首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
The effect of prostaglandin E2(PGE2) on bone mass has been well-established in vivo. Previous studies have showed that PGE2 increases differentiation, proliferation, and regu- lates cell morphology through F-actin stress fiber in statically cultured osteoblasts. However, the effect of PGE2 on osteo- blasts in the presence of fluid shear stress (FSS), which could better uncover the anabolic effect of PGEz in vivo, has yet to be examined. Here, we hypothesized that PGE2 modulates F-actin stress fiber in FSS-stimulated MC3T3-E1 osteoblastic cells through protein kinase A (PKA) pathway. Furthermore, this PGE2-induced F-actin remodeling was associated with the recovery of cellular mechanosensitivity. Our data showed that treatment with 10 nM dmPGE2 for 15 rain significantly suppressed the F-actin stress fiber intensity in FSS-stimulated cells in a PKA-dependent manner. In addition, dmPGE2 treatment enhanced the cells' calcium peak magnitude and the percentage of responding cells in the second FSS stimulation, though these effects were abolished and attenuated by co-treatment with phalloidin. Our results demonstrated that 10 nM dmPGE2 was able to accelerate the 'reset' process of F-actin stress fiber to its pre-stimulated level partially through PKA pathway, and thus promoted the recovery of cellular mechanosensitivity. Our finding provided a novel cellular mechanism by which PGE2 increased bone forma- tion as shown in vivo, suggesting that PGE2 could be a potential target for treatments of bone formation-related diseases.  相似文献   

2.
3.
The compound 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) is an efficient anion exchanger inhibitor that can block the activities of anion exchanger 2 (AE2), which plays an indispensable role in gastric acid secretion. DIDS also has potent anti-oxidative and antiapoptosis activities. This study aimed to investigate the effect of DIDS on ethanol-induced mucosal damage in rats and to evaluate the underlying mechanisms that mediate the action of the compound. The rats received 1 ml of absolute ethanol or saline orally. DIDS [50 mg/kg intravenous (i.v.)] was given 5 min before ethanol administration. Gastric lesions were evaluated macroscopically, microscopically, and electron microscopically at 60 min after ethanol challenge. Gastric myeloperoxidase (MPO) activity, malonyldialdehyde (MDA) level, prostaglandin E2 (PGE2) synthesis, and cyclooxygenase-2 (COX-2) expression were assessed. For the evaluation of the effect of DIDS on gastric acid secretion, histamine-stimulatory gastric acid secretion was examined with or without pretreatment of DIDS (50 mg/kg; i.v.). Ethanol-induced gastric lesions were characterized by increasing gastric MDA level, MPO activity, and COX-2 expression, and decreasing PGE2 synthesis. It was found that DIDS significantly reduced the extent of gastric mucosal damage and reversed tissue MDA level and MPO activity. DIDS further enhanced the expression of COX-2 and reversed the decrease of PGE2. Our results suggested that DIDS is beneficial in rat model of gastric injury through mechanisms that involve inhibiting inflammatory cell infiltration and lipid peroxidation and up-regulating the COX-2/PGE2 pathway.  相似文献   

4.
Relationship between insulin-like growth factor-l receptor (IGF-IR) and luteinizing hormone receptor (LHR) mRNA expression as well as their regulation was determined in rat corpora lutea (CL) . In the CL of estrous cycle rat, LHR mRNA positive CL expressed high level of mRNA of IGF-IR. While the expression of LHR mRNA decreased on estrus, the CL still expressed relatively high level of IGF-IR mRNA. In pseudopregnant rat CL, the expression level of LHR mRNA was low on day 1, the most intense signals were detected on day 8, the signals of LHR mRNA became undetectable on day 14. In contrast to LHR expression, the high level of IGF-IR mRNA was observed in pseudopregnant CL of day 1, and thereafter its signals were detected from day 2 to day 14. Pregnant rat CL expressed both LHR and IGF-IR mRNAs. IGF-I stimulated LHR expression in CL. PGF2ainhibited expression of IGF-IR and LHR. PGE2 negated the inhibiting effects of PGF2α. These data suggest that IGF-I may be involved in regulating CL function, and maintai  相似文献   

5.
Prostaglandin E2 (PGE2) is known to have a key role in the development of colorectal cancer, but previous experiments showed its contrasting (i.e. tumor-promoting or tu mor-suppressive) roles depending on experimental conditions. To elucidate the mechanisms underlying such contrasting roles of PG E2 in tumorigenesis, we investigated all the previous experiments and found a new signal transduction pathway mediated by retinoic acid receptor-related orphan receptor (ROR)α, in which PGE2/PKCα-dependent phosphorylation of RORα attenuates Wnt target gene expression in colon cancer ceils. From mathematical simulations combined with biochemical experimentation, we revealed that RORα induces a biphasic response of Wnt target genes to PGE2 stimulation through a regulatory switch formed by an incoherent feedforward loop, which provides a mechanistic explanation on the contrasting roles of PGE2 observed in previous experiments. More interestingly, we found that RORα constitutes another regulatory switch formed by coupled positive and negative feedback loops, which regulates the hysteretic response of Wnt signaling and eventually converts a proliferative cellular state into an anti-proliferative state in a very delicate way. Our results indicate that RORα is the key regulator at the center of these hidden switches that critically regulate cancer celt proliferation and thereby being a promising anti-cancer therapeutic target.  相似文献   

