共查询到19条相似文献,搜索用时 0 毫秒
1.
PAF is involved in the Mycoplasma arthritidis superantigen-triggering pathway for iNOS and COX-2 expression in murine peritoneal cells 总被引:1,自引:0,他引:1
We investigated the capacity of Mycoplasma arthritidis mitogen (MAM) to induce (a) expression of the inducible enzymes cyclo-oxygenase (COX-2) and nitric oxide synthase (iNOS), (b) production of prostaglandin E2 (PGE2) and nitric oxide (NO), and (c) involvement of platelet-activating factor (PAF) in the MAM-induced activation pathway. Resident peritoneal cells from C3H/HePas mice were incubated with MAM in the presence or absence of a PAF-antagonist (WEB2170) or COX-2 inhibitors (nimesulide or NS398). Enzyme expression was evaluated by immunoblotting, PGE2 by EIA, and NO by Griess reaction. Following MAM-stimulation of peritoneal cells, expression of COX-2 was detected at 3 h (peak levels at 12 h) and of iNOS at 6 h (peak levels at 20 h). PGE2 increased till 20 h, decreasing thereafter, whereas NO increased with time. WEB2170 (5 x 10(-5) M) treatment caused 44% inhibition of NO output and reduced iNOS expression (48% at the peak of expression). Concomitant treatment with WEB2170 and nimesulide (10(-5) M) reversed these inhibitory effects. WEB2170 reduced COX-2 expression (43% at the peak of expression) and prevented the decline in PGE2 levels after 20 h. These results suggest the involvement of PAF in the signaling pathway triggered by MAM that leads to expression of iNOS and COX-2, and show that PAF regulates the production of NO, possibly by controlling levels of PGE2. 相似文献
2.
MDHM, a macrophage-activating product of Mycoplasma fermentans, stimulates murine macrophages to synthesize nitric oxide and become tumoricidal 总被引:1,自引:0,他引:1
Dorothee Ruschmeyer Hansjörg Thude Peter F. Mühlradt 《FEMS immunology and medical microbiology》1993,7(3):223-230
Abstract In continuation of previous work on macrophage activation by a Mycoplasma fermentans -derived product, originally named “mycoplasma-derived high mol. wt. material” (MDHM), we have investigated whether MDHM was capable of inducing synthesis of the reactive nitrogen intermediate nitric oxide (NO), thus rendering macrophages cytocidal. Mycoplasmas were first delipidated with acetone, and MDHM activity was then extracted with 50 mM 1-O-octyl-β- d -glucopyranoside to yield a particularly active new preparation of MDHM which we have named MDHM-D (D for detergent). In combination with IFN-γ, MDHM-D activated macrophages to produce reactive nitrogen intermediates and kill P815 mastocytoma cells in co-culture. P815 target cells were chosen because they are TNF-resistant. Macrophages from the LPS-low responder strain C3H/HeJ were used to minimize interference from possible LPS contamination. MDHM-D activity in this system was strictly IFN-γ-dependent. In the presence of 25 U/ml IFN-γ MDHM-D gave a half maximal response at a dilution of 1/100 000, showing a parallel concentration dependency for nitrite production and cytocidal activity. 相似文献
3.
Cheshire DR Åberg A Andersson GM Andrews G Beaton HG Birkinshaw TN Boughton-Smith N Connolly S Cook TR Cooper A Cooper SL Cox D Dixon J Gensmantel N Hamley PJ Harrison R Hartopp P Käck H Leeson PD Luker T Mete A Millichip I Nicholls DJ Pimm AD St-Gallay SA Wallace AV 《Bioorganic & medicinal chemistry letters》2011,21(8):2468-2471
By careful analysis of experimental X-ray ligand crystallographic protein data across several inhibitor series we have discovered a novel, potent and selective series of iNOS inhibitors exemplified by compound 8. 相似文献
4.
