首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we explored anesthetic and postanesthetic effects of isoflurane on GABA-ergic and glutamatergic systems in the rat hippocampus. Our results demonstrate that different neuronal targets affected by isoflurane recover from anesthesia at dissimilar rates. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 371–373, July–October, 2007.  相似文献   

2.
Arthropod venoms are sources of molecules that may be useful tools to investigate molecular mechanisms of putative new medicines and laboratory drugs. Here we show the effects of the compound agelaiatoxin‐8 (AVTx8), isolated from Agelaia vicina venom, on γ‐aminobutyric acid (GABA) neurotransmission in rat brain synaptosomes. Analysis reveals that AvTx8 is composed by 14 amino acid residues with a molecular weight (MW) of 1567 Da. AvTx8 increased GABA release and inhibited GABA uptake in synaptosomes from rat cerebral cortex. AvTx8 inhibited GABA uptake and increased GABA release in the presence of Ca+, Na+, and K+ channel blockers, suggesting that it acts directly on GABA transporters. In addition, AvTx8 significantly decreases GABA binding in synaptic membranes from rat brain cortex, suggesting that it also modulates the activity of GABA receptors. Moreover, AvTx8 decreased GAT‐1– and GAT‐3–mediated GABA uptake in transfected COS‐7 cells. Accordingly, we suggest that AvTx8 modulates GABA neurotransmission and might provide a novel entry point for identifying a new class of GABA‐modulating neuroprotective drugs.  相似文献   

3.
We have investigated the protective effect of (-)-epigallocatechin gallate (EGCG) on alpha-amino-3-hydroxy-5-methyl-4-isoxazolo propionate (AMPA)-induced toxicity in cultured rat hippocampal neurons. Treatment of 24 h AMPA (10 microM) reduced the neuronal viability in both survival neuron counting and MTT reduction assay compared with control, with increase in cellular concentrations of hydrogen peroxide and malondialdehyde. These responses to AMPA were significantly blocked by co-treatments with EGCG (10 microM), which effect was very similar to the protective ability of a known antioxidant catalase (2000 U/ml). AMPA (50 microM) elicited the increase in intracellular calcium concentration ([Ca(2+)]i) on which EGCG significantly attenuated both peak amplitude and sustained nature of that [Ca(2+)]i increase in a dose-dependent manner. These data suggest that EGCG has a neuroprotective effect against AMPA through inhibition of AMPA-induced [Ca(2+)]i increase and consequent attenuation of reactive oxygen species production and lipid peroxidation as an antioxidant and a radical scavenger.  相似文献   

4.
5.
Chondroitin sulfate (CS) proteoglycans (CSPGs) are the most abundant PGs of the brain extracellular matrix (ECM). Free CS could be released during ECM degradation and exert physiological functions; thus, we aimed to investigate the effects of CS on voltage‐ and current‐clamped rat embryo hippocampal neurons in primary cultures. We found that CS elicited a whole‐cell Na+‐dependent inward current (ICS) that produced drastic cell depolarization, and a cytosolic calcium transient ([Ca2+]c). Those effects were similar to those elicited by α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate (AMPA) and kainate, were completely blocked by NBQX and CNQX, were partially blocked by GYKI, and were unaffected by MK801 and D‐APV. Furthermore, ICS and AMPA currents were similarly potentiated by cyclothiazide, a positive allosteric modulator of AMPA receptors. Because CSPGs have been attributed Ca2+ ‐dependent roles, such as neural network development, axon pathfinding, plasticity and regeneration after CNS injury, CS action after ECM degradation could be contributing to the mediation of these effects through its interaction with AMPA and kainate receptors.  相似文献   

