首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The UV-spectral and chromatographic analyses of the derivatives of the two synthetic standards 7-ethylguanosine and 1,7-diethylguanosine are here reported. The derivatives obtained from the dialkyl compound exhibit a striking similarity to those found in the "pyrimidine-nucleotide-like" fraction of rat liver tRNA ethylated in vivo by ethionine. The finding of imidazole-ring-opened products in tRNA ethylation by ethionine could be significant from the point of view of chemical carcinogenesis: in fact, imidazole-ring-opening of 1,7-dialkylguanosines directly at level of RNA with consequent formation of substituted pyrimidines is a transversion, i.e. a mutagenic event which would cause a change in the expression of genetic information since a purine has been transformed into a pyrimidine.  相似文献   

2.
The mechanism of biological action of the powerful carcinogen ethionine is still unknown at the present. Here the "in vivo" tRNA ethylation after administration of radioactive ethionine to rats has been reinvestigated. In particular, the radioactive "pyrimidine nucleotides" fraction was examined: chromatographic and ultraviolet-spectral analyses indicated the presence of imidazole-ring-opened derivatives of guanosine in this fraction, the identification of which is reported in the accompanying paper. These data appear particularly interesting especially when considering the recently advanced hypothesis (6,7) of a transversion purine----pyrimidine as the initial precancerous biochemical lesion in chemical carcinogenesis.  相似文献   

3.
The alkyl products of neutral in vitro ethylation of TMV-RNA by [14C]diethyl sulfate, [14C]ethyl methanesulfonate, and [14C]ethylnitrosourea have been determined and found to differ significantly depending on the ethylating agent. Diethyl sulfate and ethyl methanesulfonate ethylate the bases of TMV-RNA in the following order: 7-ethylguanine greater than 1-ethyladenine, 3-ethylcytidine greater than 7-ethyladenine, 3-ethyladenine, O6-ethylguanosine, 3-ethylguanine. Ethyl methanesulfonate was more specific for the 7 position of guanine, and other derivatives were found in lesser amounts than with diethyl sulfate. Neither reagent caused the formation of detectable amounts (smaller than 0.26 percent) of 1-ethylguanine, 1,7-diethylguanine, N2-ethylguanine, N6-ethyladenine, N4-ethylcytidine, or 3-ethyluridine. Identified ethyl bases account for over 85% of the total radioactivity of [14C]ethyl methanesulfonate and [14C]diethyl sulfate treated TMV-RNA. Phosphate alkylation accounts for about 13 and 1%, respectively, In contrast, [14C]ethylnitrosourea-treated TMV-RNA, while reacting to a similar extent (15-70 ethyl groups/6400 nucleotides), is found to cause considerably more phosphate alkylation. Upon either U4A RNase or acid hydrolysis up to 60% of the radioactivity is found as volatile ethyl groupw in the form of [14C]ethanol, and a further 15% appears to be primarily ethyl phosphate and nucleosides with ethylated phosphate. Of the remaining radioactivity, half is found as O6-ethylguanosine, the major identified ethyl nucleoside. Other ethyl bases found in ethylnitrosourea-treated TMV-RNA are 7-ethylguanine greater than 1-ethyladenine, 3-ethyladenine, 7-ethyladenine, 3-ethylcytidine, and 3-ethylguanine. It appears that ethylnitrosourea preferentially alkylates oxygens, and that formation of phosphotriesters is by far the predominant chemical event. Since the number of ethyl groups introduced into TMV-RNA by ethylnitrosourea is similar to the number of lethal events, one may conclude that phosphate alkylation leads to loss of infectivity. None of the three ethylating agents studied are strongly mutagenic on TMV-RNA or TMV. The role of phosphate alkylation in regard to in vivo mutagenesis and oncogenesis remains to be established. At present it appears possible that the extent of this reaction may correlate better with the oncogenic effectiveness of different ethylating agents, than the extent of any base reaction. Unfractionated HeLa cell RNA is ethylated primarily in acid labile manner even by diethyl sulfate and ethyl methanesulfonate, a fact that is attributed to its high content of low molecular weight trna rich in terminal phosphates which alkylate readily.  相似文献   

