首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic components responsible for qualitative and quantitative resistance of rice plants to three strains (CR4, CXO8, and CR6) of Xanthomonas oryzae pv. oryzae (Xoo) were investigated using a set of 315 recombinant inbred lines (RILs) from the cross Lemont (japonica) × Teqing (indica) and a complete linkage map with 182 well distributed RFLP markers. We mapped a major gene (Xa4) and ten quantitative trait loci (QTLs) which were largely responsible for segregation of the resistance phenotype in the RILs. The Teqing allele at the Xa4 locus, Xa4 T , acted as a dominant resistance gene against CR4 and CXO8. The breakdown of Xa4 T -associated resistance mediated by the mutant allele at the avrXa4 locus in the virulent strain CR6 results from significant changes in both gene action (lose of dominance) and the magnitude of gene effect (≈50% reduction). Nevertheless, Xa4 T still acted as a recessive QTL with a significant residual effect against CR6. The mutant alleles at the avrXa4 locus in CXO8 and CR6 that lead to a reduction in effect, or “breakdown”, of Xa4 T were apparently accompanied by corresponding penalties for their fitness. The quantitative component of resistance to Xoo in the RILs was largely due to a number of resistance QTLs. Most resistance QTLs mapped to genomic locations where major resistance genes and/or QTLs for resistance to Xoo, blast and sheath blight were identified in the same cross. Most QTLs showed consistent levels of resistance against all three Xoo strains. Our results suggest that a high level of durable resistance to Xoo may be achieved by the cumulative effects of multiple QTLs, including the residual effects of “defeated” major resistance genes.  相似文献   

2.
We have constructed a rice function map by collating the results on quantitative trait loci (QTLs) for 23 important physiological and agronomic characters (including 13 newly measured traits) obtained using backcross inbred lines of japonica Nipponbare×indica Kasalath. Using these materials, The Rice Genome project (RGP) has developed a high-density genetic map. QTLs controlling yield did not overlap with those controlling the morphological and physiological traits supposed to relate to yield, such as photosynthetic ability. This result suggests that these traits do not influence yield, at least in this genetic background and environment. QTLs controlling yield also did not overlap with the structural genes controlling carbon metabolism (rbcS, cytosolic or plastidic fructose-1,6-bisphosphate, R-enzyme, and sucrose synthase).The combination of a function map and results from the RGP can be advantageous. The utility of this map is discussed. Received: 1 October 1999 / Accepted: 28 July 2000  相似文献   

3.
We evaluated cassava bacterial blight (CBB) infection in an pair-cross population of 150 individuals derived from an intra-specific cross between two non-inbred cassava (Manihot esculenta Crantz) lines. The replicated trials were carried out in the field under high disease pressure over two consecutive crop cycles. Evaluations were conducted at 4 and 7 months after planting for the two cycles. Simple regression analysis and the nonparametric Kruskal-Wallis rank-sum test revealed that eight quantitative trait loci (QTLs) were involved in resistance. We detected changes in QTLs from crop cycle to crop cycle. The pathogen population (Xanthomonas axonopodis pv. manihotis) was also monitored over the period, using a restriction fragment length polymorphism probe and pathogenic tests. Changes in QTL detection over the 2 years could be correlated with changes in pathogen population structure. One QTL, located in linkage group D, was conserved over the two crop cycles, and in field to greenhouse evaluations. This study thus identified molecular markers useful for marker assisted-selection, a technique that can accelerate the long, multiple-season process of breeding for CBB resistance. Received: 1 January 2000 / Accepted: 25 June 2000  相似文献   

4.
水稻株高构成因素的QTL剖析   总被引:5,自引:0,他引:5  
利用水稻籼粳杂交 (圭 6 30× 0 2 42 8) F1 的花药离体培养建立的一个含 81个 DH家系的作图群体 ,对水稻株高构成因素 (穗长、第 1节间长、……、第 5节间长 )进行基因定位。DH群体中株高构成因素均呈正态分布。相邻的构成因素间呈极显著的正相关 ,而相距较远的构成因素间的相关较弱或不显著。采用 QTL(Quantitative trait lo-cus)分析 ,定位了影响株高构成因素的 6个 QTL:qtl7同时影响穗长和第 1、2、3节间长 ,qtl1 和 qtl2 同时影响第 4和第 5节间长 ,qtl1 0 a和 qtl1 0 b仅影响第 1节间长 ,qtl3 仅影响第 3节间长。采用 QTL 互作分析 ,检测到 19对显著的互作 ,每个构成因素受 2个或 2个以上的 QTL 互作对的影响。并且还发现 ,同一个 QTL 互作对可能影响不同的性状 ,以及一个 QTL 可以分别与不同的 QTL 产生互作而影响同一个性状或影响不同的性状 ,但总的看来 ,加性效应是主要的。这些结果揭示了株高构成因素间相关的遗传基础 ,在水稻育种中运用这些 QTL 将有助于对株高 ,以及对穗长和上部节间长度进行精细的遗传调控。  相似文献   