6.
Chloride currents were activated by a low concentration of GABA (0.5 m) in neonatal rat hippocampal neurons cultured for up to 14 days. Currents elicited by 0.5 m GABA in neurons, voltage-clamped using the whole-cell technique with pipettes containing 149 mm Cl, reversed close to 0 mV whether pipettes contained 144 mm Na+ or 140 mm Cs+, and were blocked by 100 m bicuculline. Current-voltage curves showed outward rectification. Single channel currents appeared in cell-attached patches when the pipette tip was perfused with pipette solution containing 0.5 m GABA and disappeared when a solution containing 100 m bicuculline plus 0.5 m GABA was injected into the pipette tip. The channels showed outward rectification and, in some patches, had a much lower probability of opening at hyperpolarized potentials. The average chord conductance in 10 patches hyperpolarized by 80 mV was 7.8±1.6 pS (sem) compared with a chord conductance of 34.1±3.5 pS (sem) in the same patches depolarized by 80 mV. Similar single channel currents were also activated in cell-free, inside-out patches in symmetrical chloride solutions when 0.5 m GABA was injected into the pipette tip. The channels showed outward rectification similar to that seen in cell-attached patches, and some channels had a lower probability of opening at hyperpolarized potentials. The average chord conductance in 13 patches hyperpolarized by 80 mV was 11.8±2.3 pS (sem) compared with 42.1±3.1 pS (sem) in the same patches depolarized by 80 mV.We are grateful to B. McLachlan and M. Robertson for their general assistance, to C. McCulloch and M. Smith for writing computer programs and to W. O'Hare for making the pipette injection device.  相似文献   

7.
谷氨酸促进大鼠海马神经元的内钙升高   总被引:1,自引:0,他引:1  
谷氨酸能影响大鼠海马神经元胞内钙信号的变化,进而影响海马神经元神经冲动的发放和学习记忆过程。运用荧光测钙技术实时监测了大鼠海马神经元内钙信号的动态变化,同时分析了谷氨酸对其胞内钙信号的影响。试验表明:谷氨酸能够显著提高胞内游离钙离子的浓度;细胞外钙离子的存在、谷氨酸刺激时间及刺激频率的增加都能引起胞内钙信号不同程度的升高;但谷氨酸的过度刺激会引起钙离子浓度的超负荷,从而导致神经元结构和功能的损坏。  相似文献   

8.
褐黑素对大鼠海马神经元谷氨酸所致毒性的拮抗作用   总被引:2,自引:0,他引:2  
Gao HX  Zhang LX 《生理学报》1999,51(4):430-434
在大鼠海马脑片上电刺激Schaffer侧支纤维,胞外记录CA1区锥体细胞层诱发群体锋电位,观察灌流谷氨酸和褪黑素对PS的影响。结果显示:5.0mmol/L浓度的Glu可使PS值下降至对照值的4.1%;ME(0.4、0.5和0.6μmol/L)一5.0mmol/L浓度的Glu可使PS值下降至对照值的14.7%、105.2%、24.3%;MEL、Glu,与赛庚啶混合给药,PS值下降至0。上述结果提示。  相似文献   

9.
Triethyl lead is the major metabolite of tetraethyl lead, which is used in industrial processes and as an antiknock additive to gasoline. We tested the hypothesis that low levels of triethyl lead (0.1 nmol/L to 5mol/L) interfere with the normal development of cultured E18 rat hippocampal neurons, possibly through increases in intracellular free calcium ion concentration, [Ca2+]in. The study assessed survival and differentiation using morphometric analysis of individual neurons. We also looked at short-term (up to 3.75-h) changes in intracellular calcium using the calcium-sensitive dye fura-2. Survival of neurons was significantly reduced at 5 mol/L, and overall production of neurites was reduced at 2 mol/L. The length of axons and the number of axons and dendrites were reduced at 1 mol/L. Neurite branching was inhibited at 10 nmol/L for dendrites and 100 nmol/L for axons. Increases in intracellular calcium were observed during a 3.75-h exposure of newly plated neurons to 5 mol/L triethyl lead. These increases were prevented by BAPTA-AM; which clamps [Ca2+]in at about 100 nmol/L. Culturing neurons with BAPTA-AM and 5 mol/L triethyl lead did not reverse the effects of triethyl lead, suggesting that elevation of [Ca2+]in is not responsible for decreases in survival and neurite production. Triethyl lead has been shown to disrupt cytoskeletal elements, particularly neurofilaments, at very low levels, suggesting a possible mechanism for its inhibition of neurite branching at nanomolar concentrations.Abbreviations BAPTA-AM 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid acetoxymethyl ester - [Ca2+]in intracellular free calcium ion concentration - DMSO dimethyl sulfoxide - E18 embryonic day 18 - FBS fetal bovine serum - fura-2AM fura-2 acetoxymethyl ester - HBSS Hanks' Balanced Salt Solution - MEM Eagle's Minimum Essential Medium  相似文献   