4.
1. [26-(14)C]- and [4-(14)C]-Cholesterol were incubated with liver mitochondria from normal and thyroxine-treated rats, and the radioactivity was measured in the carbon dioxide evolved during the incubation, in a butanol extract of the incubation mixture and in a volatile fraction containing substances of low molecular weight derived from the side chain of cholesterol. The butanol extract was separated by paper chromatography into three radioactive fractions, one of which contained the steroids more polar than cholesterol. 2. The butanol extract from incubations with [4-(14)C]cholesterol contained a radioactive substance moving with the same R(F) as cholic acid on thin-layer chromatography. 3. After incubation with [26-(14)C]-cholesterol, 60-80% of the radioactivity extracted by steam-distillation of the incubation mixture at acid pH was recovered as [(14)C]propionic acid. 4. In the presence of [26-(14)C]cholesterol, mitochondria from thyroxine-treated rats produced more radioactivity in carbon dioxide and in the volatile fraction, and less radioactivity in the fraction containing the polar steroids, than did mitochondria from normal rats. In the presence of [4-(14)C]cholesterol, mitochondria from thyroxine-treated rats produced the same amount of radioactivity in the polar steroids as did normal mitochondria. 5. Thyroxine treatment had no effect on the capacity of the mitochondria to oxidize propionate to carbon dioxide. 6. These results are best explained by supposing that thyroxine stimulates a rate-limiting reaction leading to the cleavage of the side chain of cholesterol, but has little or no influence on the hydroxylations of the ring system or on the oxidation of the C(3) fragment removed from the side chain.  相似文献   

5.
The number, size, solubility in chloroform/methanol and some aspects of the formation of the components labeled by radioactive amino acids in isolated mitochondria of rat liver and Zajdela hepatoma were studied. Isolated mitochondria were labeled with radioactive amino acids under various conditions, and the distribution of radioactivity in sodium dodecylsulfate-polyacrylamide gels after electrophoresis of mitochondrial membrane fraction was analysed. 1. Isolated mitochondria of rat liver and Zajdela hepatoma incroporated radioactive amino acids almost exclusively into the membrane fraction. Electrophoretic analysis of this fraction revealed the presence of 15 distinct peaks of radioactivity with corresponding apparent molecular weights of 10 000 to 58 000. The electrophoretic mobility of the labeled components was identical and the general pattern of the radioactivity distribution in the gel for the rat liver and the tumour mitochondria was very similar. 2. Components of the membrane fraction of rat liver mitochondria labeled in vitro displayed an unequal solubility in acidic (2 mM HC1) chloroform/methanol (2/1) mixture; as detected by sodium dodecylsulfate-polyacrylamide gel electrophoresis a single labeled component with apparent molecular weight of 10 000 was soluble in neutral chloroform/methanol. 3. Inverse relation was observed between amino acid incorporation activity of isolated mitochondria and the portion of the label incorporated into the component with apparent molecular weight 10 000. The identity of this component with that soluble in neutral chloroform/methanol mixture has been indicated. 4. The rate of incorporation of [3H]leucine by isolated Zajdela hepatoma mitochondria into the components with lower (10 000-25 000) apparent molecular weights decreased with time, whereas that into components with higher (above 25 000) apparent molecular weight remained approximately constant within the time interval tested (30 min). 5. From the total radioactivity incorporated into the membrane fraction during 5-min pulse labeling of isolated Zajdela hepatoma mitochondria by [3H]leucine up to 25% was recovered in the region of the gel corresponding to a component with apparent molecular weight 10 000. After 25 min chase the radioactivity in this region decreased about 3.5 times while the specific radioactivity of the total membrane fraction did not change significantly. The pattern of radioactivity distribution observed after the pulse was preserved by chloramphenicol. 6. Unlabeled sonicated mitochondria or postribosomal supernatant from rat liver regenerating in the presence of chloramphenicol were incubated with neutral chloroform/methanol extract of in vitro with [14C]leucine labeled rat liver mitochondria. After this incubation several labeled components with apparent molecular weights above 10 000 were recovered in the electrophoreograms of the originally unlabeled fractions.  相似文献   