5.
6.
水稻低温发芽性QTL的分子标记定位   总被引:8,自引:0,他引:8  
利用1个粳/籼交来源的重组自交系群体,采用纸卷法在15℃低温条件下进行发芽试验,在发芽培养的6~14d中每天观测统计1次发芽率(%)。结合一张含有198个DNA标记的连锁图谱,用复合区间作图法定位水稻低温发芽性QTL。共检测到7个主效应QTL,分别位于水稻1、3、5、6和8号染色体上,单个QTL对性状的贡献率为5%~16%。其中,位于3号染色体标记区间RM148-RM85的qLTG-3-2和位于8号染色体标记区间RM223-RM210的qLTG-8-1对性状的贡献率最大,分别达16%和14%。QTL qLTG-3-2在发芽培养6~10d中表达,其效应由强渐弱,对性状的贡献率由发芽培养6d时的16.4%逐渐降低为发芽11d时的5.1%;而QTL qLTG-8-1则在发芽培养9~14d中起作用,其效应值由小逐渐增大,对性状的贡献率由发芽9d时的8.6%逐渐上升为发芽13~14d的14%。尽管这2个QTL加性效应的大小在低温发芽过程中按一定趋势变化,但加性效应的方向始终是一致的。QTL qLTG-3-2的增效基因来源于亲本特青,而QTL qLTG-8-1的增效基因来自于亲本Lemont。这2个QTL的增效等位基因有望作为分子标记辅助育种的操作对象,用于水稻品种低温发芽性的遗传改良。  相似文献   

7.
To identify the genetic background of seminal root length under different water-supply conditions, a recombinant inbred (RI) population consisting of 150 lines, derived from a cross between an indica lowland rice, IR1552, and a tropical japonica upland rice, Azucena, was used in both solution culture (lowland condition) and paper culture (upland condition). Quantitative trait loci (QTLs) and epistatic loci for seminal root length were analyzed using 103 restriction fragment length polymorphism (RFLP) markers and 104 amplified fragment length polymorphism (AFLP) markers mapped on 12 chromosomes based on the RI population. One QTL for seminal root length in solution culture (SRLS) and one for seminal root length in paper culture (SRLP) were detected on chromosomes 8 and 1, and about 11% and 10% of total phenotypic variation were explained, respectively. The QTL for SRLP on chromosome 1 was very similar with the QTL for the longest nodal root referred to in a previous report; this QTL may be phenotypically selectable in a breeding program using paper culture. Five pairs of epistatic loci for SRLS were detected, but only one for SRLP, which accounted for about 60% and 20% of the total variation in SRLS and SRLP, respectively. The results indicate that epistasis is a major genetic basis for seminal root length, and there is a different genetic system responsible for seminal root growth under different water supply conditions. Received: 26 May 2000 / Accepted: 19 October 2000  相似文献   

8.
水稻RIL群体苗期耐冷性QTL分析   总被引:7,自引:0,他引:7  
水稻苗期冷害是影响早春季节和高纬度地区水稻成苗和秧苗生长的重要限制因素之一。为了鉴定控制水稻苗期耐冷性的QTL,研究采用了1个水稻“粳籼交”重组自交系(RIL)群体,结合1张高密度分子遗传图谱,对3叶期幼苗经过10℃冷处理3d、恢复培养2d和4d时的秧苗存活率进行复合区间作图。亲本Lemont和特青的苗期耐冷性具有极显著差异,Lemont的苗期耐冷性很强,而特青对低温敏感。在重组自交系群体中,苗期耐冷性表现为连续变异,在两个方向上均出现大量超亲分离。共检测到5个水稻苗期耐冷性QTL,分别位于水稻1、3、8和11号染色体上,单个QTL对性状的贡献率为7%~21%。其中,4个QTL的增效基因来源于亲本Lemont,另1个QTL的增效基因来源于亲本特青。2个主效QTL(qSCT-3和qSCT-8)分别位于3号染色体标记区间RM282-RM156和8号染色体标记区间RM230—RM264,对性状的贡献率达到或接近20%,被检测到的LOD值显著较高,其增效基因均来自于耐冷性亲本Lemont。研究结果进一步揭示了水稻苗期耐冷性QTL具有丰富的位点多样性,表明耐冷性普遍较强的粳稻是发掘苗期耐冷性优异基因的主要稻种资源。  相似文献   

