首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saframycin A (SFM-A), produced by Streptomyces lavendulae NRRL 11002, belongs to the tetrahydroisoquinoline family of antibiotics, and its core is structurally similar to the core of ecteinascidin 743, which is a highly potent antitumor drug isolated from a marine tunicate. In this study, the biosynthetic gene cluster for SFM-A was cloned and localized to a 62-kb contiguous DNA region. Sequence analysis revealed 30 genes that constitute the SFM-A gene cluster, encoding an unusual nonribosomal peptide synthetase (NRPS) system and tailoring enzymes and regulatory and resistance proteins. The results of substrate prediction and in vitro characterization of the adenylation specificities of this NRPS system support the hypothesis that the last module acts in an iterative manner to form a tetrapeptidyl intermediate and that the colinearity rule does not apply. Although this mechanism is different from those proposed for the SFM-A analogs SFM-Mx1 and safracin B (SAC-B), based on the high similarity of these systems, it is likely they share a common mechanism of biosynthesis as we describe here. Construction of the biosynthetic pathway of SFM-Y3, an aminated SFM-A, was achieved in the SAC-B producer (Pseudomonas fluorescens). These findings not only shed new insight on tetrahydroisoquinoline biosynthesis but also demonstrate the feasibility of engineering microorganisms to generate structurally more complex and biologically more active analogs by combinatorial biosynthesis.  相似文献   

2.
The GE81112 tetrapeptides (1–3) represent a structurally unique class of antibiotics, acting as specific inhibitors of prokaryotic protein synthesis. Here we report the cloning and sequencing of the GE81112 biosynthetic gene cluster from Streptomyces sp. L-49973 and the development of a genetic manipulation system for Streptomyces sp. L-49973. The biosynthetic gene cluster for the tetrapeptide antibiotic GE81112 (getA-N) was identified within a 61.7-kb region comprising 29 open reading frames (open reading frames), 14 of which were assigned to the biosynthetic gene cluster. Sequence analysis revealed the GE81112 cluster to consist of six nonribosomal peptide synthetase (NRPS) genes encoding incomplete di-domain NRPS modules and a single free standing NRPS domain as well as genes encoding other biosynthetic and modifying proteins. The involvement of the cloned gene cluster in GE81112 biosynthesis was confirmed by inactivating the NRPS gene getE resulting in a GE81112 production abolished mutant. In addition, we characterized the NRPS A-domains from the pathway by expression in Escherichia coli and in vitro enzymatic assays. The previously unknown stereochemistry of most chiral centers in GE81112 was established from a combined chemical and biosynthetic approach. Taken together, these findings have allowed us to propose a rational model for GE81112 biosynthesis. The results further open the door to developing new derivatives of these promising antibiotic compounds by genetic engineering.  相似文献   

3.
Ca(2+)-dependent cyclic lipodepsipeptides are an emerging class of antibiotics for the treatment of infections caused by Gram-positive pathogens. These compounds are synthesized by nonribosomal peptide synthetase (NRPS) complexes encoded by large gene clusters. The gene cluster encoding biosynthetic pathway enzymes for the Streptomyces fradiae A54145 NRP was cloned from a cosmid library and characterized. Four NRPS-encoding genes, responsible for subunits of the synthetase, as well as genes for accessory functions such as acylation, methylation and hydroxylation, were identified by sequence analysis in a 127 kb region of DNA that appears to be located subterminally in the bacterial chromosome. Deduced epimerase domain-encoding sequences within the NRPS genes indicated a D: -stereochemistry for Glu, Lys and Asn residues, as observed for positionally analogous residues in two related compounds, daptomycin, and the calcium-dependent antibiotic (CDA) produced by Streptomyces roseosporus and Streptomyces coelicolor, respectively. A comparison of the structure and the biosynthetic gene cluster of A54145 with those of the related peptides showed many similarities. This information may contribute to the design of experiments to address both fundamental and applied questions in lipopeptide biosynthesis, engineering and drug development.  相似文献   