6.
Immunosuppressive properties of cloned bone marrow mesenchymal stem cells   总被引:10,自引:0,他引:10  
Xu G  Zhang L  Ren G  Yuan Z  Zhang Y  Zhao RC  Shi Y 《Cell research》2007,17(3):240-248
Mesenchymal stem cells(MSCs),derived from adult tissues,are multipotent progenitor cells,which hold greatpromise for regenerative medicine.Recent studies have shown that MSCs are immunosuppressive in vivo and in vitro inboth animals and humans.However,the mechanisms that govern these immune modulatory functions of MSCs remainlargely elusive.Some studies with bulk populations of MSCs indicated that soluble factors such as PGE2 and TGFβ areimportant,while others support a role for cell-cell contact.In this study,we intended to clarify these issues by examin-ing immunosuppressive effects of cloned MSCs.We derived MSC clones from mouse bone marrow and showed thatthe majority of these clones were able to differentiate into adipocytes and osteoblast-like cells.Importantly,cells fromthese clones exhibited strong inhibitory effects on TCR activation-induced T cell proliferation in vitro,and injection ofa small number of these cells promoted the survival of allogeneic skin grafts in mice.Conditioned medium from MSCcultures showed some inhibitory effect on anti-CD3 induced lymphocyte proliferation independent of PGE2 and TGFβ.In comparison,direct co-culture of MSCs with stimulated lymphocytes resulted in much stronger immunosuppressiveeffect.Interestingly,the suppression was bi-directional,as MSC proliferation was also reduced in the presence of lym-phocytes.Taking together,our findings with cloned MSCs demonstrate that these cells exert their immunosuppressiveeffects through both soluble factor(s)and cell-cell contact,and that lymphocytes and MSCs are mutually inhibitory ontheir respective proliferation.  相似文献   

7.
The aim of this study was to investigate the toxic effects of aluminum (A1) on the model organism-Drosophila melanogaster. The study is especially concerned with the effects of aluminum on the fruit fly's development, life span, and circadian rhythm in rest and activity. Flies were exposed to aluminum in concentrations from 40 to 280 mg/kg in rearing media or the flies were raised on control medium. Moreover, the life span of insects exposed to aluminum containing 40, 120, or 240 mg/kg of A1 in the medium, only during their larval development, during the whole life cycle and only in their adult life was tested. To check if aluminum and aging cause changes in D. melanogaster behavior, the locomotor activity of flies at different ages was recorded. Results showed that aluminum is toxic in concentrations above 160 mg/kg in the rearing medium. Depending on A1 concentration and time of exposure, the life span of the flies was shortened. At intermediate concentrations (120 mg/kg), however, A1 had a stimulating effect on males increasing their life span and level of locomotor activity. At higher concentration the aluminum exposure increased or decreased the level of locomotor activity ofD. melanogaster depending on age of flies. In addition, in the oldest insects reared on aluminum supplemented media and in mid-aged flies reared on the highest concentration of A1 the daily rhythm of activity was disrupted.  相似文献   

8.
The study of frictional properties of human skin is important for medical research, skin care products and textile exploi- tation. In order to investigate the influence of normal load and sliding speed on the frictional properties of skin and its possible mechanism, tests were carded out on a multi-specimen friction tester. When the normal load increases from 0.1 N to 0.9 N, normal displacement and the friction coefficient of skin increase. The friction coefficient is dependent on the load, indicating that both adhesion and deformation contribute to the friction behaviour. The deformation friction was interpreted using the plough model of friction. When sliding speed increases from 0.5 mm·s^-1 to 4 mm·s^-1, the friction coefficient increases and "stick-slip" phenomena increase, indicating that hysteretic friction contributes to the friction. The hysteretic friction was in- terpreted using schematic of energy translation during the rigid spherical probe sliding on the soft skin surface, which provides an explanation for the influence of the sliding speed on the frictional characteristics of the skin.  相似文献   

9.
10.
Control of a Quadruped Robot with Bionic Springy Legs in Trotting Gait   总被引:1,自引:0,他引:1  
Legged robots have better performance on discontinuous terrain than that of wheeled robots. However, the dynamic trotting and balance control of a quadruped robot is still a challenging problem, especially when the robot has multi-joint legs. This paper presents a three-dimensional model of a quadruped robot which has 6 Degrees of Freedom (DOF) on torso and 5 DOF on each leg. On the basis of the Spring-Loaded Inverted Pendulum (SLIP) model, body control algorithm is discussed in the first place to figure out how legs work in 3D trotting. Then, motivated by the principle of joint function separation and introducing certain biological characteristics, two joint coordination approaches are developed to produce the trot and provide balance. The robot reaches the highest speed of 2.0 m.s-1, and keeps balance under 250 Kg.m.s-1 lateral disturbance in the simulations. The effectiveness of these approaches is also verified on a prototype robot which runs to 0.83 m.s-1 on the treadmill, The simulations and experiments show that legged robots have good biological properties, such as the ground reaction force, and spring-like leg behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号