9.
 A proposed major quantitative trait locus (QTL) for photoperiod sensitivity on chromosome 6 in rice was examined by introducing a chromosomal segment from a sensitive line into an insensitive one. The crossing experiments showed that a range of variation in heading date occurred in the later generations and that the region might contain at least a major gene and two additional recessive genes controlling photoperiod sensitivity. Gene mapping experiments showed that the major gene was Se-1 and that a recessive gene (tentatively named se-pat) was loosely linked to it. The responses to photoperiods were examined among the different genotypes under natural and controlled conditions. The two genes acted additively on the degree of photoperiod sensitivity. However, se-pat plants showed a response to photoperiods that differed from that of the other sensitive lines; a short-day treatment at the seedling stage delayed heading in the former plants, suggesting that the manner of its expression was age-dependent. A recessive gene similar to se-pat seemed to be widely distributed in wild and cultivated rice, suggesting that the gene complex in the region plays a significant role in response to photoperiod. Received: 8 October 1997 / Accepted: 1 April 1998  相似文献   

10.
水稻红莲型CMS育性恢复QTL分析   总被引:4,自引:0,他引:4  
红莲型CMS是在我国杂交水稻生产中被广泛利用的雄性不育细胞质之一。为了同时定位红莲型CMS育性恢复主效和微效QTL,利用红莲型CMS不育系粤泰A(YTA)与“Lemont/特青”RIL群体测交,结合1张含有198个DNA分子标记的高密度遗传图谱,对测交F1群体的小穗育性和花粉育性进行复合区间作图。在对YTA的育性恢复性方面,该。RIL群体的2个亲本之间具有明显差异,特青的恢复性较强,其测交F1的小穗育性和花粉育性分别为72%和51%;而Lemont测交F1的小穗育性和花粉育性分别为32%和9%。复合区间作图定位到4个育性恢复QTL,分别位于水稻第1、2和10号染色体上,单个QTL的贡献率在5%~24%之间。其中,除1个QTL的增效基因来源于Lemont外,其余3个QTL的增效基因均来源于特青。效应最大的QTL为qRF-10-1,该QTL位于10号染色体RM258-C16标记区间,对小穗育性表型变异的贡献率为24%,对花粉育性的贡献率为17%,且该QTL被检测到的LOD值显著较高,因此是1个主效QTL,其增效基因来源于特青。除了主效QTLqRF-10-1外,其它3个QTL对性状的贡献率均在10%以下(5%~8%)。由此表明,该RIL群体对红莲型CMS的育性恢复由1个主效QTL控制,并受其它几个微效QTL的影响。该QTL定位结果与小穗育性在测交F1群体中呈连续的双峰分布的结果相一致。与主效QTL qRF-10-1紧密连锁的SSR标记为RM258,该主效QTL可作为分子标记辅助育种的操作目标之一,用于杂交稻分子育种中培育红莲型CMS的强恢复系。  相似文献   

11.
Hao W  Lin HX 《遗传学报》2010,37(10):653-666
Rice is the primary carbohydrate staple cereal feeding the world population. Many genes, known as quantitative trait loci (QTLs), con-trol most of the agronomically important traits in rice. The identification of QTLs controlling agricultural traits is vital to increase yield and meet the needs of the increasing human population, but the progress met with challenges due to complex QTL inheritance. To date,many QTLs have been detected in rice, including those responsible for yield and grain quality; salt, drought and submergence tolerance;disease and insect resistance; and nutrient utilization efficiency. Map-based cloning techniques have enabled scientists to successfully fine map and clone approximately seventeen QTLs for several traits. Additional in-depth functional analyses and characterizations of these genes will provide valuable assistance in rice molecular breeding.  相似文献   