4.
Many bacteria use nonribosomal peptide synthetase (NRPS) proteins to produce peptide antibiotics and siderophores. The catalytic domains of the NRPS proteins are usually linked in large multidomain proteins. Often, additional proteins are coexpressed with NRPS proteins that modify the NRPS peptide products, ensure the availability of substrate building blocks, or play a role in the import or export of the NRPS product. Many NRPS clusters include a small protein of approximately 80 amino acids with homology to the MbtH protein of mycobactin synthesis in Mycobacteria tuberculosis; no function has been assigned to these proteins. Pseudomonas aeruginosa utilizes an NRPS cluster to synthesize the siderophore pyoverdine. The pyoverdine peptide contains a dihydroxyquinoline-based chromophore, as well as two formyl-N-hydroxyornithine residues, which are involved in iron binding. The pyoverdine cluster contains four modular NRPS enzymes and 10-15 additional proteins that are essential for pyoverdine production. Coexpressed with the pyoverdine synthetic enzymes is a 72-amino acid MbtH-like family member designated PA2412. We have determined the three-dimensional structure of the PA2412 protein and describe here the structure and the location of conserved regions. Additionally, we have further analyzed a deletion mutant of the PA2412 protein for growth and pyoverdine production. Our results demonstrate that PA2412 is necessary for the production or secretion of pyoverdine at normal levels. The PA2412 deletion strain is able to use exogenously produced pyoverdine, showing that there is no defect in the uptake or utilization of the iron-pyoverdine complex.  相似文献   

5.
Armaleo D  Sun X  Culberson C 《Mycologia》2011,103(4):741-754
The genes for polyketide synthases (PKSs), enzymes that assemble the carbon backbones of many secondary metabolites, often cluster with other secondary pathway genes. We describe here the first lichen PKS cluster likely to be implicated in the biosynthesis of a depside and a depsidone, compounds in a class almost exclusively produced by lichen fungi (mycobionts). With degenerate PCR with primers biased toward presumed PKS genes for depsides and depsidones we identified among the many PKS genes in Cladonia grayi four (CgrPKS13-16) potentially responsible for grayanic acid (GRA), the orcinol depsidone characteristic of this lichen. To single out a likely GRA PKS we compared mRNA and GRA induction in mycobiont cultures using the four candidate PKS genes plus three controls; only CgrPKS16 expression closely matched GRA induction. CgrPKS16 protein domains were compatible with orcinol depside biosynthesis. Phylogenetically CgrPKS16 fell in a new subclade of fungal PKSs uniquely producing orcinol compounds. In the C. grayi genome CgrPKS16 clustered with a CytP450 and an o-methyltransferase gene, appropriately matching the three compounds in the GRA pathway. Induction, domain organization, phylogeny and cluster pathway correspondence independently indicated that the CgrPKS16 cluster is most likely responsible for GRA biosynthesis. Specifically we propose that (i) a single PKS synthesizes two aromatic rings and links them into a depside, (ii) the depside to depsidone transition requires only a cytochrome P450 and (iii) lichen compounds evolved early in the radiation of filamentous fungi.  相似文献   

6.
The enzymes for galactose metabolism in Saccharomyces cerevisiae are encoded by three tightly linked genes. Data presented in this paper show that, in contrast to enzymes encoded by other gene clusters in yeast, these three enzymes are translated as separate polypeptides. First, two of the enzymes encoded by the cluster, galactokinase and uridylyl transferase. purified to near homogeneity, are separate polypeptides. Second, no precursor polypeptide-containing sequences common to both these enzymes is detectable in extracts from galactose-induced yeast cells. Third, no partial or absolute polarity of expression of the enzymes is observed in strains containing nonsense mutations in any of the genes of the cluster.Expression of the three galactose metabolic enzymes is co-ordinate, both during induction and during steady-state synthesis. This is true both for wild-type yeast strains and for strains carrying the long-term galactose adaptation mutation, gal3. In GAL3+ strains mutations within the galactose gene cluster have no effect on this co-ordinate expression. However, in gal3? strains, mutations in any of the genes of the cluster completely eliminate expression of the other two genes. These results suggest that the GAL3 gene product is responsible for inducer synthesis and that the actual inducer is an intermediate in galactose metabolism.  相似文献   