Abdellatif KR Huang Z Chowdhury MA Kaufman S Knaus EE 《Bioorganic & medicinal chemistry letters》2011,21(13):3951-3956
A novel hybrid nitric oxide-releasing anti-inflammatory (AI) ester prodrug (NONO-coxib 14) wherein an O2-acetoxymethyl 1-(2-carboxypyrrolidin-1-yl)diazen-1-ium-1,2-diolate (O2-acetoxymethyl PROLI/NO) NO-donor moiety was covalently coupled to the CH2OH group of 3-(4-hydroxymethylphenyl)-4-(4-methylsulfonylphenyl)-5H-furan-2-one (12), was synthesized. The prodrug 14 released a low amount of NO (4.2%) upon incubation with phosphate buffer (PBS) at pH 7.4 which was significantly higher (34.8% of the theoretical maximal release of two molecules of NO/molecule of the parent hybrid ester prodrug) upon incubation in the presence of rat serum. These incubation studies suggest that both NO and the parent compound 12 would be released from the prodrug 14 upon in vivo cleavage by non-specific serum esterases. The prodrug ester 14 is a selective COX-2 inhibitor that exhibited AI activity (ED50 = 72.2 mmol/kg po) between that of the reference drugs celecoxib (ED50 = 30.9 μmol/kg po) and ibuprofen (ED50 = 327 μmol/kg po). The NO donor compound 14 exhibited enhanced inhibition of phenylephrine-induced vasoconstriction of isolated mesenteric arteries compared with that observed under control conditions. These studies indicate hybrid ester AI/NO donor prodrugs (NONO-coxibs) constitutes a plausible drug design concept targeted toward the development of selective COX-2 inhibitory AI drugs that are devoid of adverse cardiovascular effects. 相似文献
5.
Yundong Xie Lihua Shao Qiutang Wang Yue Bai Zizhang Chen Na Li Yanhong Xu Yiping Li Guangde Yang Xiaoli Bian 《Bioorganic & medicinal chemistry letters》2018,28(23-24):3731-3735
Nitric oxide (NO) dysfunction has been found to be an important factor in both the development and progression of diabetic complications due to its many roles in the vascular system. Multifunctional compounds with hypoglycemic and endothelial protective action will be promising agents for the treatment of diabetes and its complications. In this study, a series of novel NO-donating sitagliptin derivatives and relevant metabolites were synthesized and evaluated as potential multifunctional hypoglycemic agents. All of synthetic compounds shown remarkable inhibitory activity against dipeptidyl peptidase IV (DPP-IV) in vitro and demonstrated excellent hypoglycemic activities in diabetic mice, similar to the activity of sitagliptin, and compounds T1-T4 shown different extents of NO-releasing abilities and potent antioxidant abilities in vivo. By screening in DPP-4, compound T4 was recognized as a potent DPP-4 inhibitor with the IC50 value of 0.060?μM. Docking study revealed compound T4 has a favorable binding mode. Furthermore, compounds T1-T4 exhibited different extents of NO-releasing abilities and excellent anti-platelet aggregation in vitro. The overall results suggested that T4 could help to the amelioration of endothelial dysfunction by reducing blood glucose, lessening oxidative stress and raising NO levels as well as inhibiting platelet aggregation. Based on this research, compound T4 deserves further investigation as potential new multifunctional anti-diabetic agent with antioxidant, anti-platelet aggregation and endothelial protective properties. 相似文献
6.
7.
Oliveira Fde S Ferreira KQ Bonaventura D Bendhack LM Tedesco AC Machado Sde P Tfouni E da Silva RS 《Journal of inorganic biochemistry》2007,101(2):313-320
Irradiation of trans-[RuCl(cyclam)(NO)](2+), cyclam is 1,4,8,11-tetraazacyclotetradecane, at pHs 1-7.4, with near UV light results in the release of NO and formation of trans-[Ru(III)Cl(OH)(cyclam)](+) with pH dependent quantum yields (from approximately 0.01 to 0.16 mol Einstein(-1)) lower than that for trans-[RuCl([15]aneN(4))(NO)](2+), [15]aneN(4) is 1,4,8,12-tetaazacyclopentadecane, (0.61 mol Einstein(-1)). After irradiation with 355 nm light, the trans-[RuCl([15]aneN(4))(NO)](2+) induces relaxation of the aortic ring, whereas the trans-[RuCl(cyclam)(NO)](2+) complex does not. The relaxation observed with trans-[RuCl([15]aneN(4))(NO)](2+) is consistent with a larger quantum yield of release of NO from this complex. 相似文献
8.