10.
Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature post-synaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on pre-synaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of post-synaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory post-synaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities.  相似文献   

11.
The specificity of Ca2+ signals is conferred in part by limiting changes in cytosolic Ca2+ to subcellular domains. Mitochondria play a major role in regulating Ca2+ in neurons and may participate in its spatial localization. We examined the effects of changes in the distribution of mitochondria on NMDA-induced Ca2+ increases. Hippocampal cultures were treated with the microtubule-destabilizing agent vinblastine, which caused the mitochondria to aggregate and migrate towards one side of the neuron. This treatment did not appear to decrease the energy status of mitochondria, as indicated by a normal membrane potential and pH gradient across the inner membrane. Moreover, electron microscopy showed that vinblastine treatment altered the distribution but not the ultrastructure of mitochondria. NMDA (200 micro m, 1 min) evoked a greater increase in cytosolic Ca2+ in vinblastine-treated cells than in untreated cells. This increase did not result from impaired Ca2+ efflux, enhanced Ca2+ influx, opening of the mitochondrial permeability transition pore or altered function of endoplasmic reticulum Ca2+ stores. Ca2+ uptake into mitochondria was reduced by 53% in vinblastine-treated cells, as reported by mitochondrially targeted aequorin. Thus, the distribution of mitochondria maintained by microtubules is critical for buffering Ca2+ influx. A subset of mitochondria close to a Ca2+ source may preferentially regulate Ca2+ microdomains, set the threshold for Ca2+-induced toxicity and participate in local ATP production.  相似文献   

12.
Central synapses operate neurotransmission in several modes: synchronous/fast neurotransmission (neurotransmitters release is tightly coupled to action potentials and fast), asynchronous neurotransmission (neurotransmitter release is slower and longer lasting), and spontaneous neurotransmission (where small amounts of neurotransmitter are released without being evoked by an action potential). A substantial body of evidence from the past two decades suggests that seemingly identical synaptic vesicles possess distinct propensities to fuse, thus selectively serving different modes of neurotransmission. In efforts to better understand the mechanism(s) underlying the different modes of synaptic transmission, many research groups found that synaptic vesicles used in different modes of neurotransmission differ by a number of synaptic proteins. Synchronous transmission with higher temporal fidelity to stimulation seems to require synaptotagmin 1 and complexin for its Ca2+ sensitivity, RIM proteins for closer location of synaptic vesicles (SV) to the voltage operated calcium channels (VGCC), and dynamin for SV retrieval. Asynchronous release does not seem to require functional synaptotagmin 1 as a calcium sensor or complexins, but the activity of dynamin is indispensible for its maintenance. On the other hand, the control of spontaneous neurotransmission remains less clear as deleting a number of essential synaptic proteins does not abolish this type of synaptic vesicle fusion. VGCC distance from the SV seems to have little control on spontaneous transmission, while there is an involvement of functional synaptic proteins including synaptotagmins and complexin. Recently, presynaptic deficits have been proposed to contribute to a number of pathological conditions including cognitive and mental disorders. In this review, we evaluate recent advances in understanding the regulatory mechanisms of synaptic vesicle dynamics and in understanding how different molecular substrates maintain selective modes of neurotransmission. We also highlight the implications of these studies in understanding pathological conditions.  相似文献   

13.
Ca2+ dysregulation is a hallmark of excitotoxicity, a process that underlies multiple neurodegenerative disorders. The plasma membrane Ca2+ ATPase (PMCA) plays a major role in clearing Ca2+ from the neuronal cytoplasm. Here, we show that the rate of PMCA-mediated Ca2+ efflux from rat hippocampal neurons decreased following treatment with an excitotoxic concentration of glutamate. PMCA-mediated Ca2+ extrusion following a brief train of action potentials exhibited an exponential decay with a mean time constant (tau) of 8.8 +/- 0.2 s. Four hours following the start of a 30 min treatment with 200 microm glutamate, a second population of cells emerged with slowed recovery kinetics (tau = 16.5 +/- 0.3 s). Confocal imaging of cells expressing an enhanced green fluorescent protein (EGFP)-PMCA4b fusion protein revealed that glutamate treatment internalized EGFP and that cells with reduced plasma membrane fluorescence had impaired Ca2+ clearance. Treatment with inhibitors of the Ca2+-activated protease calpain protected PMCA function and prevented EGFP-PMCA internalization. PMCA internalization was triggered by activation of NMDA receptors and was less pronounced for a non-toxic concentration of glutamate relative to one that produces excitotoxicity. PMCA isoform 2 also internalized following exposure to glutamate, although the Na+/K+ ATPase did not. These data suggest that glutamate exposure initiated protease-mediated internalization of PMCAs with a corresponding loss of function that may contribute to the Ca2+ dysregulation that accompanies excitotoxicity.  相似文献   

14.