6.
1. A method was developed whereby [1-14C]glucosamine was used in a perfused rat liver system to prepare over 2 mg of alpha 1-acid glycoprotein with highly radioactive sialic acid and glucosamine residues. 2. The liver secreted radioactive alpha 1-acid glycoprotein over a 4-6 h period, and this glycoprotein was purified from the perfusate by chromatography on DEAE-cellulose at pH 3.6. 3. The sialic acid on the isolated glycoprotein had a specific radioactivity of 3.1 Ci/mol, whereas the glucosamine-specific radioactivity was 4.3 Ci/mole. The latter amino-sugar residues on the isolated protein were only 13-fold less radioactive than the initially added [1-14C]glucosamine. Orosomucoid with a specific radioactivity of 31.3 microCi/mg of protein was obtainable by using [6-3H]glucosamine. 4. The amino acid composition of the purified orosomucoid was comparable with that found by others for the same glycoprotein isolated from rat serum. A partial characterization of the carbohydrate structure was done by sequential digestion with neuraminidase, beta-D-galactosidase and beta-D-hexosaminidase. 5. Many other radioactive glycoproteins were found to be secreted into the perfusate by the liver. Thus this experimental system should prove useful for obtaining other serum glycoprotein with highly radioactive sugar moieties.  相似文献   

7.
1. A simple technique has been developed to obtain subcellular fractions of chick bone. The method yielded 60-70% of total DNA in the nuclear debris fraction and 80-90% of total (14)C recovered in bone after a dose of radioactive vitamin D. 2. After a dose of [4-(14)C,1,2-(3)H(2)]cholecalciferol (0.5mug) was given to vitamin D-deficient chicks, the time-course of total (14)C radioactivity in the epiphysis, metaphysis and diaphysis of proximal tibiae was measured. The maximum concentrations were reached at 6h, corresponding to a similar peak of radioactivity in blood, decreasing until 24h and indicating the dependence on the circulating (14)C and on the blood supply of the three bone components. 3. The (14)C radioactivity of cholecalciferol and 25-hydroxycholecalciferol (expressed per mg of DNA) followed the pattern of incorporation of total (14)C radioactivity in all three bone components. The more polar metabolite fraction reached a peak of radioactivity at 6-9h and maintained its concentration over the 24h period studied in all anatomical bone components. 4. After a dose of [4-(14)C,1-(3)H]cholecalciferol (0.5mug) was given to vitamin D-deficient chicks, the subcellular distribution was studied. At 24h after dosing, the nuclear fraction contained 27% and the supernatant fraction had 67% of total (14)C recovered in the bone filtrate. When the (14)C in the residual bone fragments was included, the nuclear fraction contained up to 35% of the total radioactivity in the bone. 5. The subcellular distribution pattern of individual vitamin D metabolites indicated that the purified nuclear fraction concentrated the polar metabolite, which lost (3)H at C-1, so that 77% of the radioactivity could be accounted for by 1,25-dihydroxycholecalciferol. The supernatant fraction contained smaller amounts of 1,25-dihydroxycholecalciferol (9%), with 66% of 25-hydroxycholecalciferol forming the major metabolite, corresponding to its concentration found in blood at 24h. 6. The preferential accumulation of 1,25-dihydroxycholecalciferol in the nuclear fraction and the overall pattern of other metabolites, found previously in intestinal tissue, suggests a similar mechanism of action in bone to that postulated for the intestinal cell in calcium translocation.  相似文献   

8.
1. The ethylated nucleosides present in tRNA isolated from the livers of rats treated with 0.5g of l-ethionine/kg body wt. were investigated. Evidence that this tRNA contained N(2)-ethylguanine, N(2)N(2)-diethylguanine, N(2)-ethyl-N(2)-methylguanine, 7-ethylguanine, two ethylated pyrimidines and ethylated ribose groups was obtained. 2. Ethylation of bacterial tRNA was catalysed by extracts containing tRNA methylases prepared from rat liver by using S-adenosyl-l-ethionine as an ethyl donor, but the rate of ethylation was 20 times less than the rate of methylation with S-adenosyl-l-methionine as a methyl donor. 3. The principal product of such ethylation in vitro was N(2)-ethylguanine and traces of the other ethylated guanines and pyrimidines found in tRNA isolated from rats treated with ethionine in vivo were also found. 1-Ethyladenine was not formed, although 1-methyl-adenine is a major product of methylation of bacterial tRNA by these extracts, and 1-ethyladenine was not present in the rat liver tRNA isolated from ethionine-treated animals. 4. After injection of actinomycin D (15mg/kg body wt.) or l-methionine (1.0g/kg body wt.) before the ethionine, ethylation of tRNA was diminished by about 80% but not completely abolished. Administration of 1-aminocyclopentanecarboxylic acid (2.5g/kg body wt.) to inhibit the formation of S-adenosyl-l-ethionine inhibited ethylation of tRNA by 44%. 5. These results suggest that not all of the ethylation of tRNA that occurs in the livers of rats treated with ethionine is mediated by the action of tRNA methylases acting with S-adenosyl-l-ethionine as a substrate, but that this pathway does occur and accounts for a major part of the observed ethylation. 6. The results are discussed with reference to ethionine-induced hepatocarcinogenesis.  相似文献   