7.
Clavicipitaceous fungal endophytes of the genera Epichlo? and Neotyphodium form symbioses with grasses of the subfamily Pooideae, in which they can synthesize an array of bioprotective alkaloids. Some strains produce the ergopeptine alkaloid ergovaline, which is implicated in livestock toxicoses caused by ingestion of endophyte-infected grasses. Cloning and analysis of a nonribosomal peptide synthetase (NRPS) gene from Neotyphodium lolii revealed a putative gene cluster for ergovaline biosynthesis containing a single-module NRPS gene, lpsB, and other genes orthologous to genes in the ergopeptine gene cluster of Claviceps purpurea and the clavine cluster of Aspergillus fumigatus. Despite conservation of gene sequence, gene order is substantially different between the N. lolii, C. purpurea, and A. fumigatus ergot alkaloid gene clusters. Southern analysis indicated that the N. lolii cluster was linked with previously identified ergovaline biosynthetic genes dmaW and lpsA. The ergovaline genes are closely associated with transposon relics, including retrotransposons and autonomous and nonautonomous DNA transposons. All genes in the cluster were highly expressed in planta, but expression was very low or undetectable in mycelia from axenic culture. This work provides a genetic foundation for elucidating biochemical steps in the ergovaline pathway, the ecological role of individual ergot alkaloid compounds, and the regulation of their synthesis in planta.  相似文献   

8.
9.
Pyridomycin is a structurally unique antimycobacterial cyclodepsipeptide containing rare 3-(3-pyridyl)-l-alanine and 2-hydroxy-3-methylpent-2-enoic acid moieties. The biosynthetic gene cluster for pyridomycin has been cloned and identified from Streptomyces pyridomyceticus NRRL B-2517. Sequence analysis of a 42.5-kb DNA region revealed 26 putative open reading frames, including two nonribosomal peptide synthetase (NRPS) genes and a polyketide synthase gene. A special feature is the presence of a polyketide synthase-type ketoreductase domain embedded in an NRPS. Furthermore, we showed that PyrA functioned as an NRPS adenylation domain that activates 3-hydroxypicolinic acid and transfers it to a discrete peptidyl carrier protein, PyrU, which functions as a loading module that initiates pyridomycin biosynthesis in vivo and in vitro. PyrA could also activate other aromatic acids, generating three pyridomycin analogues in vivo.  相似文献   

10.
In the beta-proteobacterium Azoarcus evansii, the aerobic metabolism of 2-aminobenzoate (anthranilate), phenylacetate, and benzoate proceeds via three unprecedented pathways. The pathways have in common that all three substrates are initially activated to coenzyme A (CoA) thioesters and further processed in this form. The two initial steps of 2-aminobenzoate metabolism are catalyzed by a 2-aminobenzoate-CoA ligase forming 2-aminobenzoyl-CoA and by a 2-aminobenzoyl-CoA monooxygenase/reductase (ACMR) forming 2-amino-5-oxo-cyclohex-1-ene-1-carbonyl-CoA. Eight genes possibly involved in this pathway, including the genes encoding 2-aminobenzoate-CoA ligase and ACMR, were detected, cloned, and sequenced. The sequence of the ACMR gene showed that this enzyme is an 87-kDa fusion protein of two flavoproteins, a monooxygenase (similar to salicylate monooxygenase) and a reductase (similar to old yellow enzyme). Besides the genes for the initial two enzymes, genes for three enzymes of a beta-oxidation pathway were found. A substrate binding protein of an ABC transport system, a MarR-like regulator, and a putative translation inhibitor protein were also encoded by the gene cluster. The data suggest that, after monooxygenation/reduction of 2-aminobenzoyl-CoA, the nonaromatic CoA thioester intermediate is metabolized further by beta-oxidation. This implies that all subsequent intermediates are CoA thioesters and that the alicyclic carbon ring is not cleaved oxygenolytically. Surprisingly, the cluster of eight genes, which form an operon, is duplicated. The two copies differ only marginally within the coding regions but differ substantially in the respective intergenic regions. Both copies of the genes are coordinately expressed in cells grown aerobically on 2-aminobenzoate.  相似文献   