Dimitrijević M Stanojević S Mitić K Kustrimović N Vujić V Miletić T Kovacević-Jovanović V 《Peptides》2008,29(12):2179-2187
Neuropeptide Y (NPY)-induced modulation of the immune and inflammatory responses is regulated by tissue-specific expression of different receptor subtypes (Y1–Y6) and the activity of the enzyme dipeptidyl peptidase 4 (DP4, CD26) which terminates the action of NPY on Y1 receptor subtype. The present study investigated the age-dependent effect of NPY on inflammatory paw edema and macrophage nitric oxide production in Dark Agouti rats exhibiting a high-plasma DP4 activity, as acknowledged earlier. The results showed that NPY suppressed paw edema in adult and aged, but not in young rats. Furthermore, plasma DP4 activity decreased, while macrophage DP4 activity, as well as macrophage CD26 expression increased with aging. The use of NPY-related peptides and Y receptor-specific antagonists revealed that anti-inflammatory effect of NPY is mediated via Y1 and Y5 receptors. NPY-induced suppression of paw edema in young rats following inhibition of DP4 additionally emphasized the role for Y1 receptor in the anti-inflammatory action of NPY. In contrast to the in vivo situation, NPY stimulated macrophage nitric oxide production in vitro only in young rats, and this effect was mediated via Y1 and Y2 receptors. It can be concluded that age-dependant modulation of inflammatory reactions by NPY is determined by plasma, but not macrophage DP4 activity at different ages. 相似文献
9.
The effects of interferon (IFN-γ), lipopolysaccharide (LPS), and some polyphenols as individual stimuli, as well as in various combinations on NO production in non-infected and infected macrophage-like RAW 264.7 cells were investigated, with emphasis on the NO/parasite kill relationship. In non-infected and in Leishmania parasitized cells, gallic acid significantly inhibited the IFN-γ and LPS-induced NO detected in the supernatant. This effect was less prominent in IFN-γ- than in LPS-stimulated cells. Interestingly, and in contrast to non-infected cells, gallic acid inhibited NO production only when added within 3 h after IFN-γ + LPS. Addition of gallic acid following prolonged incubation with IFN-γ + LPS periods (24 h) no longer inhibited, sometimes even enhanced NO release. Notably, an excellent NO/parasite kill relationship was evident from all the experiments. This study was extended to a series of polyphenols (3-O-shikimic acid, its 3,5-digalloylated analogue, catechin, EGCG, and a procyanidin hexamer) with proven immunostimulatory activities. Although these compounds themselves were found to be weak NO-inducers, the viability of intracellular Leishmania parasites was considerably reduced. Furthermore, their dose-dependent effects on macrophage NO release was determined in the presence of IFN-γ and/or LPS. Again, non-infected and infected cells differed significantly in the NO response, while inhibition of IFN-γ and/or LPS-induced NO production by the tested polyphenols strongly depended on the given time of exposure and the sequence of immunological stimuli. A strong inverse correlation between NO levels and intracellular survival rates of Leishmania parasites supported the assumption that the observed inhibition of NO was not simply due to interference with the Griess assay used for detection. 相似文献
10.
鞘内注射神经激肽-1受体激动剂Sar-SP增强大鼠脊髓一氧化氮合酶表达和一氧化氮生成 总被引:8,自引:0,他引:8
探讨P物质(substance P,SP)对脊髓一氧化氮合酶(nitric oxide synthase,NOS)表达和一氧化氮(nitric oxide,NO)生成的影响。实验用热甩尾法测定大鼠痛阈的变化,分别应用NADPH-d组织化学法和硝酸还原法测定大鼠脊髓内NOS表达和NO生成的变化。结果显示,鞘内注射神经激肽-1受体(neurokinin-1 receptor,NK-1)激动剂[Sar^9,Met(O2)^11]-substance P(Sar-SP)可使大鼠痛阈降低,脊髓后角浅层和中央管周围灰质内NOS表达增强,脊髓腰膨大部位NO生成增多;预先鞘内注射非选择性NK-1受体拮抗剂[D—Arg^1,D-Trp^7,9,Leu^11]-substance P(spantide)可抑制上述变化。结果表明,SP可促进脊髓内NOS表达和NO生成。 相似文献
11.
The NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (py=pyridine) was loaded into poly-lactic-co-glycolic acid (PLGA) microparticles using the double emulsification technique. Scanning electron microscopy (SEM) and dynamic light scattering revealed that the particles are spherical in shape, have a diameter of 1600nm, and have low tendency to aggregate. The entrapment efficiency was 25%. SEM analysis of the melanoma cell B16-F10 in the presence of the microparticles containing the complex trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O (pyMP) showed that the microparticles were adhered to the cell surface after 2h of incubation. The complex with concentrations lower than 1x10(-4)M did not show toxicity in B16-F10 murine cells. The complex in solution is toxic at higher concentrations (>1x10(-3)M), with cell death attributed to NO release following the reduction of the complex. pyMP is not cytotoxic due to the lower bioavailability and availability of the entrapped complex to the medium and its reducing agents. However, pyMP is phototoxic upon light irradiation. The phototoxicity strongly suggests that cell death is due to NO release from trans-[Ru(NO)(NH(3))(4)(py)](3+). This work shows that pyMP can serve as a model for a drug delivery system carrying the NO donor trans-[Ru(NO)(NH(3))(4)(py)](BF(4))(3).H(2)O, which can release NO locally at the tumor cell by irradiation with light only. 相似文献
12.
The possible coexistence of the two non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmitters, adenosine 5-triphosphate and nitric oxide in the myenteric plexus was investigated using whole-mount preparations of rat ileum, proximal colon and anococcygeus muscle. The presence of adenosine 5-triphosphate in neurones was examined using the quinacrine fluorescence technique. After localizing and taking photographs of quinacrine-fluorescent neurones and nerve fibres, the same tissues were then fixed and processed for NADPH-diaphorase activity, a marker for nitric oxide-containing neurones. We have demonstrated for the first time that almost all quinacrine-fluorescent myenteric neurones in the proximal colon are also NADPH-diaphorase reactive, while only a subpopulation of quinacrine-fluorescent neurones in ileum and anococcygeus muscle were also NADPH-diaphorase reactive. 相似文献
13.
The (Na,K)-ATPase is hypothesized to be involved in systemic vascular hypertension through its effects on smooth muscle reactivity and cardiac contractility. Investigating the kinetic properties of the above enzyme we tried to assess the molecular basis of alterations in transmembraneous efflux of Na(+) from cardiac cells in spontaneously hypertensive rats (SHR) with increased synthesis of nitric oxide (NO). In the investigated group of SHR the systolic blood pressure was increased by 64% and the synthesis of NO was increased by 60% in the heart. When activating the cardiac (Na,K)-ATPase with substrate, its activity was higher in SHR in the whole concentration range of ATP. Evaluation of kinetic parameters revealed an increase of the V(max) (by 37%) probably due to increased affinity of the ATP-binding site as indicated by the lowered K(m) value (by 38%) in SHR. During activation with Na(+), we observed no change in the enzyme activity below 10 mmol/l of NaCl whereas in the presence of higher concentrations of NaCl the (Na,K)-ATPase was stimulated. The value of V(max) increased (by 64%), however the K(Na) increased (by 106%), indicating an adaptation of the Na(+)-binding site of the enzyme to increased [Na(+)](i). Thus the (Na,K)-ATPase in our SHR group is able to extrude the excessive Na(+) from myocardial cells more effectively also at higher [Na(+)](i), while the enzyme from controls is unable to increase its activity further. This improvement of the (Na,K)-ATPase function is supported also by increased affinity of its ATP-binding site probably due to enhanced NO-synthesis. 相似文献
14.
The oxidative response of Burkholderia pseudomallei and Escherichia coli infected macrophages from normal and melioidosis subjects was determined by measuring the production of nitric oxide which is one of the reactive nitrogen intermediates, and the activation state of these macrophages was determined by measuring the generation of 8-iso-PGF(2alpha), a bioactive product of free radical induced lipid peroxidation. Macrophages obtained from the melioidosis patients generated significantly lower levels of nitric oxide and 8-iso-PGF(2alpha) compared to macrophages obtained from the normal subjects (P<0.001). The reduced efficiency of the oxygen dependent microbicidal mechanism in macrophages of melioidosis patients may be one of the survival strategies developed by B. pseudomallei to remain viable intracellularly. 相似文献
15.
