首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Li XH  Wu YJ 《Life sciences》2007,80(9):886-892
Lysophosphatidylcholine (LPC) is an important bioactive lipid. In the nervous system, elevated levels of LPC have been shown to produce demyelination. In the present study, we examined the effect of exogenous LPC on intracellular Ca2+ mobilization in human neuroblastoma SH-SY5Y cells. In Ca2+-containing medium, introduction of LPC induced a steady rise in cytosolic Ca2+ levels ([Ca2+]i) in a dose-dependent manner, and this rise was provoked by LPC itself, not by its hydrolysis product produced by lysophospholipase. The increase in [Ca2+]i was reduced by 36% by removal of extracellular Ca2+, while preincubation of the cells with verapamil, an L-type Ca2+ channel blocker, inhibited the response by 23%, part of the Ca2+ influx. Conversely, Ni2+, which inhibits the Na+-Ca2+ exchanger, or Na+-deprivation did not affect LPC-induced Ca2+ influx. In Ca2+-free medium, depletion of Ca2+ stores in the endoplasmic reticulum (ER) by thapsigargin, an ER Ca2+-ATPase inhibitor, abolished the Ca2+ increase. Moreover, LPC-induced [Ca2+]i increase was fully blocked by ruthenium red and procaine, inhibitors of ryanodine receptor (RyR), but was not affected by 2-aminoethoxydiphenyl borate, an inhibitor of inositol triphosphate receptor, or by pertussis toxin, a G(i/o) protein inhibitor. Combined treatment with verapamil plus thapsigargin markedly inhibited but did not abolish the LPC-induced Ca2+ response. These findings indicate that LPC-induced [Ca2+]i increase depends on both external Ca2+ influx and Ca2+ release from ER Ca2+ stores, in which L-type Ca2+ channels and RyRs may be involved. However, in digitonin-permeabilized SH-SY5Y cells, LPC could not induce any [Ca2+]i increase in Ca2+-free medium, suggesting that LPC may act indirectly on RyRs of ER.  相似文献   

2.
3.
We have used single cell fluorescence imaging techniques to examine how functional properties of the caffeine-sensitive Ca(2+) store change during differentiation of a sub-population of caffeine-sensitive SH-SY5Y cells. Application of caffeine (30 mM) 1-10.5 min after a 'priming' depolarisation pulse of 55 mM K(+) revealed that the caffeine-sensitive store in undifferentiated cells remained replete, whereas that in 9-cis retinoic acid (9cRA)-differentiated cells spontaneously dissipated with a t(1/2) of 2.8 min, and was essentially completely depleted approximately 10 min after priming. In 9cRA-differentiated cells that were stimulated with methacholine (10 microM) 1 min after priming, the amplitude, rate of rise and propagation velocity of the Ca(2+) wave in the neurites were all constant, whereas these kinetic parameters all progressively decreased as the wave travelled along the neurites in cells that were stimulated 10 min after priming. Use-dependent block with ryanodine inhibited the global Ca(2+) signal in 9cRA-differentiated cells stimulated with methacholine 1 min after priming (71+/-8%) but not 10 min after priming. Depolarisation was more effective at priming the caffeine-sensitive Ca(2+) store in 9cRA-differentiated cells, which lack a functional store-operated Ca(2+) entry pathway. We conclude that differentiation of caffeine-sensitive SH-SY5Y cells is accompanied by an increase in lability of the caffeine-sensitive Ca(2+) store, and that spontaneous dissipation of Ca(2+) from the store limits the time course of its molecular 'memory' during which it can amplify the hormone-induced Ca(2+) signal by Ca(2+)-induced Ca(2+) release.  相似文献   

