首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A high density microelectrode array biosensor was developed for the detection of Escherichia coli O157:H7. The biosensor was fabricated from (100) silicon with a 2 microm layer of thermal oxide as an insulating layer, an active area of 9.6 mm2 and consists of an interdigitated gold electrode array. The sensor surface was functionalised for bacterial detection using heterobifunctional crosslinkers and immobilised polyclonal antibodies to create a biological sensing surface. Bacteria suspended in solution became attached to the immobilised antibodies when the biosensor was tested in liquid samples. The change in impedance caused by the bacteria was measured over a frequency range of 100 Hz-10 M Hz. The biosensor was evaluated for E. coli O157:H7 detection in pure culture and inoculated food samples. The biosensor was able to discriminate between cellular concentrations of 10(4)-10(7)CFU/mL and has applications in detecting pathogens in food samples.  相似文献   

2.
A novel, label-free amperometric immunosensor has been developed for the rapid detection of heat-killed Escherichia coli O157:H7 (E. coli O157:H7). This immunosensor was prepared as follows. First, the long-chain, amine-terminated alkanethiol 11-amino-1-undecanethiol hydrochloride (AUT) was self-assembled onto a gold electrode surface to form an ordered, oriented, compact, and stable monolayer possessing -NH(2) functional groups that could immobilize massive gold nanoparticles (GNPs). Next, chitosan-multiwalled carbon nanotubes-SiO(2)/thionine (CHIT-MWNTs-SiO(2)@THI) nanocomposites and GNPs multilayer films were prepared via layer-by-layer (LBL) assembly. The surface area enhancement from the LBL assembly of the multilayer films improves the stability of the immobilized CHIT-MWNTs-SiO(2)@THI. More important, the sensitivity and stability of the immunosensor can be enhanced proportionally to the quantity of the THI mediator immobilized on the electrode surface. Finally, the E. coli O157:H7 antibody (anti-E. coli O157:H7) was covalently bound to the GNP monolayer and its bioactivity was measured by enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was employed to characterize the morphology of the MWNTs, CHIT-MWNTs, and CHIT-MWNTs-SiO(2)@THI. Under optimal conditions, the calibration curve for heat-killed E. coli O157:H7 has a working range of 4.12×10(2)-4.12×10(5) colony-forming units (CFU)/ml, and the total assay time was less than 45 min.  相似文献   

3.
Direct PCR detection of Escherichia coli O157:H7   总被引:2,自引:0,他引:2  
AIMS: This paper reports a simple, rapid approach for the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC). METHODS AND RESULTS: Direct PCR (DPCR) obviates the need for the recovery of cells from the sample or DNA extraction prior to PCR. Primers specific for Stx-encoding genes stx1 and stx2 were used in DPCR for the detection of E. coli O157:H7 added to environmental water samples and milk. CONCLUSIONS: PCR reactions containing one cell yielded a DPCR product. SIGNIFICANCE AND IMPACT OF THE STUDY: This should provide an improved method to assess contamination of environmental and other samples by STEC and other pathogens.  相似文献   

4.
Our group has previously reported a sandwich-based strip immunoassay for rapid detection of Escherichia coli O157:H7 [Anal. Chem. 75 (2003) 4330]. In the present study, a microcapillary flow injection liposome immunoanalysis (mFILIA) system was developed for the detection of heat-killed E. coli O157:H7. A fused-silica microcapillary with anti-E. coli O157:H7 antibodies chemically immobilized on the internal surface via protein A served as an immunoreactor/immunoseparator for the mFILIA system. Liposomes tagged with anti-E. coli O157:H7 and encapsulating a fluorescent dye were used as the detectable label. In the presence of E. coli O157:H7, sandwich complexes were formed between the immobilized antibodies in the column, the sample of E. coli O157:H7 and the antibody-tagged sulforhodamine-dye-loaded liposomes. Signals generated by lysing the bound liposomes with 30 mM n-octyl-beta-D-glucopyranoside were measured by a fluorometer. The detected signal was directly proportional to the amount of E. coli O157:H7 in the test sample. The mFILIA system successfully detected as low as 360 cells/mL (equivalent to 53 heat-killed bacteria in the 150 microL of the sample solution injected). MeOH (30%) was used for the regeneration of antibody binding sites in the capillary after each measurement, which allowed the immunoreactor/immunoseparator to be used for at least 50 repeated assays. The calibration curve for heat-killed E. coli O157:H7 has a working range of 6 x 10(3)-6 x 10(7)cells, and the total assay time was less than 45 min. A coefficient of variation for triplicate measurements was < or =8.9%, which indicates an acceptable level of reproducibility for this newly developed method.  相似文献   

5.
Escherichia coli O157:H7 is well known enterohemorrhagic pathogen responsible for infections among animals including a man. The main source of this bacterium is cattle, that is mostly asymptomatic and through that E. coli O157:H7 can simple transfer to food products. Therefore, there is a need for rapid, sensitive and specific detection method. The present work is focused on its detection by a heptaplex polymerase chain reaction, which targets genes from known virulent regions of E. coli O157:H7. According to obtained results this approach is able to reach the detection sensitivity of 4 colony-forming units (CFU) from a culture and 6 and 8 CFU from milk and meat samples, respectively, independently of tested sample volume.  相似文献   

