triticum aestivum L. variety. Aphids reared on the resistant entries showed significantly lower weights and numbers. Significant reduction of parasitoid mummy weight and adult size was positively correlated with the effects on the aphids. Resistant entries also induced a longer prereproductive period for both the aphids and parasitoids. Numbers of aphids and aphid damage were significantly modified by the addition of parasitoids. Parasitism was higher on plants that did not have leaf rolling. These findings may indicate that antibiosis resistance studied here is not the most desirable because it decreases natural enemy vitality.  相似文献   

16.
The restriction of aphid reestablishment onto plants by epigeal predators represents a critical component of integrated pest management. To further realize the potential that these predators might have in control programs, it is necessary to quantify such behavior as aphid falling rate to reveal the number of aphids that are available as potential prey. This study calculated the falling rate of the Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Sternorrhyncha: Aphididae), and tested whether this aphid more likely fell from wheat plants that differed between flat leaf architecture versus those with furled leaves. Specifically, the hypothesis was tested that a resistant wheat line (flat leaves) will have a higher aphid falling rate than a susceptible closely related line (furled leaves). The experiment was performed at Fort Collins and Akron, Colorado, USA, from May through July, 2008. Aphids were sampled from infested wheat rows to estimate aphid density, and sticky traps were used to capture falling aphids and to measure falling rate. Falling rates ranged from 0.7 to 69.5% in Fort Collins and from 1.4 to 59.5% in Akron. The falling rate of D. noxia was more influenced by plant growth stage than aphid densities, with the highest falling rate occurring after wheat senescence. Wheat plants with flat leaf architecture did not significantly increase aphid falling rate. Diuraphis noxia falls at a higher rate at lower aphid densities, which is when epigeal predators could have their greatest biological control impact.  相似文献   

17.
Wheat, Triticum aestivum L., with Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) resistance based on the Dn4 gene has been important in managing Russian wheat aphid since 1994. Recently, five biotypes (RWA1-RWA5) of this aphid have been described based on their ability to differentially damage RWA resistance genes in wheat. RWA2, RWA4, and RWA5 are of great concern because they can kill wheat with Dn4 resistance. In 2005, 365 Russian wheat aphid clone colonies were made from collections taken from 98 fields of wheat or barley, Hordeum vulgare L., in Oklahoma, Texas, New Mexico, Colorado, Kansas, Nebraska, and Wyoming to determine their biotypic status. The biotype of each clone was determined through its ability to differentially damage two resistant and two susceptible wheat entries in two phases of screening. The first phase determined the damage responses of Russian wheat aphid wheat entries with resistance genes Dn4, Dn7, and susceptible 'Custer' to infestations by each clone to identify RWA1 to RWA4. The second phase used the responses of Custer and 'Yuma' wheat to identify RWA1 and RWA5. Only two biotypes, RWA1 and RWA2, were identified in this study. The biotype composition across all collection sites was 27.2% RWA1 and 72.8% RWA2. RWA biotype frequency by state indicated that RWA2 was the predominant biotype and composed 73-95% of the biotype complex in Texas, Oklahoma, Colorado, and Wyoming. Our study indicated that RWA2 is widely distributed and that it has rapidly dominated the biotype complex in wheat and barley within its primary range from Texas to Wyoming. Wheat with the Dn4 resistance gene will have little value in managing RWA in the United States, based on the predominance of RWA2.  相似文献   