Aims

Alcohol withdrawal syndrome (AWS) is characterized by a set of physiological modifications triggered by abrupt withdrawal and/or decreasing consumption of ethanol (EtOH), which may manifest 16–48 h after ceasing consumption. The relationship between the effects of AWS and central and peripheral sympathetic neurotransmission is unknown. This study investigates the possible mechanisms on the sympathetic system during periods of AWS.

Main methods

Male Wistar rats were treated with EtOH (6–10 g/kg/day/v.o. 5 days). Subsequently, 1 h, 24 h, 48 h and 120 h after administration of the last dose of EtOH, the animals were sacrificed, and their vas deferens (VD) were removed to perform the following evaluations: (a) concentration–effect curves of sympathetic agonist; (b) activity of α2-adrenoreceptor; (c) function of voltage-dependent calcium channels (Cav); and (d) release of endogenous catecholamines measured in real time coupled to HPLC.

Key findings

The results showed that the maximum effects of contraction were increased by agonists tested in at 24 h and 48 h EtOH withdrawal. The inhibitory affinity (pIC50) of guanfacine was decreased 24 h EtOH withdrawal. The function of Cav was also decreased as pIC50 values dropped 24 h and 48 h EtOH withdrawal. The release of catecholamines increased 48 h after EtOH withdrawal. It is suggested that AWS triggers hyperactivity in peripheral sympathetic neurotransmission.

Significance

The mechanisms underlying hyperactivity are possibly explained by a failure of autoregulation from catecholamines released by α2-adrenoreceptors and/or an increase of Cav function, which may be potential targets to attenuate the symptoms of AWS at the peripheral level.  相似文献   

15.
In this study, we attempted to determine the role of GABA neurotransmission in augmentation of hypoxic respiration by antecedent hyperoxic breathing. The experiments were performed in anesthetized, paralyzed and vagotomized cats divided into control and bicuculline (a GABAA receptor blocker)-injected groups. The experimental protocol consisted of exposing the animals to successive hypoxic-hyperoxic-hypoxic conditions. Respiration was assessed using phrenic electroneurograms, from which the peak phrenic height, a surrogate of the tidal volume component, and respiratory rate were obtained, and their product, the respiratory minute output, was calculated. We found that prior hyperoxic ventilation increased the subsequent respiratory response to hypoxia by an average of 23.5%, compared with the preoxygen response. This increase was driven by volume respiration. The biphasic character of the hypoxic respiratory response, consisting of stimulatory and depressant phases, was sustained. Bicuculline abolished the augmentative effect on hypoxic respiration of prior hyperoxia, which suggests that oxygenation induces GABAA-mediated hyperexcitability of respiratory neurons, possibly by the liberation of reactive oxygen species. We concluded that GABA neurotransmission is pertinent to the effect of hyperoxia on hypoxic respiratory reactivity.  相似文献   

16.
目的和方法 :采用大鼠海马脑片盲法膜片钳全细胞记录技术研究CA1区锥体神经元电压门控性Ca2 通道的动力学特征。结果 :大鼠海马脑片CA1区锥体神经元电压门控性Ca2 通道电流具有如下特点 :①激活的阈电位偏低 ,为 (- 4 9.3± 8.6 )mV ,范围为 - 6 5~ - 30mV(n =2 3)。②衰减时间常数τ值较大 ,且变化范围大 (10 0~ 70 0ms) (n =12 ) ,并且衰减具有Ca2 电流幅值的依赖性 ,③稳态失活呈现电压依赖性 ,半失活电压为 (- 5 5 .4± 9.7)mV ,斜率因子为 (5 .3± 0 .9)mV(n =10 )。④当细胞外Ca2 浓度为 2 .5mmol/L时 ,Ca2 通道的反转电位为 (5 5±13)mV(n =10 )。⑤尾电流成分较为单一 ,不表现电压依赖性。另外 ,Ca2 电流对戊脉胺及双氢吡啶类化合物硝苯地平均不敏感。结论 :根据上述Ca2 电流特征 ,海马脑片CA1区锥体神经元上的Ca2 通道主要以N型为主  相似文献   