12.
A rice mutant,G069, characteristic of few tiller numbers, was found in anther culture progeny from theF 1 hybrid between anindica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent,G069 was further backcrossed with the recurrent parent,02428, for two turns to develop aBC 2F2 population. Genetic analysis in theBC 2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants inBC 2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C424 and S13984 with a genetic distance of 2.4 cM and 0.6 cM, respectively. The gene is designatedft1.  相似文献   

13.
The identification of genetic factors underlying the complex responses of plants to drought stress provides a solid basis for improving drought resistance. The stay-green character in sorghum (Sorghum bicolor L. Moench) is a post-flowering drought resistance trait, which makes plants resistant to premature senescence under drought stress during the grainfilling stage. The objective of this study was to identify quantitative trait loci (QTLs) that control premature senescence and maturity traits, and to investigate their association under post-flowering drought stress in grain sorghum. A genetic linkage map was developed using a set of recombinant inbred lines (RILs) obtained from the cross B35 × Tx430, which were scored for 142 restriction fragment length polymorphism (RFLP) markers. The RILs and their parental lines were evaluated for post-flowering drought resistance and maturity in four environments. Simple interval mapping identified seven stay-green QTLs and two maturity QTLs. Three major stay-green QTLs (SGA, SGD and SGG) contributed to 42% of the phenotypic variability (LOD 9.0) and four minor QTLs (SGB, SGI.1, SGI.2, and SGJ) significantly contributed to an additional 25% of the phenotypic variability in stay-green ratings. One maturity QTL (DFB) alone contributed to 40% of the phenotypic variability (LOD 10.0), while the second QTL (DFG) significantly contributed to an additional 17% of the phenotypic variability (LOD 4.9). Composite interval mapping confirmed the above results with an additional analysis of the QTL × Environment interaction. With heritability estimates of 0.72 for stay-green and 0.90 for maturity, the identified QTLs explained about 90% and 63% of genetic variability for stay-green and maturity traits, respectively. Although stay-green ratings were significantly correlated (r=0.22, P ≤ 0.05) with maturity, six of the seven stay-green QTLs were independent of the QTLs influencing maturity. Similarly, one maturity QTL (DFB) was independent of the stay-green QTLs. One stay-green QTL (SGG), however, mapped in the vicinity of a maturity QTL (DFG), and all markers in the vicinity of the independent maturity QTL (DFB) were significantly (P ≤ 0.1) correlated with stay-green ratings, confounding the phenotyping of stay-green. The molecular genetic analysis of the QTLs influencing stay-green and maturity, together with the association between these two inversely related traits, provides a basis for further study of the underlying physiological mechanisms and demonstrates the possibility of improving drought resistance in plants by pyramiding the favorable QTLs. Received: 10 October 1998 / Accepted: 12 July 1999  相似文献   

14.
Green-revertible albino is a novel type of chlorophyll deficiency in rice (Oryza sativa L.), which is helpful for further research in chlorophyll synthesis and chloroplast development to illuminate their molecular mechanism. In the previous study, we had reported a single recessive gene, gra(t), controlling this trait on the long arm of chromosome 2. In this paper, we mapped the gra(t) gene using 1,936 recessive individuals with albino phenotype in the F2 population derived from the cross between themo-photoperiod-sensitive genic male-sterile (T/PGMS) line Pei'ai 64S and the spontaneous mutant Qiufeng M. Eventually, it was located to a confined region of 42.4 kb flanked by two microsatellite markers RM2-97 and RM13553. Based on the annotation results of RiceGAAS system, 11 open reading frames (ORFs) were predicted in this region. Among them, ORF6 was the most possible gene related to chloroplast development, which encoded the chloroplast protein synthesis elongation factor Tu in rice. Therefore, we designated it as the candidate gene of gra(t). Sequence analysis indicated that only one base substitution C to T occurred in the coding region, which caused a missense mutation (Thr to Ile) in gra(t) mutant. These results are very valuable for further study on gra(t) gene.  相似文献   

15.
水稻RIL群体芽期耐冷性基因的分子标记定位   总被引:11,自引:0,他引:11  
水稻芽期冷害是我国长江中下游的早稻种植区和东北、西北稻区及云贵高原的一季稻区水稻生产中的重要限制因子之一。研究中利用纸卷法测定1个水稻重组自交系群体对10℃低温的芽期耐冷性,结合1张高密度分子遗传图谱,进行QTL定位分析。检测到控制水稻芽期耐冷性的4个QTL,分别位于1、3、7和11号染色体上。其中,位于11号染色体上的QTL qSCT-11的效应最大,在10℃低温处理13d时,对性状的贡献率达26%~30%,被检测到的LOD值也高达16~19,其加性效应值为正,增效等位基因存在于亲本Lemont中,RM202为与QTL qSCT-11紧密连锁的SSR标记。该主效QTL的增效基因,可作为分子标记辅助选择的操作对象用于水稻芽期耐冷性的遗传改良。  相似文献   