18.
The species composition, relativeabundance, and seasonal dynamics of selectednatural enemies of cereal aphids were monitoredin spring wheat fields in Moscow, Idaho in 1997and 1998. Trials also examined the potentialimpact of resistance to Russian wheat aphid(RWA), Diuraphis noxia (Mordvilko)(Homoptera: Aphididae) in wheat, on aphidbiological control agents. Natural enemypopulations were monitored on two springwheats: D. noxia susceptible variety`Centennial' and resistant genotype `IDO488'. Field plots were artificially infested withadult D. noxia, and sampled for cerealaphids and parasitoids weekly. Coccinellidpredators were monitored once in 1997 and twicein 1998. The coccinellids Hippodamiaconvergens Guerin, Coccinellaseptempunctata L., C. transversoguttataBrown and C. trifasciata Mulsant weredetected. No significant differences in adultor immature coccinellid densities were observedbetween the D. noxia resistant andsusceptible genotypes. During both years, themost abundant primary hymenopteran parasitoidswere Diaeretiella rapae (M'Intosh), Aphidius ervi Haliday, A. avenaphis(Fitch), and Lysiphlebus testaceipes(Cresson), Aphelinus varipes (Foerster),Aphidius colemani Viereck, Aphidiuspicipes (Nees), Aphidius sp., Monoctonus washingtonensis Pike & Stary, Praon gallicum Stary, Praon occidentaleBaker, and Praon sp. were also detected. Numbers of both D. noxia and D.rapae were significantly greater on Centennialthan on IDO488 in both years. When all speciesof cereal aphids and parasitoids areconsidered, the total percentage parasitism wasnot significantly different between thegenotypes. There was no interaction betweenD. noxia resistance and the populationdensity of the predators or parasitoidsmonitored. These results suggest that the D. noxia resistant line had no adverse impacton natural enemies under the conditions ofthese field experiments.  相似文献   

19.
The Russian wheat aphid is a significant pest problem in wheat and barley in North America. Genetic resistance in wheat is the most effective and economical means to control the damage caused by the aphid. Dn7 is a rye gene located on chromosome 1RS that confers resistance to the Russian wheat aphid. The gene was previously transferred from rye into a wheat background via a 1RS/1BL translocation. This study was conducted to genetically map Dn7 and to characterize the type of resistance the gene confers. The resistant line '94M370' was crossed with a susceptible wheat cultivar that also contains a pair of 1RS/1BL translocation chromosomes. The F2 progeny from this cross segregated for resistance in a ratio of 3 resistant: 1 susceptible, indicating a single dominant gene. One-hundred and eleven RFLP markers previously mapped on wheat chromosomes 1A, 1B and 1D, barley chromosome 1H and rye chromosome 1R, were used to screen the parents for polymorphism. A genetic map containing six markers linked to Dn7, encompassing 28.2 cM, was constructed. The markers flanking Dn7 were Xbcd1434 and XksuD14, which mapped 1.4 cM and 7.4 cM from Dn7, respectively. Dn7 confers antixenosis, and provides a higher level of resistance than that provided by Dn4. The applications of Dn7 and the linked markers in wheat breeding are discussed.Communicated by J. Dvorak  相似文献   

20.
Biotypes are infraspecific classifications based on biological rather than morphological characteristics. Cereal aphids are managed primarily by host plant resistance, and they often develop biotypes that injure or kill previously resistant plants. Although molecular genetic variation within aphid biotypes has been well documented, little is known about phenotypic variation, especially virulence or the biotype's ability to cause injury to cultivars with specific resistance genes. Five clones (single maternal lineages) of Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Homoptera: Aphididae), determined to be injurious to wheat, Triticum aestivum L., with the Dn4 gene, were evaluated on resistant and susceptible wheat and barley, Hordeum vulgare L., for their ability to cause chlorosis, reduction in plant height, and reduction in shoot dry weight. Variation to cause injury on resistant 'Halt' wheat, susceptible 'Jagger' wheat, and resistant 'STARS-9301B' barley was found among the Dn4 virulent clones. One clone caused up to 30.0 and 59.5% more reduction in plant height and shoot dry weight, respectively, on resistant Halt than other clones. It also caused up to 29.9 and 55.5% more reduction in plant height and shoot dry weight, respectively, on susceptible Jagger wheat. Although STARS-9301B barley exhibited an equal resistant response to feeding by all five clones based on chlorosis, two clones caused approximately 20% more reduction in plant height and shoot dry weight than three other clones. The most injurious clones on wheat were not the most injurious clones on barley. This is the first report of variation to cause varying degrees of plant damage within an aphid biotype virulent to a single host resistance gene. A single aphid clone may not accurately represent the true virulent nature of a biotype population in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号