9.
Female rats were injected i.v. with comparable trace amounts of [U-14C] glycerol, [2-3H] glycerol, [U-14C] glucose, or [1-14C] palmitate, and killed 30 min afterwards. The radioactivity remaining in plasma at that time was maximal in animals receiving [U-14C] glucose while the appearance of radioactive lipids was higher in the [U-14C] glycerol animals than in other groups receiving hydrosoluble substrates. The carcass, more than the liver, was the tissue where the greatest proportion of radioactivity was recovered, while the greatest percentage of radioactivity appeared in the liver in the form of lipids. The values of total radioactivity found in different tissues were very similar when using either labelled glucose or glycerol but the amount recovered as lipids was much greater in the latter. The maximal proportion of radioactive lipids appeared in the fatty-acid form in the liver, carcass, and lumbar fat pads when using [U-14C] glycerol as a hydrosoluble substrate, and the highest lipidic fraction appeared in adipose tissue as labelled, esterified fatty acids. In the spleen, heart, and kidney, most of the lipidic radioactivity from any of the hydrosoluble substrates appeared as glyceride glycerol. The highest proportion of radioactivity from [1-14C] palmitate appeared in the esterified fatty acid in adipose tissue, being followed in decreasing proportion by the heart, carcass, liver, kidney, and spleen. Thus at least in part, both labelled glucose and glycerol are used throughout different routes for their conversion in vivo to lipids. A certain proportion of glycerol is directly utilized by adipose tissue. The fatty acids esterification ability differs among the tissues and does not correspond directly with the reported activities of glycerokinase, suggesting that the alpha-glycerophosphate for esterification comes mainly from glucose and not from glycerol.  相似文献   

10.
Use was made of the asialoglycoprotein receptor system in a perfused rat liver in order to study lysosomal degradation and subsequent metabolism of radioactive derivatives of asialo-ovine submaxillary mucin and asialo-alpha 1-acid glycoprotein. A trace of N-acetyl-D-[6-3H]galactosamine-labeled asialo-ovine submaxillary (4 micrograms) was completely taken up by the tissue in less than 20 min. After 3 h 24% of the radioactivity from the mucin reappeared on newly synthesized serum glycoproteins that were secreted into the perfusate. [6-3H] Galactose asialo-alpha 1-acid glycoprotein was also rapidly cleared by the liver; however, after 3 h greater than 60% of the radioactivity derived from this sugar labeled glycoprotein was secreted back into the perfusate as [3H]glucose. Rat livers perfused with 0.15 mM beta-D-galactopyranosylmethyl-p-nitrophenyltriazene lost 90% of their beta-D-galactosidase activity within 1 h while other representative glycosidases showed no change as followed by hydrolysis of p-nitrophenylglycosides. Livers pretreated with this triazene compound metabolized [3H]GalNAc asialo-ovine submaxillary mucin normally but were unable to process [3H]Gal asialo-alpha 1-acid glycoprotein as evidenced by a complete inhibition of [3H]glucose release following addition of the latter substrate. Metabolism of N-acetyl[14C]glucosamine asialo-alpha 1-acid glycoprotein was similarly inhibited by 70%. 125I-labeled asialo-alpha 1-acid glycoprotein catabolism was not affected by the chemically induced beta-D-galactosidase deficiency. Subcellular fractionation of inhibitor-treated livers accumulating radioactive carbohydrate showed the majority of the label was associated with a fraction enriched in lysosomes. Analysis of the trapped radioactivity by high resolution Bio-Gel P-4 chromatography revealed nearly intact oligosaccharides minus only the reducing N-acetylglucosamine of the chitobiose core. Direct comparison of these sugar chains with those isolated from human and canine GM1 gangliosidosis liver by silicic acid thin layer chromatography showed those isolated from rat liver to be identical to the major subset of oligosaccharides found in the human disease. In similar experiments in which the galactosyl triazene was replaced by swainsonine, an alpha-D-mannosidase inhibitor, catabolism of [14C]GlcNAc asialo-alpha 1-acid glycoprotein resulted in the accumulation of a single oligosaccharide of the structure. Man3[14C]GlcNAc1. These results demonstrate an endo-N-acetyl-beta-D-glucosaminidase is active in rat liver lysosomes.  相似文献   

