首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examined the ability of LPS and several cytokines (TNF-alpha, IL-1-beta, IFN-gamma, IL-4) to modulate IL-6 production by cultured human thymic epithelial cells (TEC). IL-6 activity was measured by the hybridoma growth factor biological activity. Moderate but detectable IL-6 activity was spontaneously produced in the presence of serum proteins. LPS as well as the cytokines TNF-alpha and IL-1-beta was a potent inducer of IL-6, increasing, respectively, IL-6 levels by 9-, 28-, and 75-fold (mean values) while IL-4 and IFN-gamma provoked no significant effect. Interestingly, clearly different kinetics were observed for IL-6 induction by the various activation agents, the maximal effect being reached at 24, 48, and 72 hr, respectively for LPS, TNF-alpha, and IL-1-beta. Moreover, a synergistic effect of TNF-alpha and either LPS or IL-1-beta was observed. Indeed, TEC incubated with the cytokines in combination at optimal doses produced 5- to 170-fold more IL-6 than TEC stimulated with the cytokines individually. Neutralizing anti-IL-6 polyclonal and monoclonal antibodies completely blocked hybridoma proliferation stimulating activity of TEC supernatants; thus, implying that this activity is essentially due to IL-6. In situ hybridization analysis of cytocentrifuged TEC with an mRNA antisense probe specific for human IL-6 and labeled with 35S demonstrated that up to 90% of TEC could be induced to express the IL-6 gene. Computer-aided quantification of IL-6 mRNA levels indicated that upon stimulation with TNF-alpha combined to LPS, both the numbers of cells expressing IL-6 mRNA and the amounts of cytoplasmic IL-6 mRNA per cell were increased. Taken altogether these results demonstrate that LPS and/or cytokines can modulate and synergistically stimulate IL-6 production. In addition to a possible role in regulating normal thymic T cell activation, the IL-6 produced by TEC could be of pathophysiological relevance in disregulated situations such as in hyperplastic thymuses from patients with myasthenia gravis.  相似文献   

3.
4.
The interaction between interleukin-10 (IL-10) and interleukin-6 (IL-6) was investigated in the inflammatory response to Rhodococcus aurantiacus (R. aurantiacus) infection, in which both cytokines act as anti-inflammatory cytokines. Compared with wild-type (WT) counterparts, IL-6 gene-deficient (IL-6(-)/(-)) mice mounted a more robust production of IL-10 and tumor necrosis factor-alpha (TNF-alpha) during the initial phase of infection. Administration of anti-IL-10 antibody resulted in all the mice dying within 3 days post-infection as well as a further elevated TNF-alpha release. In vitro challenge of the macrophages from IL-6(-)/(-) and WT mice with heat-killed R. aurantiacus also showed similar results. Addition of exogenous IL-6 depressed IL-10 and TNF-alpha production by either IL-6(-)/(-) mice or IL-6(-)/(-) mouse macrophages. Likewise, WT mouse macrophages pretreated with anti-IL-10 or anti-IL-6 antibody exhibited increased production of TNF-alpha and IL-6 or IL-10 respectively. Moreover, neutralization of both IL-10 and IL-6 induced a further increase in TNF-alpha production by WT mouse cells. Overall, we conclude that IL-10 is a key element in protecting mice against mortality, and that IL-10 and IL-6 production are negatively regulated by each other although they are additive in suppressing TNF-alpha release in R. aurantiacus-infected mouse model.  相似文献   

5.
Mast cells are recognized as a new type of immunoregulatory cells capable of producing different cytokines. So far, little is known about the cytokine profile of mature human mast cells isolated from intestinal tissue and cultured in the presence of stem cell factor (SCF). We observed that these cells express the proinflammatory cytokines TNF-alpha, IL-1 beta, IL-6, IL-8, IL-16, and IL-18 without further stimulation. Both IgE-dependent and IgE-independent agonists (e.g., Gram-negative bacteria) enhanced expression of TNF-alpha. Another set of cytokines consisting of IL-3, IL-5, IL-9, and IL-13 was expressed following activation by IgE receptor cross-linking. If mast cells were cultured in the presence of IL-4 and SCF, the production and release of IL-3, IL-5, and IL-13 was increased up to 4-fold compared with mast cells cultured with SCF alone. By contrast, IL-6 expression was completely blocked in response to culture with IL-4. In summary, our data show that mature human mast cells produce proinflammatory cytokines that may be up-regulated following triggering with IgE-independent agonists such as bacteria, whereas activation by IgE receptor cross-linking results in the expression of Th2-type cytokines. IL-4 enhances the expression of Th2-type cytokines but does not affect or even down-regulates proinflammatory cytokines.  相似文献   