Rheumatoid arthritis (RA) is a chronic autoimmune systemic inflammatory disease that is characterized by synovial inflammation and bone erosion. We have investigated the mechanism(s) by which essential trace metals may initiate and propagate inflammatory phenotypes in synovial fibroblasts. We used HIG-82, rabbit fibroblast-like synovial cells (FLS), as a model system for potentially initiating RA through oxidative stress. We used potassium peroxychromate (PPC, Cr+5), ferrous chloride (FeCl2, Fe+2), and cuprous chloride (CuCl, Cu+) trace metal agents as exogenous pro-oxidants. Intracellular ROS was quantified by fluorescence microscopy and confirmed by flow cytometry (FC). Protein expression levels were measured by western blot and FC, while ELISA was used to quantify the levels of cytokines. Trace metal agents in different valence states acted as exogenous pro-oxidants that generate reactive oxygen species (ROS), which signal through TLR4 stimulation. ROS/TLR4- coupled activation resulted in the release of HMGB1, TNF-α, IL-1β, and IL-10 in conjunction with upregulation of myeloid-related protein (MRP8/14) inflammatory markers that may contribute to the RA pathophysiology. Our results indicate that oxidant-induced TLR4 activation can release HMGB1 in combination with other inflammatory cytokines to mediate pro-inflammatory actions that contribute to RA pathogenesis. The pathway by which inflammatory and tissue erosive changes may occur in this model system possibly underlies the need for functioning anti-HMGB1-releasing agents and antioxidants that possess both dual trace metal chelating and oxidant scavenging properties in a directed combinatorial therapy for RA. 相似文献
16.
Erridge C Kennedy S Spickett CM Webb DJ 《The Journal of biological chemistry》2008,283(36):24748-24759
The generation of reactive oxygen species is a central feature of inflammation that results in the oxidation of host phospholipids. Oxidized phospholipids, such as 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine (OxPAPC), have been shown to inhibit signaling induced by bacterial lipopeptide or lipopolysaccharide (LPS), yet the mechanisms responsible for the inhibition of Toll-like receptor (TLR) signaling by OxPAPC remain incompletely understood. Here, we examined the mechanisms by which OxPAPC inhibits TLR signaling induced by diverse ligands in macrophages, smooth muscle cells, and epithelial cells. OxPAPC inhibited tumor necrosis factor-alpha production, IkappaBalpha degradation, p38 MAPK phosphorylation, and NF-kappaB-dependent reporter activation induced by stimulants of TLR2 and TLR4 (Pam3CSK4 and LPS) but not by stimulants of other TLRs (poly(I.C), flagellin, loxoribine, single-stranded RNA, or CpG DNA) in macrophages and HEK-293 cells transfected with respective TLRs and significantly reduced inflammatory responses in mice injected subcutaneously or intraperitoneally with Pam3CSK4. Serum proteins, including CD14 and LPS-binding protein, were identified as key targets for the specificity of TLR inhibition as supplementation with excess serum or recombinant CD14 or LBP reversed TLR2 inhibition by OxPAPC, whereas serum accessory proteins or expression of membrane CD14 potentiated signaling via TLR2 and TLR4 but not other TLRs. Binding experiments and functional assays identified MD2 as a novel additional target of OxPAPC inhibition of LPS signaling. Synthetic phospholipid oxidation products 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine inhibited TLR2 signaling from approximately 30 microm. Taken together, these results suggest that oxidized phospholipid-mediated inhibition of TLR signaling occurs mainly by competitive interaction with accessory proteins that interact directly with bacterial lipids to promote signaling via TLR2 or TLR4. 相似文献
17.