11.
The metabolism of [14C]pyruvate, [14C]glucose, [14C]glutamine and [14C]alanine was compared between normal rat tracheal epithelial cells and carcinogen-altered cells derived from dimethylbenz(a)anthracene-exposed tracheal implants. Normal primary cultures (NPC) of tracheal cells are distinguished by their need for pyruvate-supplemented medium for growth and survival. The altered cells were selected out by their survival in the unsupplemented medium. Compared to the selected primary cultures (SPC), the NPC showed a three- to four-fold higher incorporation of radioactivity from [2-14C]pyruvate in all the macromolecular fractions, as well as in all the metabolites isolated from the acid soluble fraction and from lactic acid isolated from the medium. [U-14C]glucose was also incorporated at higher levels into lactic acid isolated from the acid soluble fraction and the medium of NPC. These data indicate a higher rate of glycolysis in the normal tracheal cells. This was supported by the findings of a two-fold greater glucose consumption and two-fold higher production of lactic acid isolated from the NPC medium. Lactate dehydrogenase activity was also two-fold higher in NPC. Thus, despite the apparently higher level of pyruvate production in the NPC, exogenous pyruvate is necessary to satisfy the metabolic needs of NPC. The utilization of [U-14C]glutamine or [U-14C]alanine was not markedly different between NPC and SPC. Furthermore, radioactivity from both of the amino acids was recovered in lactic acid in the medium, indicating that both cell types can derive pyruvic acid from either glutamine or alanine. SPC apparently do not use these routes to supply higher levels of pyruvic acid for survival in culture. The oxidation of none of the radioactive metabolites into CO2 was distinctly different between NPC and SPC except for the 1.7-fold higher utilization of [1-14C]glucose along the oxidative arm of the pentose cycle in the normal cells.  相似文献   

12.
Incubation of Saccharomyces cerevisiae S288C with 4-deoxy-4-fluoro-D-[1-14C]-mannose resulted in the formation of three metabolites that were characterized as 4-deoxy-4-fluoro-D-[1-14C]mannose 1,6-bisphosphate, 4-deoxy-4-fluoro-D-[1-14C]-mannose 6-phosphate and GDP-4-deoxy-4-fluoro-D-[1-14C]mannose. In addition, radioactive material was incorporated into a particulate fraction composed primarily of cell-wall polysaccharides. Compared with the 4-fluoro sugar, 3-deoxy-3-fluoro-D-[1-14C]mannose was not transported into yeast cells as well, and its conversion into sugar nucleotide was much less efficient. Metabolites that were isolated after incubation with the 3-fluoro analogue were identified as 3-deoxy-3-fluoro-D-[1-14C]mannose 1,6-bisphosphate, 3-deoxy-3-fluoro-D-[1-14C]mannose 6-phosphate and GDP-3-deoxy-3-fluoro-D-[1-14C]mannose. Little radioactivity was transferred into the cell-wall fraction.  相似文献   

13.
[1-14C]Dolichol mixed in vitro with rat serum and injected intravenously into rats was rapidly cleared from the circulation in a manner consistent with a two-compartment model. About 80% of the radioactivity recovered from animals killed after 1 day was in the liver, with smaller amounts being found in lung, carcass (internal organs removed), gastrointestinal tract and contents, and spleen. The kidneys, testes and heart contained little radioactivity, and the brain did not appear to take up any [1-14C]dolichol. The half-life for the turnover of radioactivity from [1-14C]dolichol in tissues varied considerably, being 2 days for the lung, 17 for liver and about 50 days for the carcass. After 1 day, and also after 4 and 21 days, most of the radioactivity in all tissues was as [1-14C]dolichol and as [1-14C]dolichyl fatty acyl ester, although a small amount of incorporation of [1-14C]dolichol radioactivity into phospholipids was also observed. Faeces collected over the first 4 days after injection contained 13% of the [1-14C]dolichol dose, but urine and expired air contained only small amounts of radioactivity. Radioactivity in faeces was nearly all as unchanged [1-14C]dolichol and as [1-14C]dolichyl fatty acyl ester. The [1-14C]dolichol remaining in liver after 21 days appeared to be in a pool (possibly lysosomes) where most of it was not subject to excretion.  相似文献   

