首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells cultured in the presence of caffeine had high sporulation ability. The sporulation-promotive effect of caffeine was studied, special attention being paid upon changes in nucleic acid metabolism. When transferred to a sporulation medium, the breakdown of RNA, the synthesis of protein, RNA and DNA, commitment to sporulation and the appearance of mature asci took place in caffeine-treated cells significantly earlier than in control cells. Commitment to sporulation occurred before the completion of premeiotic DNA synthesis in both caffeine-treated and control cells.  相似文献   

2.
The antimetabolite sulfanilamide inhibits sporulation in Saccharomyces cerevisiae strain AP1. Cells exposed to sulfanilamide at various times during the sporulation process become progressively insensitive to the drug, although accumulation of sulfanilamide by the cells increases with time. Vegetative growth of AP1 is practically unaffected by sulfanilamide; pregrowth of the cells in the presence of the drug does not prevent sporulation. Thus, inhibition is confined to the meiotic phase of the cell cycle. Sensitivity to sulfanilamide is independent of pH. Increasing the time cells are exposed to sulfanilamide results in a progressive reduction of ascus formation; however, the inhibition is reversible since sporulation can occur in cells exposed to the drug for greater than 24 h. The drug arrests the cells at a point before commitment to sporulation, since yeast cells exposed to sulfanilamide for 12 h do not complete the sporulation process when returnedto vegetative medium, but resume mitotic growth instead. Meiotic nuclear division is largely prevented by sulfanilamide, and synthesis of RNA and protein is severely retarded. DNA synthesis is inhibited up to 50%; glycogen synthesis is approximately 90% inhibited. Other yeast strains showed varying sensitivity to sulfanilamide; homothallic strains were generally less affected.  相似文献   

3.
Summary The addition of 0.1% caffeine to the plating medium markedly reduced the ozone-survival of the wild-type and the rad1 and rad6 mutants of Saccharomyces cerevisiae, whereas no effect was observed in the rad52 mutant. Since, in S. cerevisiae, caffeine has been reported to interfere with the recombinational repair pathway under the control of the RAD52 gene, these results support previous observations suggesting that this pathway is involved in the repair of ozone-induced DNA damage.  相似文献   

4.
Proteinase activities of Saccharomyces cerevisiae during sporulation.   总被引:11,自引:7,他引:4       下载免费PDF全文
Sporulation in Saccharomyces cerevisiae occurs in the absence of a exogenous nitrogen source. Thus, the internal amino acid pool and the supply of nitrogen compounds from protein and nucleic acid turnover must be sufficient for new protein synthesis. Since sporulation involves an increased rate of protein turnover, an investigation was conducted of the changes in the specific activity of various proteinases. A minimum of 30% of the vegetative proteins was turned over during the course of sporulation. There was a 10- to 25-fold increase in specific activity of various proteinases, with a maximum activity around 20 h after transfer into the sporulation medium. The increase in activities was due to de novo synthesis since inhibition of protein synthesis by cycloheximide blocks both an increase in proteinase activities and sporulation. There was no increase observed in proteinase activities of nonsporogenic cultures (a and alpha/alpha strains) inoculated into the sporulation medium, suggesting that the increase in proteinase activities is "sporulation specific" and not a consequence of step-down conditions. The elution patterns through diethylaminoethyl-Sephadex chromatography of various proteinases extracted from T0 and T18 cells were similar, and no new species was observed.  相似文献   

5.
Quantitative studies of metabolic fluxes during Saccharomyces cerevisiae sporulation on acetate in the presence of the glucose analog, 2-deoxy glucose (2dG) are reported. We have studied the inhibition of sporulation and associated catabolic or anabolic fluxes by 2dG. Sporulation frequencies decreased from 50% to 2% asci per cell at 2dG concentrations in the range of 0.03 to 0.30 g l>-1, respectively. Under the same conditions, the acetate consumption flux was inhibited up to 60% and the glyoxylate cycle and gluconeogenic fluxes decreased from 0.7 and 0.3 mmol h>-1 g>-1 dw, respectively, to negligible values. We observed a linear correlation of the acetate consumption rate with the sporulation frequency by varying the 2dG concentration. The linear correlation was also verified between the frequency of sporulation and the fluxes through glyoxylate cycle and gluconeogenic pathways. In addition, the same association of inhibition of sporulation and metabolic fluxes was found in other S. cerevisiae strains displaying different potentials of sporulation. The results presented suggest that inhibition of sporulation in the presence of the glucose analog may be attributed, at least in part, to the inhibition of anabolic fluxes and might be associated with catabolite repression.  相似文献   