Stefanie Fruhwürth Sigurd Krieger Katharina Winter Margit Rosner Mario Mikula Thomas Weichhart Robert Bittman Markus Hengstschläger Herbert Stangl 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2014,1841(7):944-953
The mammalian target of rapamycin (mTOR) inhibiting drug rapamycin (Sirolimus) has severe side effects in patients including hyperlipidemia, an established risk factor for atherosclerosis. Recently, it was shown that rapamycin decreases hepatic LDL receptor (LDL-R) expression, which likely contributes to hypercholesterolemia. Scavenger receptor, class B, type I (SR-BI) is the major HDL receptor and consequently regulating HDL-cholesterol levels and the athero-protective effects of HDL. By using the mTOR inhibitor rapamycin, we show that SR-BI is down-regulated in human umbilical vein endothelial cells (HUVECs). This reduction of SR-BI protein as well as mRNA levels by about 50% did not alter HDL particle uptake or HDL-derived lipid transfer. However, rapamycin reduced HDL-induced activation of eNOS and stimulation of endothelial cell migration. The effects on cell migration could be counteracted by SR-BI overexpression, indicating that decreased SR-BI expression is in part responsible for the rapamycin-induced effects. We demonstrate that inhibition of mTOR leads to endothelial cell dysfunction and decreased SR-BI expression, which may contribute to atherogenesis during rapamycin treatment. 相似文献
18.
Carolina Panis Tânia Longo Mazzuco Cauê Zortéa Fernandes Costa Vanessa Jacob Victorino Vera Lúcia Hideko Tatakihara Lucy Megumi Yamauchi Sueli Fumie Yamada-Ogatta Rubens Cecchini Luiz Vicente Rizzo Phileno Pinge-Filho 《Experimental parasitology》2011,(1):58-65
Leukotrienes are important mediators of inflammatory responses. In this study, we investigated the effect of the absence of 5-lipoxygenase (5-LO)-derived leukotrienes on levels of cytokines, nitric oxide (NO) and iNOS expression in cardiac tissue of mice infected with Trypanosoma cruzi, the agent of Chagas’ disease. NO is a key mediator of parasite killing in mice experimentally infected with T. cruzi, and previous studies have suggested that leukotrienes, such as LTB4, induces NO synthesis in T. cruzi-infected macrophages and plays a relevant role in the killing of parasite in a NO-dependent manner. We therefore investigated whether leukotrienes would have a similar role in vivo in controlling the parasite burden by regulating NO activity. We have made the striking observation that absence of 5-LO-derived leukotrienes results in increased NO and IL-6 production in the plasma with a concomitant decrease in the expression of iNOS in the cardiac tissue on day 12 after T. cruzi infection. These findings indicate that endogenous leukotrienes are important regulators of NO activity in the heart and therefore influence the cardiac parasite burden without exerting a direct action on IL-6 production in the acute phase of infection with T. cruzi. 相似文献
19.
We have shown that human neutrophils develop dynamic thin and very long tubulovesicular extensions (cytonemes) upon adhesion to fibronectin, if cell spreading was blocked by Na(+)-free medium or by 4-bromophenacyl bromide, N-ethylmaleimide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and cytochalasin D (S. I. Galkina, G. F. Sud'ina and V. Ullrich, (2001). Exp. Cell Res. 266, 222-228). In the present work we found that similar in size and behavior tubulovesicular extensions were formed on the neutrophil cell bodies upon adhesion to fibronectin-coated substrata in the presence of the nitric oxide donor diethylamine NONOate. In the presence of the nitric oxide synthase inhibitor N-omega-nitro-L-arginine methyl ester, neutrophils were well spread and had no microextensions. Using scanning electron microscopy, we demonstrated that tubulovesicular extensions of neutrophils executed long-range adhesion and binding objects for phagocytosis, such as serum-opsonized zymosan particles and erythrocytes. Tubulovesicular extensions anchored neutrophils to substrata in a beta1 and beta2 integrin-independent, but L-selectin-dependent manner. BODIPY-sphingomyelin impaired development of tubulovesicular extension, and heparitinase 1 played a role in their destruction. Membrane tubulovesicular extensions are supposed to represent protrusions of an intracellular exocytotic traffic and serve as cellular sensory and adhesive organelles. Nitric oxide seems to play a role in regulation of tubulovesicular extensions formation, thus affecting neutrophil adhesive interactions and phagocytosis. 相似文献