4.
Pancreatitis is an inflammatory disease of pancreatic acinar cells whereby intracellular calcium concentration ([Ca2+]i) signaling and enzyme secretion are impaired. Increased oxidative stress has been suggested to mediate the associated cell injury. The present study tested the effects of the oxidant, hydrogen peroxide, on [Ca2+]i signaling in rat pancreatic acinar cells by simultaneously imaging fura-2, to measure [Ca2+]i, and dichlorofluorescein, to measure oxidative stress. Millimolar concentrations of hydrogen peroxide increased cellular oxidative stress and irreversibly increased [Ca2+]i, which was sensitive to antioxidants and removal of external Ca2+, and ultimately led to cell lysis. Responses were also abolished by pretreatment with (sarco)endoplasmic reticulum Ca2+-ATPase inhibitors, unless cells were prestimulated with cholecystokinin to promote mitochondrial Ca2+ uptake. This suggests that hydrogen peroxide promotes Ca2+ release from the endoplasmic reticulum and the mitochondria and that it promotes Ca2+ influx. Lower concentrations of hydrogen peroxide (10–100 µM) increased [Ca2+]i and altered cholecystokinin-evoked [Ca2+]i oscillations with marked heterogeneity, the severity of which was directly related to oxidative stress, suggesting differences in cellular antioxidant capacity. These changes in [Ca2+]i also upregulated the activity of the plasma membrane Ca2+-ATPase in a Ca2+-dependent manner, whereas higher concentrations (0.1–1 mM) inactivated the plasma membrane Ca2+-ATPase. This may be important in facilitating "Ca2+ overload," resulting in cell injury associated with pancreatitis. oxidant stress; pancreatitis; calcium pump  相似文献   

5.
Inositol-polyphosphate-induced Ca2+ mobilization was investigated in saponin-permeabilized SH-SY5Y human neuroblastoma cells. Ins(1,4,5)P3 induced a dose-related release from intracellular Ca2+ stores with an EC50 (concn. giving half-maximal effect) of 0.1 microM and a maximal release of 70%. Ins(1,3,4)P3, DL-Ins(1,4,5,6)P4 and Ins(1,3,4,5,6)P5 did not evoke Ca2+ mobilization in these cells when used at concentrations up to 10 microM. However, Ins(1,3,4,5)P4 was found to release Ca2+ in a dose-related manner, but the response was dependent on the source of Ins(1,3,4,5)P4 used. When commercially available D-Ins(1,3,4,5)P4 was used, the EC50 and maximal response values were 1 microM and 50% respectively, compared with values for chemically synthesized DL-Ins(1,3,4,5)P4 of 2 microM and 25%. The enhanced maximal response of commercial D-Ins(1,3,4,5)P4 was decreased by pretreatment with rat brain crude Ins(1,4,5)P3 3-kinase and was therefore concluded to be indicative of initial Ins(1,4,5)P3 contamination of the Ins(1,3,4,5)P4 preparation. When metabolism of DL-Ins(1,3,4,5)P4 (10 microM) in these cells at 25 degrees C was investigated by h.p.l.c., substantial amounts of Ins(1,4,5)P3 (0.2 microM) and Ins(1,3,4)P3 (0.8 microM) were found to be produced within 3 min. Analysis of DL-Ins(1,3,4,5)P4 incubation with cells at 4 degrees C, however, indicated that metabolism had been arrested ([3H]Ins(1,4,5)P3 detection limits were estimated to be approx. 0.01 microM). When chemically synthesized DL-Ins(1,3,4,5)P4 and incubation conditions of low temperature were used, the Ca2(+)-releasing properties of this compound were established to be 1 microM and 19% for the EC50 and maximal response values respectively. The results obtained strongly suggest that Ins(1,3,4,5)P4 alone has the ability to release intracellular Ca2+. However, in the presence of sub-maximal concentrations of Ins(1,4,5)P3, Ca2+ release appears to be synergistic with Ins(1,3,4,5)P4, but at supramaximal concentrations not even additive effects are observed.  相似文献   