6.
There is a high demand for rapid, sensitive, and field-ready detection methods for Escherichia coli O157:H7, a highly infectious and potentially fatal food and water borne pathogen. In this study, E. coli O157:H7 cells are isolated via immunomagnetic separation (IMS) and labeled with biofunctionalized electroactive polyaniline (immuno-PANI). Labeled cell complexes are deposited onto a disposable screen-printed carbon electrode (SPCE) sensor and pulled to the electrode surface by an external magnetic field, to amplify the electrochemical signal generated by the polyaniline. Cyclic voltammetry is used to detect polyaniline and signal magnitude indicates the presence or absence of E. coli O157:H7. As few as 7CFU of E. coli O157:H7 (corresponding to an original concentration of 70 CFU/ml) were successfully detected on the SPCE sensor. The assay requires 70 min from sampling to detection, giving it a major advantage over standard culture methods in applications requiring high-throughput screening of samples and rapid results. The method can be performed with portable, handheld instrumentation and no biological modification of the sensor surface is required. Potential applications include field-based pathogen detection for food and water safety, environmental monitoring, healthcare, and biodefense.  相似文献   

7.
8.
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent.  相似文献   

9.
A sensitive, specific procedure was developed for detecting Escherichia coli O157:H7 in food in less than 20 h. The procedure involves enrichment of 25 g of food in 225 ml of a selective enrichment medium for 16 to 18 h at 37 degrees C with agitation (150 rpm). The enrichment culture is applied to a sandwich enzyme-linked immunosorbent assay (ELISA) with a polyclonal antibody specific for E. coli O157 antigen as the capture antibody and a monoclonal antibody specific for enterohemorrhagic E. coli of serotypes O157:H7 and O26:H11 as the detection antibody. The ELISA can be completed within 3 h. The sensitivity of the procedure, determined by using E. coli O157:H7-inoculated ground beef and dairy products, including different varieties of cheese, was 0.2 to 0.9 cell per g of food. A survey of retail fresh ground beef and farm raw milk samples with this procedure revealed that 3 (2.8%) of 107 ground beef samples and 11 (10%) of 115 raw milk samples were positive for E. coli O157:H7. Most-probable-number determinations revealed E. coli O157:H7 populations of 0.4 to 1.5 cells per g in the three ground beef samples. In addition to being highly specific, sensitive, and rapid, this procedure is easy to perform and is amenable to use by laboratories performing routine microbiological testing.  相似文献   

10.
A sensitive, specific procedure was developed for detecting Escherichia coli O157:H7 in food in less than 20 h. The procedure involves enrichment of 25 g of food in 225 ml of a selective enrichment medium for 16 to 18 h at 37 degrees C with agitation (150 rpm). The enrichment culture is applied to a sandwich enzyme-linked immunosorbent assay (ELISA) with a polyclonal antibody specific for E. coli O157 antigen as the capture antibody and a monoclonal antibody specific for enterohemorrhagic E. coli of serotypes O157:H7 and O26:H11 as the detection antibody. The ELISA can be completed within 3 h. The sensitivity of the procedure, determined by using E. coli O157:H7-inoculated ground beef and dairy products, including different varieties of cheese, was 0.2 to 0.9 cell per g of food. A survey of retail fresh ground beef and farm raw milk samples with this procedure revealed that 3 (2.8%) of 107 ground beef samples and 11 (10%) of 115 raw milk samples were positive for E. coli O157:H7. Most-probable-number determinations revealed E. coli O157:H7 populations of 0.4 to 1.5 cells per g in the three ground beef samples. In addition to being highly specific, sensitive, and rapid, this procedure is easy to perform and is amenable to use by laboratories performing routine microbiological testing.  相似文献   

11.
Immunoliposome sandwich assay for the detection of Escherichia coli O157:H7   总被引:5,自引:0,他引:5  
We describe the development of a field-portable colorimetric immunoassay for the detection of Escherichia coli O157:H7, using antibody-directed liposomes (immunoliposomes) encapsulating dye as an analytical reagent. Antibodies (anti-E. coli O157:H7) thiolated by 2-iminothiolane were coupled to malemide-tagged liposomes encapsulating the marker dye, sulforhodamine B. Transmission electron microscopy showed that the immunoliposomes bound only to the serotype without any cross-reactivity with tested negative controls. A wicking reagent containing immunoliposomes and the test sample and a plastic-backed nitrocellulose strip with a measurement zone were used in a sandwich (noncompetitive) assay format. During the capillary migration of the wicking reagent, E. coli, with surface-bound immunoliposomes, was captured at the measurement zone on which antibodies to E. coli O157:H7 were immobilized. The color density of the measurement zone was directly proportional to the amount of E. coli O157:H7 in the sample. The detection limit of the current assay with pure cultures of the serotype was ca. 10(4) colony-forming units (CFU)/mL. The assay, which does not need washing and incubation steps, can be completed in 8 min. These results demonstrate the feasibility of using dye-encapsulating immunoliposomes in microporous membranes for the rapid detection of molecules with multivalent antigenic sites.  相似文献   