17.
Cultures of rat hippocampal pyramidal neurons were used to examine the roles of excitatory synaptic transmission, NMDA receptors, and elevated [Ca2+]i in the production of excitotoxicity. In integral of 70% of the cells observed, perfusion with Mg2(+)-free, glycine-supplemented medium induced large spontaneous fluctuations or maintained plateaus of [Ca2+]i. [Ca2+]i fluctuations could be blocked by tetrodotoxin, NMDA receptor antagonists, dihydropyridines, or compounds that inhibit synaptic transmission in the hippocampus, but not by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. When cells were treated with Mg2(+)-free, glycine-supplemented medium and examined 24 hr later, integral of 30% of the neurons were found to have died. Cell death could be inhibited by the same agents that reduced [Ca2+]i fluctuations. These results support a role for direct excitatory synaptic transmission, as opposed to the general release of glutamate, in excitotoxicity. A major role for synaptically activated NMDA receptors, rather than kainate/quisqualate receptors, is also indicated. Neuronal death may be produced by abnormal changes in neuronal [Ca2+]i.  相似文献   

18.
Alzheimer′s disease (AD) is the most common form of dementia in the elderly. Memory loss in AD is increasingly attributed to soluble oligomers of the amyloid‐β peptide (AβOs), toxins that accumulate in AD brains and target particular synapses. Glutamate receptors appear to be centrally involved in synaptic targeting by AβOs. Once bound to neurons, AβOs dysregulate the activity and reduce the surface expression of both N‐methyl‐d ‐aspartate (NMDA) and 2‐amino‐3‐(3‐hydroxy‐5‐methyl‐isoxazol‐4‐yl)propanoic acid (AMPA) types of glutamate receptors, impairing signaling pathways involved in synaptic plasticity. In the extracellular milieu, AβOs promote accumulation of the excitatory amino acids, glutamate and d ‐serine. This leads to overactivation of glutamate receptors, triggering abnormal calcium signals with noxious impacts on neurons. Here, we review key findings linking AβOs to deregulated glutamate neurotransmission and implicating this as a primary mechanism of synapse failure in AD. We also discuss strategies to counteract the impact of AβOs on excitatory neurotransmission. In particular, we review evidence showing that inducing neuronal hyperpolarization via activation of inhibitory GABAA receptors prevents AβO‐induced excitotoxicity, suggesting that this could comprise a possible therapeutic approach in AD.  相似文献   

19.
Cell death was reduced in cultured rat hippocampal cells treated with aluminum chloride by dantrolene and dimethylsulfoxide, indicating aluminum toxicity may be mediated through release of calcium from intracellular stores and oxidative stress. Cell death was reduced to a lesser degree by cycloheximide and actinomycin D, indicating some evidence for apoptosis, however apoptosis did not appear to be a major cause of cell death from aluminum toxicity.  相似文献   

20.
This study investigated the response of hippocampal RSA, recorded from electrodes in CA1 and the contralateral dentate gyrus of urethane-anaesthetized rats, to atropine sulphate administered at 15 min intervals in a cumulative dose-response schedule (1, 3, 10, 50 and 50 mg x kg(-1) i.p.). The power of CA1 and dentate gyrus RSA in the 3-7 Hz band was increased after administering the first 3 doses of atropine (1, 3 and 10 mg x kg(-1) cumulatively) in rats held in the stereotaxic frame or removed from the frame and given electrical sensory stimulation to the base of the tail. This increase in RSA was dependent on sensory input, since it was not seen in animals outside the frame unless sensory stimulation was given, and it was abolished by increasing the dose of atropine (an additional 50 and 50 mg x kg(-1) cumulatively). Methylatropine (6 mg x kg(-1) i.p.) did not increase RSA power. The biphasic effect of atropine on sensory-evoked hippocampal RSA activity may be explained by differential effects at pre- and post-synaptic sites e.g. in the septo-hippocampal system or on pathways processing sensory information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号