11.
12.
13.
Clavicipitaceous fungal endophytes of the genera Epichloë and Neotyphodium form symbioses with grasses of the subfamily Pooideae, in which they can synthesize an array of bioprotective alkaloids. Some strains produce the ergopeptine alkaloid ergovaline, which is implicated in livestock toxicoses caused by ingestion of endophyte-infected grasses. Cloning and analysis of a nonribosomal peptide synthetase (NRPS) gene from Neotyphodium lolii revealed a putative gene cluster for ergovaline biosynthesis containing a single-module NRPS gene, lpsB, and other genes orthologous to genes in the ergopeptine gene cluster of Claviceps purpurea and the clavine cluster of Aspergillus fumigatus. Despite conservation of gene sequence, gene order is substantially different between the N. lolii, C. purpurea, and A. fumigatus ergot alkaloid gene clusters. Southern analysis indicated that the N. lolii cluster was linked with previously identified ergovaline biosynthetic genes dmaW and lpsA. The ergovaline genes are closely associated with transposon relics, including retrotransposons and autonomous and nonautonomous DNA transposons. All genes in the cluster were highly expressed in planta, but expression was very low or undetectable in mycelia from axenic culture. This work provides a genetic foundation for elucidating biochemical steps in the ergovaline pathway, the ecological role of individual ergot alkaloid compounds, and the regulation of their synthesis in planta.  相似文献   

14.
The phosphopantetheinyl transferases (PPTases) are responsible for the activation of the carrier protein domains of the polyketide synthases (PKS), non ribosomal peptide synthases (NRPS) and fatty acid synthases (FAS). The analysis of the Streptomyces ambofaciens ATCC23877 genome has revealed the presence of four putative PPTase encoding genes. One of these genes appears to be essential and is likely involved in fatty acid biosynthesis. Two other PPTase genes, samT0172 (alpN) and samL0372, are located within a type II PKS gene cluster responsible for the kinamycin production and an hybrid NRPS-PKS cluster involved in antimycin production, respectively, and their products were shown to be specifically involved in the biosynthesis of these secondary metabolites. Surprisingly, the fourth PPTase gene, which is not located within a secondary metabolite gene cluster, appears to play a pleiotropic role. Its product is likely involved in the activation of the acyl- and peptidyl-carrier protein domains within all the other PKS and NRPS complexes encoded by S. ambofaciens. Indeed, the deletion of this gene affects the production of the spiramycin and stambomycin macrolide antibiotics and of the grey spore pigment, all three being PKS-derived metabolites, as well as the production of the nonribosomally produced compounds, the hydroxamate siderophore coelichelin and the pyrrolamide antibiotic congocidine. In addition, this PPTase seems to act in concert with the product of samL0372 to activate the ACP and/or PCP domains of the antimycin biosynthesis cluster which is also responsible for the production of volatile lactones.  相似文献   