6.
Human neuroblastoma SH-SY5Y cells, predominantly expressing type 1 inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), were stably transfected with IP(3)R type 3 (IP(3)R3) cDNA. Immunocytochemistry experiments showed a homogeneous cytoplasmic distribution of type 3 IP(3)Rs in transfected and selected high expression cloned cells. Using confocal Ca(2+) imaging, carbachol (CCh)-induced Ca(2+) release signals were studied. Low CCh concentrations (< or = 750 nM) evoked baseline Ca(2+) oscillations. Transfected cells displayed a higher CCh responsiveness than control or cloned cells. Ca(2+) responses varied between fast, large Ca(2+) spikes and slow, small Ca(2+) humps, while in the clone only Ca(2+) humps were observed. Ca(2+) humps in the transfected cells were associated with a high expression level of IP(3)R3. At high CCh concentrations (10 microM) Ca(2+) transients in transfected and cloned cells were similar to those in control cells. In the clone exogenous IP(3)R3 lacked the C-terminal channel domain but IP(3)-binding capacity was preserved. Transfected cells mainly expressed intact type 3 IP(3)Rs but some protein degradation was also observed.We conclude that in transfected cells expression of functional type 3 IP(3)Rs causes an apparent higher affinity for IP(3). In the clone, the presence of degraded receptors leads to an efficient cellular IP(3) buffer and attenuated IP(3)-evoked Ca(2+) release.  相似文献   

7.
Neuronal nicotinic acetylcholine receptors (nAChR) can regulate several neuronal processes through Ca2+-dependent mechanisms. The versatility of nAChR-mediated responses presumably reflects the spatial and temporal characteristics of local changes in intracellular Ca2+ arising from a variety of sources. The aim of this study was to analyse the components of nicotine-evoked Ca2+ signals in SH-SY5Y cells, by monitoring fluorescence changes in cells loaded with fluo-3 AM. Nicotine (30 microm) generated a rapid elevation in cytoplasmic Ca2+ that was partially and additively inhibited (40%) by alpha7 and alpha3beta2* nAChR subtype selective antagonists; alpha3beta4* nAChR probably account for the remaining response (60%). A substantial blockade (80%) by CdCl2 (100 microm) indicates that voltage-operated Ca2+ channels (VOCC) mediate most of the nicotine-evoked response, although the alpha7 selective antagonist alpha-bungarotoxin (40 nm) further decreased the CdCl2- resistant component. The elevation of intracellular Ca2+ levels provoked by nicotine was sustained for at least 10 min and required the persistent activation of nAChR throughout the response. Intracellular Ca2+ stores were implicated in both the initial and sustained nicotine-evoked Ca2+ responses, by the blockade observed after ryanodine (30 microm) and the inositoltriphosphate (IP3)-receptor antagonist, xestospongin-c (10 microm). Thus, nAChR subtypes are differentially coupled to specific sources of Ca2+: activation of nAChR induces a sustained elevation of intracellular Ca2+ levels which is highly dependent on the activation of VOCC, and also involves Ca2+ release from ryanodine and IP3-dependent intracellular stores. Moreover, the alpha7, but not alpha3beta2* nAChR, are responsible for a fraction of the VOCC-independent nicotine-evoked Ca2+ increase that appears to be functionally coupled to ryanodine sensitive Ca2+ stores.  相似文献   

8.
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3).  相似文献   

9.
Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that induces the release of Ca(2+) from the endoplasmic reticulum (ER). The IP(3) receptor (IP(3)R) was discovered as a developmentally regulated glyco-phosphoprotein, P400, that was missing in strains of mutant mice. IP(3)R can allosterically and dynamically change its form in a reversible manner. The crystal structures of the IP(3)-binding core and N-terminal suppressor sequence of IP(3)R have been identified. An IP(3) indicator (known as IP(3)R-based IP(3) sensor) was developed from the IP(3)-binding core. The IP(3)-binding core's affinity to IP(3) is very similar among the three isoforms of IP(3)R; instead, the N-terminal IP(3) binding suppressor region is responsible for isoform-specific IP(3)-binding affinity tuning. Various pathways for the trafficking of IP(3)R have been identified; for example, the ER forms a meshwork upon which IP(3)R moves by lateral diffusion, and vesicular ER subcompartments containing IP(3)R move rapidly along microtubles using a kinesin motor. Furthermore, IP(3)R mRNA within mRNA granules also moves along microtubules. IP(3)Rs are involved in exocrine secretion. ERp44 works as a redox sensor in the ER and regulates IP(3)R1 activity. IP(3) has been found to release Ca(2+), but it also releases IRBIT (IP(3)R-binding protein released with IP(3)). IRBIT is a pseudo-ligand for IP(3) that regulates the frequency and amplitude of Ca(2+) oscillations through IP(3)R. IRBIT binds to pancreas-type Na, bicarbonate co-transporter 1, which is important for acid-base balance. The presence of many kinds of binding partners, like homer, protein 4.1N, huntingtin-associated protein-1A, protein phosphatases (PPI and PP2A), RACK1, ankyrin, chromogranin, carbonic anhydrase-related protein, IRBIT, Na,K-ATPase, and ERp44, suggest that IP(3)Rs form a macro signal complex and function as a center for signaling cascades. The structure of IP(3)R1, as revealed by cryoelectron microscopy, fits closely with these molecules.  相似文献   