6.
Kupffer cells have been reported as a major source of proinflammatory cytokines (i.e. IL-6, TNF-alpha), which have been implicated in the pathogenesis of trauma-hemorrhage. Previous studies have shown a protective effect of 17beta-estradiol on immune function and physiological responses following trauma-hemorrhage. In this study, we investigated whether 17beta-estradiol has a direct effect on Kupffer cell cytokine production following trauma-hemorrhage. Male Sprague-Dawley rats were subjected to trauma (midline laparotomy) and hemorrhage (35-40 mmHg for 90 min followed by fluid resuscitation) or sham operation. Two hours later, Kupffer cells were isolated and cultured with 17beta-estradiol in the presence and absence of lipopolysaccharide stimulation. Kupffer cell IL-6 and TNF-alpha production increased following trauma-hemorrhage. Incubation with 17beta-estradiol attenuated the production of IL-6 by cells from both sham and trauma-hemorrhage animals in a dose-dependent manner. The suppression of IL-6 production by 17beta-estradiol was paralleled by a decrease in mRNA levels. In contrast to IL-6, the effects of 17beta-estradiol on TNF-alpha production were minimal. In conclusion, these results indicate the direct downregulation of Kupffer cell IL-6 production by 17beta-estradiol at a molecular level, which might explain in part the previously observed salutary effects of estradiol treatment following trauma-hemorrhage.  相似文献   

7.
The current study characterizes the cytokine protein (ELISA) and mRNA (gene array and RT-PCR) profiles of skin-derived mast cells cultured under serum-free conditions when activated by cross-linking of Fc epsilonRI. Prior to mast cell activation, mRNA only for TNF-alpha was detected, while after activation mRNA for IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF substantially increased, and for IL-4 it minimally increased. However, at the protein level certain recombinant cytokines, as measured by ELISAs, were degraded by proteases released by these skin-derived mast cells. IL-6 and IL-13 were most susceptible, followed by IL-5 and TNF-alpha; GM-CSF was completely resistant. These observations also held for the endogenous cytokines produced by activated mast cells. By using protease inhibitors, chymase and cathepsin G, not tryptase, were identified in the mast cell releasates as the likely culprits that digest these cytokines. Their cytokine-degrading capabilities were confirmed with purified chymase and cathepsin G. Soy bean trypsin inhibitor, when added to mast cell releasates, prevented the degradation of exogenously added cytokines and, when added to mast cells prior to their activation, prevented degradation of susceptible endogenous cytokines without affecting either degranulation or GM-CSF production. Consequently, substantial levels of IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF were detected 24-48 h after mast cells had been activated, while none were detected 15 min after activation, by which time preformed granule mediators had been released. IL-4 was not detected at any time point. Thus, unless cytokines are protected from degradation by endogenous proteases, cytokine production by human mast cells with chymase and cathepsin G cells may be grossly underestimated.  相似文献   

8.
IL-1beta, TNF-alpha, and IL-6 have been implicated in the destruction of parotid gland acinar cells (but not duct cells) in autoimmune sialoadenitis. Here we report the temporal alterations of these cytokines in parotid acinar cells that may lead to this specificity in cell death in the non-obese diabetic (NOD) mouse model for Sj?gren's syndrome. Immunohistochemistry on paraffin sections of parotid gland from 5- and 10-week-old BALB/c and NOD mice confirmed the presence of many peri-acinar lymphoid nodules but few T-cells and macrophages between acinar cells. RT-PCR on enzymatically dispersed mouse parotid acinar cells (MPACs) showed no bands for CD3varepsilon, CD20, or F4/80 regardless of mouse strain or age. By ELISA, MPACs from 10-week-old NODs showed a small but highly significant (p<0.003) increase in IL-1beta and a large significant decrease (p<0.008) in IL-6 compared to 5-week-old NODs. Norepinephrine-stimulated amylase release from MPACs was not different regardless of mouse strain or age. These data show that alterations in acinar cell production of IL-1beta and IL-6 in aging NODs precede periductal lymphoid aggregates and acinar cell secretory dysfunction. (J Histochem Cytochem 48:1033-1041,2000)  相似文献   