15.
16.
Neotyphodium and Epichloë spp are closely related asexual and sexual endophytic fungi, respectively, that form mutualistic associations with cool season grasses of the subfamily Pooideae. The endophytes confer a number of advantages to their hosts, but also can cause animal toxicoses and these effects are, in many cases, due to the production of fungal secondary metabolites. In filamentous fungi, secondary metabolite genes are commonly clustered and, for those pathways involved in non-ribosomal peptide synthesis, a non-ribosomal peptide synthetase (NRPS) gene is always found as a key component of the cluster. Members of this gene family encode large multifunctional enzymes that synthesize a diverse range of bioactive compounds and in numerous cases have been shown to serve as pathogenicity or virulence factors, in addition to suggested roles in niche adaptation. We have used a degenerate PCR approach to identify members of the NRPS gene family from symbiotic fungi of the Neotyphodium/Epichloë complex, and have shown that collectively, at least 12 NRPS genes exist within the genomes examined. This suggests that secondary metabolites are important during the life cycles of these fungi with their hosts. Indeed, both the ergovaline and peramine biosynthetic pathways, which confer competitive abilities to Neotyphodium and Epichloë symbioses, contain NRPS genes at their core. The distribution of these genes among different Neotyphodium/Epichloë lineages suggests that a common ancestor contributed most of the complement of NRPS genes, which have been either retained or lost during the evolution of these fungi.  相似文献   

17.
Mycobacterium tuberculosis encodes mycobactin, a peptide siderophore that is biosynthesized by a nonribosomal peptide synthetase (NRPS) mechanism. Within the mycobactin biosynthetic gene cluster is a gene that encodes a 71-amino-acid protein MbtH. Many other NRPS gene clusters harbor mbtH homologs, and recent genetic, biochemical, and structural studies have begun to shed light on the function(s) of these proteins. In some cases, MbtH-like proteins are required for biosynthesis of their cognate peptides, and non-cognate MbtH-like proteins have been shown to be partially complementary. Biochemical studies revealed that certain MbtH-like proteins participate in tight binding to NRPS proteins containing adenylation (A) domains where they stimulate adenylation reactions. Expression of MbtH-like proteins is important for a number of applications, including optimal production of native and genetically engineered secondary metabolites produced by mechanisms that employ NRPS enzymes. They also may serve as beacons to identify gifted actinomycetes and possibly other bacteria that encode multiple functional NRPS pathways for discovery of novel secondary metabolites by genome mining.  相似文献   

18.
Fungal secondary metabolites are an important source of bioactive compounds for agrochemistry and pharmacology. Over the past decade, many studies have been undertaken to characterize the biosynthetic pathways of fungal secondary metabolites. This effort has led to the discovery of new compounds, gene clusters, and key enzymes, and has been greatly supported by the recent releases of fungal genome sequences. In this review, we present results from a search for genes involved in secondary metabolism and their clusters in the genome of the rice pathogen, Magnaporthe grisea, as well as in other fungal genomes. We have also performed a phylogenetic analysis of recently discovered genes encoding hybrids between a polyketide synthase and a single non-ribosomal peptide synthetase module (PKS–NRPS), as M. grisea seems rich in these enzymes compared with other fungi. Using results from expression and functional studies, we discuss the role of these PKS-NRPS in the avirulence and pathogenicity of M. grisea.  相似文献   

19.
20.
The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as an end product by some fungi, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesized by both bacteria and fungi, e.g., by the fungus Acremonium chrysogenum (Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. Penicillin biosynthesis is catalyzed by three enzymes encoded by acvA (pcbAB), ipnA (pcbC), and aatA (penDE). The genes are organized into a cluster. In A. chrysogenum, in addition to acvA and ipnA, a second cluster contains the genes encoding enzymes that catalyze the reactions of the later steps of the cephalosporin pathway (cefEF and cefG). Within the last few years, several studies have indicated that the fungal β-lactam biosynthesis genes are controlled by a complex regulatory network, e.g., by the ambient pH, carbon source, and amino acids. A comparison with the regulatory mechanisms (regulatory proteins and DNA elements) involved in the regulation of genes of primary metabolism in lower eukaryotes is thus of great interest. This has already led to the elucidation of new regulatory mechanisms. Furthermore, such investigations have contributed to the elucidation of signals leading to the production of β-lactams and their physiological meaning for the producing fungi, and they can be expected to have a major impact on rational strain improvement programs. The knowledge of biosynthesis genes has already been used to produce new compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号