10.
Many cells cluster signaling complexes in plasma membrane microdomains. Polarized secretory cells cluster all Ca2+ signaling proteins, including GPCRs, at the apical pole. The functional significance of such an arrangement is not known because of a lack of techniques for functional mapping of signaling complexes at plasma membrane patches. In the present work, we developed such a technique based on the use of two patch pipettes, a recording and a stimulating pipette (SP). Including 20% glycerol in the SP solution increased the viscosity and the hydrophobicity to prevent leakage and formation of tight seals on the plasma membrane. This allowed moving the SP between sites to stimulate multiple patches of the same cell and with the same agonist concentrations. Functional mapping of Ca2+ signaling in pancreatic acinar cells revealed that the M3, cholecystokinin, and bombesin signaling complexes at the apical pole are much more sensitive to stimulation than those at the basal pole. Furthermore, at physiological agonist concentrations, Ca2+ signals could be evoked only by stimulation of membrane patches at the apical pole. [Ca2+](i) imaging revealed that Ca2+ waves were invariably initiated at the site of apical membrane patch stimulation, suggesting that long range diffusion of second messengers is not obligatory to initiate and propagate apical-to-basal Ca2+ waves. The present studies reveal a remarkable heterogeneity in responsiveness of Ca2+ signaling complexes at membrane microdomains, with the most responsive complexes confined to the apical pole, probably to restrict the Ca2+ signals to the site of exocytosis and allow the polarized functions of secretory cells.  相似文献   

11.
12.
The muscarinic receptor stimulated mobilisation of calcium ions in SH-SY5Y neuroblastoma cells was measured as a function on carbachol and atropine concentrations. The combined application of this pair of muscarinic agonist and antagonist yielded a set of bell-shaped dose-response curves. In the presence of atropine the cell responses were smaller and the up-going phase of these relationships was shifted towards higher agonist concentration, while the down-going phase of these curves was not influenced by the antagonist. These results pointed to a similar mechanism of the receptor inhibition at high carbachol (agonist) concentrations and by atropine (antagonist).  相似文献   

13.
The four basic isoforms of the plasma membrane Ca2+ pump and the two C-terminally truncated spliced variants PMCA4CII(4a) and 3CII(3a) were transiently overexpressed in Chinese hamster ovary cells together with aequorin targeted to the cytosol, the endoplasmic reticulum, and the mitochondria. As PMCA3CII(3a) had not yet been cloned and studied, it was cloned for this study, partially purified, and characterized. At variance with the corresponding truncated variant of PMCA4, which had been studied previously, PMCA3CII(3a) had very high calmodulin affinity. All four basic pump variants influenced the homeostasis of Ca2+ in the native intracellular environment. The level of [Ca2+] in the endoplasmic reticulum and the height of the [Ca2+] transients generated in the cytosol and in the mitochondria by the emptying of the endoplasmic reticulum store by inositol 1,4,5-trisphosphate were all reduced by the overexpression of the pumps. The effects were much greater with the neuron-specific PMCA2 and PMCA3 than with the ubiquitously expressed isoforms 1 and 4. Unexpectedly, the truncated PMCA3 and PMCA4 were as effective as the full-length variants in influencing the homeostasis of Ca2+ in the cytosol and the organelles. In particular, PMCA4CII(4a) was as effective as PMCA4CI(4b), even if its affinity for calmodulin is much lower. The results indicate that the availability of calmodulin may not be critical for the modulation of PMCA pumps in vivo.  相似文献   