9.
The ability of recombinant/purified cytokines to augment delayed-type hypersensitivity (DTH) responses was investigated. Suboptimal doses of haptenized SC were treated in vitro with purified or recombinant derived cytokines and tested for their ability to enhance DTH in vivo. With the use of this protocol, it was shown that both human and mouse rIL-6, as well as mouse rTNF-alpha, potentiated DTH in a dose-dependent manner. In accordance with these data, IL-6/TNF-alpha-containing supernatant from long term nonlymphoid cell lines also possessed the ability to augment DTH. By using the same protocol, we have also identified T cell hybridomas that produce DTH-augmenting activity constitutively. The hybridoma-derived factor, termed the T cell enhancing factor (TCEF), was functionally distinguishable from the defined cytokines IL-1 through IL-6, IFN-gamma, and TNF by bioassay. Furthermore, RNA derived from the hybridoma failed to hybridize with cDNA probes specific for IL-1 to IL-6, IFN-gamma, TNF-alpha, and granulocyte-macrophage CSF. Further characterization of the serum-free conditioned media derived from the hybridoma indicated that the TCEF was a soluble acid labile glycoprotein (Mr greater than 30,000). Finally, we investigated the cellular requirements for DTH augmentation by IL-6, TNF-alpha, and TCEF; all are dependent upon the presence of T cells in the immunizing inoculum. We propose that these cytokines play a critical role in the development of DTH responses in vivo.  相似文献   

10.
11.
Autocrine production of growth factors is thought to be an essential element in the development of hemopoietic tumors in vivo. Tumor-derived cell lines frequently show this capability in vitro. It is not understood how autonomous growth in vitro is maintained by lymphoid cell lines that are not of tumorigenic origin. We have previously established human B cell clones that proliferate in serum-free media with unlimited potential. However, the cells need a critical density for continuous growth. Culture supernatant conditioned by these cell lines sustained proliferation even in low density cultures. All B cell clones analyzed were found to secrete the cytokines IL-1 alpha, IL-6, TNF-alpha, and TNF-beta whereas no activity of IL-2, IL-4, low m. w.-B cell growth factor, CSF, or IFN-gamma was recorded. In low density cultures supplemented with rIL-1 alpha, +/- IL-6, +/- TNF-alpha, and +/- TNF-beta together, B cell proliferation is maintained to the same extent as with conditioned medium. Addition of anti-sense oligonucleotides directed to the mRNA of IL-1 alpha, IL-6, and TNF-alpha, respectively, resulted in growth arrest and cell death. This effect could be prevented by supplementation with these cytokines. Scatchard plot analyses and internalization studies revealed that the cells express on their surface high affinity receptors for IL-1 alpha, IL-6, and TNF, respectively, and internalize the cytokines from the supernatant. These results demonstrate that (i) autonomous growth of immortalized B cells is maintained by secretion and reinternalization of IL-1 alpha, IL-6, TNF-alpha, and TNF-beta, (ii) these cytokines act in a synergistic fashion, and (iii) autocrine growth stimulation of human B cells in vitro does not necessarily represent their tumorigenic potential in vivo.  相似文献   

12.
13.
We previously reported that IL-7 maintains the viability and differentiation potential of CD25 (IL-2R p55) positive CD3-CD4-CD8- thymic pre-T cells in vitro. This culture system is suitable for studying signals that regulate differentiation of T cell precursors in the thymus. In this study, we screened cytokines for their capacity to induce CD4 or CD8 in murine thymic pre-T cells cultured with IL-7. Of 15 cytokines tested, only transforming growth factor (TGF-beta) and TNF-alpha induced CD8 (Lyt-2), while no cytokine was able to induce CD4 on CD25+CD3-CD4-CD8- thymocytes. The combination of TGF-beta and TNF-alpha was synergistic, and the majority of cells recovered after 2 to 3 days in culture expressed CD8 (but not CD3 or CD4). A similar effect of TGF-beta and TNF-alpha was observed using day-15 fetal thymocytes, CD3+CD4-CD8- or CD3+CD4+CD8- adult thymocytes, although the combination of these cytokines resulted in an additive rather than a synergistic effect in these subsets. In contrast, neither TGF-beta nor TNF-alpha induced CD8 expression on splenic CD4+CD8- T cells. These observations suggest a role for these cytokines in the induction of CD8 expression in CD8- thymocyte subsets including CD3-CD4-CD8- thymic pre-T cells.  相似文献   