14.
Lysine transfer RNA2 is the major target for L-ethionine in the rat   总被引:1,自引:0,他引:1  
Ethionine, a hepatocarcinogen, ethylates macromolecules in vivo especially tRNA of rat liver. When rats were injected with L-[ethyl-3H]ethionine, the tRNA fraction of the liver was found to be labeled. One tRNA with the highest specific activity was purified and identified as lysine-tRNA2.  相似文献   

15.
Isolated hepatocytes were incubated in the presence of [14C]palmitic, [14C]linoleic or [14C]linolenic acid and the time-courses of incorporation of radioactivity into phosphatidylcholine and phosphatidylethanolamine of microsomes and mitochondria were followed. For this purpose a procedure was developed for HPLC separation of 9-diazomethylanthracene (ADAM) derivatives of fatty acids. When [14C]palmitic acid was used, the major product of elongation and desaturation was octadecadienoic acid, which accounted for 35-65% of the total radioactivity. Labeled palmitoleic, stearic and oleic acids could also be isolated. In fatty acids which do not participate to any large extent in deacylation-reacylation reactions, the pattern of incorporation was characteristic: a high rate of incorporation into microsomal and a low rate of incorporation into mitochondrial phospholipids during the first 40 min, followed by a decrease in the former and an increase in mitochondrial labeling. This pattern is consistent with the fact that de novo synthesis of these two phospholipids occurs in the endoplasmic reticulum in vivo. When cells were incubated in the presence of [14C]linoleic acid, 70-90% of the radioactivity recovered in phospholipids was in this same form, whereas the remaining label was mainly in arachidonic acid and, to some extent, in eicosatrienoic acid. When hepatocytes were incubated in the presence of [14C]linolenic acid, 70-85% of the radioactivity in isolated phospholipids was associated with linolenic acid. As much as 20% of the label was recovered in docosahexanoic acid and 5-10% in arachidonic acid. In the case of the two latter labeled substrates the exchange reactions seem to dominate over de novo synthesis. For phospholipids synthesized de novo the transfer from the endoplasmic reticulum to mitochondria requires about 3 h.  相似文献   

16.
The inhibitory effects of ethionine treatment of female rats for 4 h on the protein-synthesizing machineries of 80 S ribosomes and 40 S ribosomal subunits of the liver were investigated. The following results were obtained. (1) The translation of globin mRNA by 80 S ribosomes or 40 S ribosomal subunits, in combination with mouse 60 S subunits, was markedly inhibited by ethionine treatment in a complete cell-free system containing partially purified initiation factors of rabbit reticulocytes and the rat liver pH 5 fraction. (2) The polysome formation of 80 S ribosomes in the complete system described above was inhibited by ethionine treatment. Similar inhibitions by ethionine treatment were observed in the case of incubation of 40 S subunits with reticulocyte lysate, although the polysome formation was rather low even in the case of control 40 S subunits. (3) The pattern of CsCl isopycnic centrifugation of rat liver native 40 S subunits uniformly labeled with [14C]- or [3H]orotic acid showed that the content of non-ribosomal proteins of native 40 S subunits was decreased by ethionine treatment. The analysis of proteins of native 40 S subunits by SDS-polyacrylamide slab gel electrophoresis revealed that eIF-3 subunits and two unidentified protein fractions of molecular weight of 2.3·104 and 2.1·104 were decreased in ethionine-treated rat liver. (4) 40 S subunits from ethionine-treated or control rat livers were labeled with N-[3H]ethylmaleimide or N-[14C]ethylmaleimide, and the 3H to 14C ratios of individual 40 S proteins on two-dimensional polyacrylamide gel electrophoresis were measured. The results suggested that the conformation of rat liver 40 S subunits was changed by ethionine treatment. (5) These results may indicate that ethionine treatment decreases the activity of rat liver 40 S subunits for the interaction with initiation factors, especially eIF-3, as the results of conformational changes of 40 S subunits.  相似文献   