14.
The red fluorescent protein, DsRed, and a few of its mutants have been shown to bind copper ions resulting in quenching of its fluorescence. The response to Cu2+ is rapid, selective, and reversible upon addition of a copper chelator. DsRed has been employed as an in vitro probe for Cu2+ determination by us and other groups. It is also envisioned that DsRed can serve as an intracellular genetically encoded indicator of Cu2+ concentration, and can be targeted to desired subcellular locations for Cu2+ determination. However, no information has been reported yet regarding the mechanism of the fluorescence quenching of DsRed in the presence of Cu2+. In this work, we have performed spectroscopic investigations to determine the mechanism of quenching of DsRed fluorescence in the presence of Cu2+. We have studied the effect of Cu2+ addition on two representative mutants of DsRed, specifically, DsRed-Monomer and DsRed-Express. Both proteins bind Cu2+ with micromolar affinities. Stern-Volmer plots generated at different temperatures indicate a static quenching process in the case of both proteins in the presence of Cu2+. This mechanism was further studied using absorption spectroscopy. Stern-Volmer constants and quenching rate constants support the observation of static quenching in DsRed in the presence of Cu2+. Circular dichroism (CD)-spectroscopic studies revealed no effect of Cu2+-binding on the secondary structure or conformation of the protein. The effect of pH changes on the quenching of DsRed fluorescence in the presence of copper resulted in pKa values indicative of histidine and cysteine residue involvement in Cu2+-binding.  相似文献   

15.
1. The effects of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphocholine; PAF) on hepatic metabolism in vivo in rats were studied. 2. PAF stimulated synthesis of hepatic lipid (saponified and non-saponified) in a dose-dependent fashion and caused hypertriglyceridaemia. There was no effect of PAF on lipogenesis in isolated hepatocytes. 3. High doses of PAF also decreased hepatic glycogen. 4. All doses of PAF decreased plasma insulin, and this was accompanied by hyperglycaemia, except at the lowest dose. 5. The selective PAF-receptor antagonist L659.989 prevented the stimulation of lipogenesis, but indomethacin did not.  相似文献   

16.
Investigation of Ca2+ transport by calcium pump of the cell plasma membrane of the gastric glands isolated from guinea pigs and its inhibition by metal cations has been performed. The mainly competitive type of Ca2+ translocation inhibition by the calcium pump by metals cations (0.025-1.00 mM) was determined. Potency of inhibition increases in such an order (I50, mM): Ba2+ (0.336) < Sr2+ (0.251) < Mn2+ (0.099) < Co2+ (0.029) < Cd2+ (0.016). It was shown by one-factor dispersion analysis that potency of inhibition depends on ionic radii and hydration enthalpy of metal cations and also on stability constants of their complexes with oxygen-containing bioligands (acetic, aspartic and glutamic acid) (hx2 = 83.73-85.95). Dependence of the inhibition constants (I50) on ionic radii is most adequately described by the parabolic equation, such a dependence on hydration enthalpy and stability constants with oxygen-containing bioligands--by exponential or multiplicative equations. The conclusion has been made that selective Ca2+ translocation by the calcium pump and its inhibition by metal cations is determined by the interaction between energy of their interaction with cation-binding sites of the transport system and energy of hydration. Energetics of such interactions depends on the steric factors. The physicochemical model of the Ca2+ selective translocation by calcium pump and its inhibition by metal cations has been proposed.  相似文献   

17.
We have investigated the effect of 3-morpholinosydnonimine (SIN-1), a peroxynitrite donor, on carbachol-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in human neuroblastoma SH-SY5Y cells by means of single cell imaging of [Ca2+]i. SIN-1 potentiated carbachol-induced [Ca2+]i rise regardless of external Ca2+, and the potentiation was completely inhibited by superoxide dismutase, indicating that peroxynitrite may enhance Ca2+ release from intracellular stores. On the other hand, SIN-1 reduced carbachol-induced inositol 1,4,5-trisphosphate (IP3) formation. Genistein, a tyrosine kinase inhibitor, potentiated carbachol-induced rise of [Ca2+]i regardless of external Ca2+. These results suggest that peroxynitrite may potentiate the release of Ca2+ from intracellular stores through the perturbation of regulation in tyrosine phosphorylation-dephosphorylation system.  相似文献   