14.
15.
The focus of this study was to clarify the relation between the nitric oxide (NO) production and cytokine expression including tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6), and also investigated the effect of COS on LPS stimuli from RAW 264.7 cell. The lipopolysaccharide (LPS) of Gram-negative bacteria induces the expression of cytokines and potent inducers of inflammatory cytokines such as TNF-alpha and IL-6. In this experiment, upon stimulation with increasing concentrations of chitosan, the LPS-stimulated TNF-alpha and IL-6 secretion was significantly recovered within the incubation media of RAW 264.7 cells. Consistently, RT-PCR with mRNA and Western blot with anti-cytokine antiserum including TNF-alpha and IL-6 showed that the amount of TNF-alpha and IL-6 secretion in the incubation media recovered with the concentration of chitosan. The LPS-stimulated NO secretion was significantly recovered within the 6h and 12h incubation media of RAW 264.7 cells, too. The recovery effect of chitosan on IL-6 and NO secretion may be induced via the stimulus of TNF-alpha in RAW 264.7 cell. These results once again suggest that chitosan oligosaccharide may have the anti-inflammatory effect via the stimulus of TNF-alpha in the LPS-stimulated inflammation in RAW 264.7 cells.  相似文献   

16.
Zinc plays an important role in cell-mediated immune function. Altered cellular immune response resulting from zinc deficiency leads to frequent microbial infections, thymic atrophy, decreased natural killer activity, decreased thymic hormone activity, and altered cytokine production. In this study, we examined the effect of zinc deficiency on IL-2 and IFN-gamma in HUT-78 (Th0) and D1.1 (Th1) cell lines and TNF-alpha, IL-1 beta, and IL-8 in the HL-60 (monocyte-macrophage) cell line. The results demonstrate that zinc deficiency decreased the levels of IL-2 and IFN-gamma cytokines and mRNAs in HUT-78 after 6 h of PMA/p-phytohemagglutinin (PHA) stimulation and in D1.1 cells after 6 h of PHA/ionomycin stimulation compared with the zinc-sufficient cells. However, zinc deficiency increased the levels of TNF-alpha, IL-1 beta, and IL-8 cytokines and mRNAs in HL-60 cells after 6 h of PMA stimulation compared with zinc-sufficient cells. Actinomycin D study suggests that the changes in the levels of these cytokine mRNAs were not the result of the stability affected by zinc but might be the result of altered expression of these cytokine genes. These data demonstrate that zinc mediates positively the gene expression of IL-2 and IFN-gamma in the Th1 cell line and negatively TNF-alpha, IL-1 beta, and IL-8 in the monocyte-macrophage cell line. Our study shows that the effect of zinc on gene expression and production of cytokines is cell lineage specific.  相似文献   

17.
Actinomycetoma, caused by the intracellular bacterium Nocardia brasiliensis, is characterized by an infiltration of several inflammatory cell populations. To explore aspects of the immune response in the pathogenesis of these bacteria we injected 10(6) CFU in footpads of BALB/c mice. After 1, 2, 3, 4, 7, 30 and 90 days immunohistochemistry was performed to compare presence and distribution of the inflammatory cytokines TNF-alpha, IL-1 beta, IL-6, IFN-gamma, IL-4, IL-10, and TGF-beta. Analysis of serial paraffin tissue sections showed strong participation and differences in distribution of cytokine-producing cells during the course of infection. Several TNF-alpha immunoreactive lymphocytes of the dermis were present during the course of the infection, but absent in the site of inflammation. During the first 4 days, IL-1 beta immunoreactivity was observed in dendritic epidermal cells and in cells surrounding the neutrophils around the grain. In later stages of infection, immunoreactive cells to this cytokine were mainly in the periphery of the microabscesses. Strong immunoreactivity was observed with IL-6 during the course of infection. Some cells in the epidermis and dermis, as well as muscle cells and several cells at the periphery of the microabscesses, showed strong IL-6 immunoreactivity. Cells immunoreactive to IL-4, IL-10, IFN-gamma and TGF-beta were present at the site of infection and, in later stages, in cells at the periphery of the microabscesses. In conclusion a mix of proinflammatory and antiinflammatory cytokines are produced at the same time by host cells. According to their distribution, inflammatory cytokines seems to have different functions during the course of infection with the intracellular bacterium N. brasiliensis.  相似文献   