16.
利用一个来源于粳/籼交组合的水稻重组自交系群体进行盆栽试验,设正常肥力(对照CK)和低肥力(不施肥)2个处理,分别在播种后25d(时期Ⅰ)和50d(时期Ⅱ)取样测定秧苗的苗高。结合一张含有198个标记的高密度分子遗传图谱,对性状进行复合区间作图。共检测到8个水稻苗高QTL,分别位于第1、3、5、6、8和10号染色体上,各QTL对性状的贡献率为4%~12%。通过对2种肥力水平下水稻苗高QTL的比较分析,发现大多数QTL只在1种肥力水平下表达,QTL与不同肥力水平之间存在着显著的互作。唯一一个在2种肥力水平下均能稳定起作用、而且加性效应的方向一致的QTL是qSH-3-2,该QTL位于3号染色体标记区间RM156-RM16,其加性效应值为正,增效基因来自于亲本Lemont。此外,有3个QTL(qSH-1、qSH-3-3和qSH-5)在2个抽样时期均起作用,且加性效应的方向一致。对利用分子标记辅助选择改良水稻品种的耐低肥特性的育种策略进行了讨论。  相似文献   

17.
Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (~500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ~22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.  相似文献   

18.
不同温度条件下水稻种子活力QTL的定位分析   总被引:6,自引:0,他引:6  
为了揭示基因型与环境温度之间的互作对种子活力的影响,利用1个粳籼交来源的重组自交系群体,采用纸卷法在15、20和25℃条件下进行发芽试验,考察了发芽率、芽长、根长及干重等4个种子活力相关性状。结合一张含有198个DNA标记的连锁图谱,用作图软件QTL Mapper1.0定位与种子活力相关的QTL。共检测到34个主效应QTL。这些QTL中的绝大多数(82%)成簇分布于第3、5和8号染色体的5个不同染色体区段上,分别被命名为QTL qSV-3-1、qSV-3-2、qSV-5、qSV-8-1和qSV-8-2。其中,QTL qSV-3-1、qSV-3-2和qSV-8-1对种子活力的效应大小和方向在3个温度条件下均较一致;而QTL qSV-5和qSV-8-2主要在20和25℃条件下起作用,在15℃低温条件下作用甚微或不起作用。表明种子活力QTL具有显著的基因型与环境温度之间的互作,而且这种互作具有明显的QTL特异性。芽长是唯一同时受5个与种子活力高度相关的染色体区段共同影响的指标,因此,相对而言,作为水稻种子活力的测定指标,芽长是最具有代表性的。  相似文献   

19.
 A doubled-haploid rice population of 123 lines from Azucena/IR64 was used for analyzing the developmental behavior of tiller number by conditional and unconditional QTL mapping methods. It was indicated that the number of QTLs significantly affecting tiller number was different at different measuring stages. Many QTLs controlling tiller growth identified at the early stages were undetectable at the final stage. Only one QTL could be detected across the whole growth period. By conditional QTL mapping, more QTLs for tiller number could be detected than that by unconditional mapping. The temporal patterns of gene expression for tiller number could be different at different stages. Even an individual gene or genes at the same genomic region might have opposite genetic effects at various growth stages. Received: 7 July 1997 / Accepted: 10 February 1998  相似文献   

20.
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), usually causes serious rice yield loss in many countries. Rice breeders have used resistance (R) genes to control the disease but many of the resistant cultivars become susceptible few years after releasing. Identification of new R genes to Xoo is one of the main objectives in rice breeding programs. In this study, we used a genomewide association study (GWAS) to analyse the resistance against the Xoo race C1 using the Rice Diversity Panel 1 (RDP1). Disease evaluation of the RDP1 population to C1 indicated that the AUS subgroup conferred a higher level of resistance to C1 than other subgroups. Genomewide association mapping identified 15 QTLs that are distributed on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 10 and 12. Some of them are located in the regions without known resistance loci or QTLs. This study demonstrated the effectiveness of GWAS on the genetic dissection of rice resistance to Xoo and provided many Xoo resistance‐associated SNP markers for rice breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号