18.
Fura-2 imaging of purinergic stimulation of non-differentiated neuronal human SH-SY5Y cells resulted in a rapid elevation in intracellular Ca2+ ([Ca2+]i) that was dependent on extracellular Ca2+. The rank order of agonists (200 micro m) was as follows: 2',3'-O-(4-benzoyl-benzoyl)-ATP (BzATP) > ATP4- > ATP; whereas 2-(methylthio)-ATP, ADP, UTP and alpha,beta-methylene-ATP and beta,gamma-methylene-ATP were ineffective. The response to BzATP was inhibited by pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic-acid (PPADS, 1 micro m), 1-(N,O-bis[5-isoquinolinesulfonyl]-N-methyl-l-tyrosyl)-4-phenylpiperazine (KN-62, 100 nm) and 8-(3-benzamido-4-4-methylbenzamido)-naphthalene-1,3,5-trisulfonic-acid (suramin, 200 micro m). The presence of a P2X7 receptor was confirmed by western blot studies using anti-P2X7. EC50 for BzATP was 212 +/- 6 micro m. BzATP > 30 micro m induced an initial, transient increase in [Ca2+]i before a plateau level was reached. BzATP < 30 micro m only produced a monophasic increase to the plateau level. The transient phase was reduced by the introduction of nimodipine (3 micro m) and to a smaller degree by omega-conotoxin GVIA (1 micro m) despite an almost equal presence of L and N-type Ca2+-channels. In whole-cell voltage-clamp studies at - 90 mV, BzATP (300 micro m) produced a fast activating inward current with a similar pharmacology as observed with Fura-2 imaging. Current clamp studies showed a dose-dependent depolarization to BzATP and ATP4-. BzATP also triggered transmitter release. Thus, the human neuronal SH-SY5Y cell line expresses a functional P2X7 receptor coupled to activation of Ca2+-channels.  相似文献   

19.
In NG108-15 cells, bradykinin (BK) and thapsigargin (TG) caused transient increases in a cytosolic free Ca2+ concentration ([Ca2+]i), after which [Ca2+]i elevated by TG only declined to a higher, sustained level than an unstimulated level. In PC12 cells, carbachol (CCh) evoked a transient increase in [Ca2+]i followed by a sustained rise of [Ca2+]i, whereas [Ca2+]i elevated by TG almost maintained its higher level. In the absence of extracellular Ca2+, the sustained elevation of [Ca2+]i induced by each drug we used was abolished. In addition, the rise in [Ca2+]i stimulated by TG was less affected after CCh or BK, whereas CCh or BK caused no increase in [Ca2+]i after TG. TG neither increased cellular inositol phosphates nor modified the inositol phosphates format on stimulated by CCh or BK. We conclude that TG may release Ca2+ from both IP3-sensitive and -insensitive intracellular pools and that some kinds of signalling to link the intracellular Ca2+ pools and Ca2+ entry seem to exist in neuronal cells.  相似文献   

20.
Pang Y  Zhu H  Wu P  Chen J 《FEBS letters》2005,579(11):2397-2403
According to the raft hypothesis, sphingolipid-cholesterol (CHOL) microdomains are involved in numerous cellular functions. Here, we have prepared liposomes to simulate the lipid composition of rafts/caveolae using phosphatidylchone, sphingomyelin (SPM)-CHOL in vitro. Experiments of both 1,6-diphenyl-1,3,5-hexatriene and merocyanine-540 fluorescence showed that a phase transition from l(d) to l(o) can be observed clearly. In particular, we investigated the behavior of a membrane protein, plasma membrane Ca(2+)-ATPase (PMCA), in lipid rafts (l(o) phase). Three complementary approaches to characterize the physical appearance of PMCA were employed in the present study. Tryptophan intrinsic fluorescence increase, fluorescence quenching by both acrylamid and hypocrellin B decrease, and MIANS fluorescence decrease, indicate that the conformation of PMCA embedded in lipid l(o) phase is more compact than in lipid l(d) phase. Also, our results showed that PMCA activity decreased with the increase of SPM-CHOL content, in other words, with the increase of l(o) phase. This suggests that the specific domains containing high SPM-CHOL concentration are not a favorable place for PMCA activity. Finally, a possible explanation about PMCA molecules concentrated in caveolae/rafts was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号