17.
We have previously shown that [1-14C]dolichol mixed in vitro with rat serum and injected intravenously is rapidly cleared from the circulation and appears primarily in the liver. One day after injection the liver accounted for 80% of the isotope in whole animals, whereas after 130 days it represented only 50%. During the 130 days the specific radioactivity (dpm/g liver) decreased by more than 20-fold. In contrast, the spleen retained at 130 days 85% of the radioactivity initially present and its specific radioactivity decreased by only a factor of two. At this time small amounts of isotope were also found in carcass (internal organs removed), gastrointestinal tract and contents, and lungs. Trace amounts of radioactivity were extractable from testes and kidneys, while the heart and brain were essentially free of radioactivity. At all times after injection nearly all the radioactivity present in all tissues was still associated with dolichol. Only trace amounts of [1-14C]dolichyl fatty acyl ester and no [1-14C]phosphorylated derivatives of dolichol were present in the liver and spleen removed 156 days postinjection. Fractionation of liver between 1h and 93 days after injection suggested that [1-14C]dolichol becomes associated primarily with a lysosome-enriched fraction. The accumulation of [1-14C]dolichol in this and other subcellular compartments involved both an inward and outward flow of radioactivity, suggesting that deposition of dolichol in lysosomes is not a one-way terminal process.  相似文献   

18.
1. Suspensions of isolated rat liver parenchymal cells incorporate [(14)C]palmitic acid into glycerides at about 40% of the rate obtained with liver slices. 2. At short time-intervals most of the incorporation is into phosphatidylcholine and this is recovered mainly in the plasma-membrane fraction. 3. At later times (5min to 2h) the [(14)C]palmitic acid is mainly found in triglyceride, but this is not recovered in the plasma-membrane fraction. 4. Addition of lysophosphatidylcholine increases incorporation of palmitic acid into both phosphatidylcholine and triglyceride, with maximum effect at about 0.1mm. 5. In vivo, 1min after injection of [(14)C]palmitic acid, radioactive phosphatidylcholine is concentrated in the plasma-membrane fraction, but the proportion present in this fraction declines rapidly. 6. The phosphatidylcholine of the plasma-membrane fraction has, at 1min after injection, a specific radioactivity 30-fold greater than that of the whole tissue. 7. This phosphatidylcholine reaches its maximum specific radioactivity before the tissue phosphatidic acid or diglyceride. 8. The phosphatidylcholine of the plasma-membrane fraction has a very rapid turnover. 9. It is proposed that the rapid formation of phospholipids in the plasma membrane is by acylation of their lyso-derivatives and the role of this process in fatty acid uptake is discussed.  相似文献   

19.
32P-Labeled tRNAAsn was isolated from methyl-deficient E. coli tRNA. Nucleotide sequence analysis showed that tRNAAsn contains three derivatives of the Q nucleoside, possibly Q precursors, in addition to guanosine in the first position of the anticodon. One of the Q precursors was isolated on a large scale. Its UV spectra were identical with those of normal Q, indicating that 7-deazaguanosine structure having a side chain at position C-7 is complete in the Q precursor. No radioactivity was incorporated into Q or Q precursors from either [methyl-14C]methionine, [1-14C]methionine or [U-14C]methionine, showing that methionine was not directly involved in the formation of Q.  相似文献   

20.
1. Prompted by the finding of markedly differing specific radioactivities of tissue alanine and lactate in isolated rat hearts perfused with [1-14C]pyruvate, a more detailed study on the cytosolic subcompartmentalization of pyruvate was undertaken. Isolated rat hearts were perfused by the once-through Langendorff technique under metabolic and isotopic steady-state conditions but with various routes of radioactive label influx, and the specific radioactivities of pyruvate, lactate and alanine were determined. An enzymic method was devised to determine the specific radioactivity of C-1 of pyruvate. 2. Label introduction as [1-14C]pyruvate resulted in a higher specific radioactivity of tissue alanine and mitochondrial pyruvate than of lactate, and a higher specific radioactivity of perfusate lactate than of tissue lactate. Label introduction as [1-14C]lactate resulted in a roughly similar isotope dilution into the tissue and perfusate pyruvate and the tissue alanine. Label introduction as [3,4-14C]glucose resulted in the same specific radioactivity of tissue lactate and alanine and a roughly similar specific radioactivity of mitochondrial pyruvate. 3. The results can be reconciled with a metabolic model containing two cytosolic functional pyruvate pools. One pool (I) communicates more closely with the glycolytic system, whereas the other (II) communicates with extracellular pyruvate and intracellular alanine. Pool II is in close connection with intramitochondrial pyruvate. The physical identity of the cytosolic subcompartments of pyruvate is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号