6.
Formation of ascospores in the yeast Saccharomyces cerevisiae is driven by an unusual cell division in which daughter nuclei are encapsulated within de novo-formed plasma membranes, termed prospore membranes. Generation of viable spores requires that cytoplasmic organelles also be captured along with nuclei. In mitotic cells segregation of mitochondria into the bud requires a polarized actin cytoskeleton. In contrast, genes involved in actin-mediated transport are not essential for sporulation. Instead, efficient segregation of mitochondria into spores requires Ady3p, a component of a protein coat found at the leading edge of the prospore membrane. Other organelles whose mitotic segregation is promoted by actin, such as the vacuole and the cortical endoplasmic reticulum, are not actively segregated during sporulation but are regenerated within spores. These results reveal that organellar segregation into spores is achieved by mechanisms distinct from those in mitotic cells.  相似文献   

7.
We have quantified yeast carbon and oxygen consumption fluxes and estimated anabolic fluxes through glyoxylate and gluconeogenic pathways under various conditions of sporulation on acetate. The percentage of sporulation reached a maximum of 55% to 60% after 48 h in sporulation medium, for cells harvested from logarithmic growth in acetate minimal medium. When cells were harvested in the stationary phase of growth before transfer to sporulation medium, the maximum percentage of sporulation decreased to 40% along with the occurrence of meiosis as could be judged by counting of bi- and tetra-nucleated cells. In both experiments, the rates of acetate and oxygen consumption decreased as a function of time when exposed to sporulation medium. Apparently, the decrease of metabolic rates was not due to alkalinization. By systematically varying the cell concentration in sporulation medium from 1.4×107 to 20×107 cell ml-1, the percentage of sporulating cells was found to decrease in parallel with the rate of acetate consumption. When the sporulation efficiency attained under the different experimental conditions was plotted as a function of the rate of acetate consumption, a linear correlation was found. Anabolic fluxes estimation revealed a decrease of the rate through gluconeogenic and glyoxylate pathways occurring during sporulation progression. The pattern of metabolic fluxes progressively evolved toward a predominance of more oxidative catabolic fluxes than those exhibited under growth conditions. The results obtained are discussed in terms of a characteristic pattern of metabolic fluxes and energetics, associated to the development of yeast sporulation.Abbreviations DAPI 4,6-diamidino-2-phenylindole - dw dry weight - OD540 optical density at 540 nm - SEM standard error of the mean - RQ respiratory quotient  相似文献   

8.
9.
We investigated the sporulation properties of a series of diploid Saccharomyces cerevisiae strains homozygous for inositol auxotrophic markers. The strains required different amounts of inositol for the completion of sporulation. Shift experiments revealed two phases of inositol requirement during sporulation which coincided with the two phases of lipid synthesis found by earlier workers. Phase I was at the beginning and during premeiotic deoxyribonucleic acid synthesis; phase II immediately preceded the appearance of mature asci. Of the inositol taken up by sporulating cells, 90% was incorporated into inositol phospholipids. By two-dimensional thin-layer chromatography, eight compounds were resolved, one of which was sporulation specific. The majority of the inositol phospholipids were, however, identical to those found in vegetatively growing cells. In the absence of inositol, the cells did not sporulate but, after a certain time, were unable to return to vegetative growth. These nonsporulating cells did, however, incorporate acetate into lipids and double their deoxyribonucleic acid content in the premeiotic phase. We believe that it is this lack of coordination of biosynthetic events which causes inositol-less death on sporulation media without inositol.  相似文献   