12.
AIMS: Combinations of PCR primer sets were evaluated to establish a multiplex PCR method to specifically detect Escherichia coli O157:H7 genes in bovine faecal samples. METHODS AND RESULTS: A multiplex PCR method combining three primer sets for the E. coli O157:H7 genes rfbE, uidA and E. coli H7 fliC was developed and tested for sensitivity and specificity with pure cultures of 27 E. coli serotype O157 strains, 88 non-O157 E. coli strains, predominantly bovine in origin and five bacterial strains other than E. coli. The PCR method was very specific in the detection of E. coli O157:H7 and O157:H- strains, and the detection limit in seeded bovine faecal samples was <10 CFU g(-1) faeces, following an 18-h enrichment at 37 degrees C, and could be performed using crude DNA extracts as template. CONCLUSIONS: A new multiplex PCR method was developed to detect E. coli O157:H7 and O157:H-, and was shown to be highly specific and sensitive for these strains both in pure culture and in crude DNA extracts prepared from inoculated bovine faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY: This new multiplex PCR method is suitable for the rapid detection of E. coli O157:H7 and O157:H- genes in ruminant faecal samples.  相似文献   

13.
A SYBR Green LightCycler PCR assay using a single primer pair allowed simultaneous detection of stx1 and/or stx2 of Escherichia coli O157:H7. A distinct sequence of the Shiga-like toxin genes was amplified to yield products of 227 and/or 224 bp, respectively. The two products were distinguished by melting point curve analysis.  相似文献   

14.
【目的】建立一种同时快速检测大肠杆菌O157:H7(E.coli O157:H7)和鼠伤寒沙门氏菌(Salmonella typhimurium)的可视化抗体阵列技术。【方法】将免疫学技术与蛋白芯片技术相结合,基于双抗体夹心法检测原理利用蛋白质芯片技术的高通量,结合可视化结果判定技术,用一份样品,同步检测大肠杆菌O157:H7和鼠伤寒沙门氏菌两种病原。【结果】检测结果肉眼可见,检测周期短至90 min,纯菌液检测灵敏度达105 CFU/mL,模拟带菌检测灵敏度为106 CFU/mL,与常规的ELISA灵敏度等同且具有良好的特异性和重复性。【结论】该可视化抗体阵列检测结果肉眼可见,检测通量高,无需大型设备,操作简便,检测成本低廉,同时为快速检测致病菌提供一种新途径。  相似文献   

15.
周杨 《微生物学通报》2017,44(8):1996-2004
【目的】评价基于环介导恒温扩增技术(LAMP)的大肠杆菌O157:H7(Escherichia coli O157:H7)快速检测试剂盒的实效性。【方法】测定快速检测试剂盒的特异性、灵敏度、重复性、保质期以及运输稳定性,并与传统方法对比检测实际样品。【结果】大肠杆菌O157:H7标准菌株样品均检测为阳性,非大肠杆菌O157:H7标准菌株样品均检测为阴性,未发现有交叉反应;试剂盒最低检验限为29 CFU;该试剂盒的特异性、灵敏度及准确度与传统方法相比具有较高的一致性;试剂盒对高菌量目标菌和阴性菌样品的检测重复率均为100%,对低菌量目标菌样品的批间检测重复率为94%。试剂盒可在4°C保存9个月以上,并且可进行变温储存72 h以上。【结论】该试剂盒特异性好,灵敏度高,重复性好,储存方便,检测结果稳定、可靠,适用于对食品中大肠杆菌O157:H7的检测需求。  相似文献   

16.
17.

Background  

Previous research has identified the potential for the existence of two separate lineages of Escherichia coli O157:H7. Clinical isolates tended to cluster primarily within one of these two lineages. To determine if there are virulence related genes differentially expressed between the two lineages we chose to utilize microarray technology to perform an initial screening.  相似文献   

18.
19.
20.
Fluorescently labeled antimicrobial peptides were evaluated as a potential replacement of labeled antibodies in a sandwich assay for the detection of Escherichia coli O157:H7. Antimicrobial peptides naturally bind to the lipopolysaccharide component of bacterial cell walls as part of their mode of action. Because of their small size relative to antibodies peptides can bind to cell surfaces with greater density, thereby increasing the optical signal and improving sensitivity. This method combines the specificity of a capture antibody with the increased sensitivity provided by using a labeled peptide as a detection molecule. The antimicrobial peptides cecropin P1, SMAP29, and PGQ were labeled with the fluorescent dye Cy5 via maleimide linker chemistry. Preliminary screening using a whole-cell solution binding assay revealed that Cy5 cecropin P1 enhanced the detection of E. coli O157:H7 relative to a Cy5 labeled anti-E. coli O157:H7 antibody 10-fold. Detection sensitivity of antibody and peptide were also compared with a prototype immuno-magnetic bead biosensor. Detection using Cy5 cecropin P1 resulted in a 10-fold improvement in sensitivity. Correlation of peptide antimicrobial activity with detection of E. coli O157:H7 indicated that activity was not predictive of the sensitivity of the fluorescent assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号