18.
The chemokine thymus- and activation-regulated chemokine (TARC) induces selective migration of Th2, but not Th1, lymphocytes and is upregulated in the airways of asthmatic patients. The purpose of this study was to determine whether human airway smooth muscle (HASM) cells produce TARC. Neither IL-4, IL-13, IL-1beta, IFN-gamma, nor TNF-alpha alone stimulated TARC release into the supernatant of cultured HASM cells. However, both IL-4 and IL-13 increased TARC protein and mRNA expression when administered in combination with TNF-alpha but not IL-1beta or IFN-gamma. Macrophage-derived chemokine was not expressed under any of these conditions. TARC release induced by TNF-alpha + IL-13 or TNF-alpha + IL-4 was inhibited by the beta-agonist isoproterenol and by other agents that activate protein kinase A, but not by dexamethasone. To determine whether polymorphisms of the IL-4Ralpha have an impact on the ability of IL-13 or IL-4 to induce TARC release, HASM cells from multiple donors were genotyped for the Ile50Val, Ser478Pro, and Gln551Arg polymorphisms of the IL-4Ralpha. Our data indicate that cells expressing the Val50/Pro478/Arg551 haplotype had significantly greater IL-13- or IL-4-induced TARC release than cells with other IL-4Ralpha genotypes. These data indicate that Th2 cytokines enhance TARC expression in HASM cells in an IL-4Ralpha genotype-dependent fashion and suggest that airway smooth muscle cells participate in a positive feedback loop that promotes the recruitment of Th2 cells into asthmatic airways.  相似文献   

19.
Minced human tonsils were digested with DNase and collagenase, and lymphoid cell-depleted low density cells were cultured and grown in granulocyte-macrophage-CSF. Large, morphologically homogenous adherent cells with elongated extensions grew continuously in culture. These nonphagocytic cells appear to be related to follicular dendritic cell (FDC) as they do not have properties of monocytic lineage cells or dendritic cells and because, like FDC, 1) they express CD11b, CD14, CD29, CD40, CD54, CD73, CD74, and VCAM-1, and do not express CD11c, CD22, T cell markers, CD18, CD25 and CD45; and 2) they bind human B lymphocytes and B cell lines, but not T lymphocytes by an adhesion blocked in part by mAb to VLA-4 (CD49d). The cultured FDC also augmented B cell proliferation stimulated by anti-mu sera and/or CD40 mAb. Cultured FDC spontaneously produced low levels of IL-6, but did not produce IL-1 alpha or TNF-alpha; however, after treatment with either IFN-gamma or LPS, they produced more IL-6. The expression of CD54 (ICAM-1) was elevated by treating the cultured FDC with either TNF-alpha, IL-1 beta, IFN-gamma or granulocyte-macrophage-CSF; in contrast, IL-4 had no effect on CD54 but rather up-regulated expression of VCAM-1. IFN-gamma, unlike the other cytokines tested, increased expression of a set of markers on cultured FDC (CD54, VCAM-1, and CD14) and converted these class II-negative cells into class II+ cells. The fact that various T cell-derived cytokines have different effects on FDC suggests that the T cell products may influence the manner by which FDC stimulate B cell proliferation and maturation.  相似文献   

20.
Cytokines are proteins that mediate communication between cells of the immune system as well as certain other non-immune host cells. These proteins are produced by many cell types and they mediate immune and inflammatory responses. However, the direct site analysis of these critical proteins is hampered by the lack of site-specific tools available for such direct measurements. In this study, both in vitro and in vivo microdialysis sampling of different cytokines (tumor necrosis factor-alpha [TNF-alpha], interferon-gamma [IFN-gamma], interleukin-6 [IL-6], IL-12p70, and macrophage chemoattractant protein-1 [MCP-1]) was performed. A mouse model of bacterial lipopolysaccharide (LPS) administration and response pattern was used for in vivo studies. Three cytokines, TNF-alpha, IL-6, and MCP-1 were quantified in the serum from mice given LPS. In vivo studies demonstrated the ability to monitor increasing levels of these cytokines (TNF-alpha, IL-6, and MCP-1) via microdialysis probes placed in the peritoneal cavity of mice given LPS. All three cytokines were quantified simultaneously in 15 muL of dialysate using a multiplexed bead-based immunoassay for flow cytometry. The detected dialysate cytokine concentrations varied between 200 pg/mL and 1500 pg/mL for TNF-alpha, between 600 pg/mL and 3000 pg/mL for MCP-1, and between 2700 pg/mL and more than 5000 pg/mL for IL-6. The detected serum cytokine concentrations ranged from 5700 pg/mL to 35,000 pg/mL for TNF-alpha, from 40,000 pg/mL to 65,000 pg/mL for MCP-1, and greater than than 100,000 pg/mL for IL-6. This work demonstrates that microdialysis sampling can be used in vivo to collect temporal profiles of cytokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号