10.
Glucoamylase (SGA) was purified approximately 250-fold from sporulating Saccharomyces cerevisiae cells. The partially purified enzyme was active against glycogen, starch, maltotriose and maltose. It exhibited maximum catalytic activity against glycogen at pH 5.5. The enzyme appears to be glycosylated, because it bound to lentil-lectin Sepharose. SGA was expressed in vegetatively growing cells under the control of the GAL1 promoter, and the cellular location of the enzymatic activity determined by fractionation techniques. SGA was preferentially recovered in fractions which were enriched for the vacuolar hydrolases, carboxypeptidase Y and alpha-mannosidase.  相似文献   

11.
12.
13.
Summary We have investigated the physiological conditions under which meiosis and the ensuing sporulation of Saccharomyces cerevisiae are initiated. Initiation of sporulation occurs in response to carbon, nitrogen, phosphorus, or sulfur deprivation, and also, when met auxotrophs are partially starved for methionine, but not after starvation of other amino acid auxotrophs. It also occurs after partial starvation of pur or gua auxotrophs for guanine but not after starvation of ura auxotrophs for uracil. Under all these sporulation conditions the concentrations of both guanine nucleotides (GTP) and S-adenosylmethionine (SAM) decrease whereas those of other nucleotides show no trend. We show that the decrease of guanine nucleotides is essential for the initiation of meiosis and sporulation: when a gua auxotroph, also lacking one of the two SAM synthetases, is starved for guanine but supplemented with 0.1 mM methionine, GTP decreases while SAM slightly increases and yet the cells sporulate.  相似文献   

14.
15.
Enyenihi AH  Saunders WS 《Genetics》2003,163(1):47-54
We have used a single-gene deletion mutant bank to identify the genes required for meiosis and sporulation among 4323 nonessential Saccharomyces cerevisiae annotated open reading frames (ORFs). Three hundred thirty-four sporulation-essential genes were identified, including 78 novel ORFs and 115 known genes without previously described sporulation defects in the comprehensive Saccharomyces Genome (SGD) or Yeast Proteome (YPD) phenotype databases. We have further divided the uncharacterized sporulation-essential genes into early, middle, and late stages of meiosis according to their requirement for IME1 induction and nuclear division. We believe this represents a nearly complete identification of the genes uniquely required for this complex cellular pathway. The set of genes identified in this phenotypic screen shows only limited overlap with those identified by expression-based studies.  相似文献   

16.
Proteins synthesized by Saccharomyces cerevisiae in presporulation and sporulation media were compared by using sporulating (a/alpha) and nonsporulating (a/a and alpha/alpha) yeast strains. Total cellular proteins were labeled with [35S]methionine and analyzed by two-dimensional polyacrylamide gel electrophoresis. Autoradiograms and/or fluorograms showed some 700 spots per gel. Nine proteins were synthesized by a/alpha cells which were specific to vegetative, log-phase conditions. During incubation in sporulation medium, sporulating (a/alpha) cells synthesized 11 proteins not present in vegetatively growing cell. These same 11 proteins, however, were synthesized by nonsporulating (a/a and alpha/alpha) cells on sporulation medium as well. Nonsporulating diploids (a/a and alpha/alpha) were also examined with the electron microscope at various times during their incubation in sporulation medium. Certain cellular responses found to be unique to meiotic yeast cells in previous studies were exhibited by the nonsporulating controls. The degree to which all cell types (a/alpha, a/a, and alpha/alpha) were committed to sporulation was also determined by shifting cells from sporulation medium to vegetative medium. Some commitment to the meiotic pathway was observed in both the a/alpha and the a/a, alpha/alpha cells.  相似文献   

17.
18.
Antisera raised against purified yeast ascospores caused agglutination of both ascospores and vegetative cells. A spore-specific activity was obtained by absorbing out anti-vegetative activity with vegetative cells. The anti-vegetative cell activity was directed against mannan, and was probably due to exposure of some spore coat mannan at the spore surface since concanavalin A and lentil lectin also caused agglutination of ascospores. The spore-specific activity was probably determined by a protein or proteins, since extraction of spores with a mixture of sodium dodecyl sulphate and dithiothreitol markedly affected their agglutination by the spore-specific serum. The spore-specific antigen was synthesized in a soluble form during sporulation several hours before the appearance of the spore surface and the pool of soluble antigen declined as the spore was assembled. Synthesis of the soluble antigen was inhibited by adding cycloheximide at all times up to its first appearance in the sporulating cell.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号