首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One-carbon flux into methionine and S-adenosylmethionine (AdoMet) is thought to be controlled at the methylenetetrahydrofolate reductase (MTHFR) step. Mammalian MTHFRs are inhibited by AdoMet in vitro, and it has been proposed that methyl group biogenesis is regulated in vivo by this feedback loop. In this work, we used metabolic engineering in the yeast Saccharomyces cerevisiae to test this hypothesis. Like mammalian MTHFRs, the yeast MTHFR encoded by the MET13 gene is NADPH-dependent and is inhibited by AdoMet in vitro. This contrasts with plant MTHFRs, which are NADH-dependent and AdoMet-insensitive. To manipulate flux through the MTHFR reaction in yeast, the chromosomal copy of MET13 was replaced by an Arabidopsis MTHFR cDNA (AtMTHFR-1) or by a chimeric sequence (Chimera-1) comprising the yeast N-terminal domain and the AtMTHFR-1 C-terminal domain. Chimera-1 used both NADH and NADPH and was insensitive to AdoMet, supporting the view that the C-terminal domain is responsible for AdoMet inhibition. Engineered yeast expressing Chimera-1 accumulated 140-fold more AdoMet and 7-fold more methionine than did the wild-type and grew normally. Yeast expressing AtMTHFR-1 accumulated 8-fold more AdoMet. This is the first in vivo evidence that the AdoMet sensitivity and pyridine nucleotide preference of MTHFR control methylneogenesis. (13)C labeling data indicated that glycine cleavage becomes a more prominent source of one-carbon units when Chimera-1 is expressed. Possibly related to this shift in one-carbon fluxes, total folate levels are doubled in yeast cells expressing Chimera-1.  相似文献   

2.
Individual rates of metabolism of the sulfur, methyl, and 4-carbon moieties of methionine were estimated in Lemna paucicostata Hegelm. 6746 growing under standard conditions, and used to quantitate pathways of methionine metabolism. Synthesis of S-adenosylmethionine (AdoMet) is the major pathway for methionine metabolism, with over 4 times as much methionine metabolized by this route as accumulates in protein. More than 90% of AdoMet is used for transmethylation. Methyl groups of choline, phosphatidylcholine, and phosphorylcholine are major end products of this pathway. Flux through methylthio recycling is about one-third the amount of methionine accumulating in protein. Spermidine synthesis accounts for at least 60% of the flux through methylthio recycling. The results obtained here, together with those reported for methionine-supplemented plants (Giovanelli, Mudd, Datko 1981 Biochem Biophys Res Commun 100: 831-839), indicate that methionine supplementation reduced methylneogenesis by no more than the small amount expected from the reduced entry of sulfate sulfur into methionine (Giovanelli, Mudd, Datko, 1985 Plant Physiol 77: 450-455). Methionine supplementation had no significant effect on transmethylation or methylthio recycling. The combined data provide the first comprehensive estimates of the quantitative relationships of major pathways for methionine metabolism and their control in plants.  相似文献   

3.
Regulation of S-adenosylmethionine levels in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, used to methylate homocysteine in methionine biosynthesis. Methionine can be activated by ATP to give rise to the universal methyl donor, S-adenosylmethionine (AdoMet). Previously, a chimeric MTHFR (Chimera-1) comprised of the yeast Met13p N-terminal catalytic domain and the Arabidopsis thaliana MTHFR (AtMTHFR-1) C-terminal regulatory domain was constructed (Roje, S., Chan, S. Y., Kaplan, F., Raymond, R. K., Horne, D. W., Appling, D. R., and Hanson, A. D. (2002) J. Biol. Chem. 277, 4056-4061). Engineered yeast (SCY4) expressing Chimera-1 accumulated more than 100-fold more AdoMet and 7-fold more methionine than the wild type. Surprisingly, SCY4 showed no appreciable growth defect. The ability of yeast to hyperaccumulate AdoMet was investigated by studying the intracellular compartmentation of AdoMet as well as the mode of hyperaccumulation. Previous studies have established that AdoMet is distributed between the cytosol and the vacuole. A strain expressing Chimera-1 and lacking either vacuoles (vps33 mutant) or vacuolar polyphosphate (vtc1 mutant) was not viable when grown under conditions that favored AdoMet hyperaccumulation. The hyperaccumulation of AdoMet was a robust phenomenon when these cells were grown in medium containing glycine and formate but did not occur when these supplements were replaced by serine. The basis of the nutrient-dependent AdoMet hyperaccumulation effect is discussed in relation to homocysteine biosynthesis and sulfur metabolism.  相似文献   

4.
Bacterial TrmD and eukaryotic-archaeal Trm5 form a pair of analogous tRNA methyltransferase that catalyze methyl transfer from S-adenosyl methionine (AdoMet) to N(1) of G37, using catalytic motifs that share no sequence or structural homology. Here we show that natural and synthetic analogs of AdoMet are unable to distinguish TrmD from Trm5. Instead, fragments of AdoMet, adenosine and methionine, are selectively inhibitory of TrmD rather than Trm5. Detailed structural information of the two enzymes in complex with adenosine reveals how Trm5 escapes targeting by adopting an altered structure, whereas TrmD is trapped by targeting due to its rigid structure that stably accommodates the fragment. Free energy analysis exposes energetic disparities between the two enzymes in how they approach the binding of AdoMet versus fragments and provides insights into the design of inhibitors selective for TrmD.  相似文献   

5.
6.
Cap (guanine-N7) methylation is an essential step in eukaryal mRNA synthesis and a potential target for antiviral, antifungal, and antiprotozoal drug discovery. Previous mutational and structural analyses of Encephalitozoon cuniculi Ecm1, a prototypal cellular cap methyltransferase, identified amino acids required for cap methylation in vivo, but also underscored the nonessentiality of many side chains that contact the cap and AdoMet substrates. Here we tested new mutations in residues that comprise the guanine-binding pocket, alone and in combination. The outcomes indicate that the shape of the guanine binding pocket is more crucial than particular base edge interactions, and they highlight the contributions of the aliphatic carbons of Phe-141 and Tyr-145 that engage in multiple van der Waals contacts with guanosine and S-adenosylmethionine (AdoMet), respectively. We purified 45 Ecm1 mutant proteins and assayed them for methylation of GpppA in vitro. Of the 21 mutations that resulted in unconditional lethality in vivo,14 reduced activity in vitro to < or = 2% of the wild-type level and 5 reduced methyltransferase activity to between 4 and 9% of wild-type Ecm1. The natural product antibiotic sinefungin is an AdoMet analog that inhibits Ecm1 with modest potency. The crystal structure of an Ecm1-sinefungin binary complex reveals sinefungin-specific polar contacts with main-chain and side-chain atoms that can explain the 3-fold higher affinity of Ecm1 for sinefungin versus AdoMet or S-adenosylhomocysteine (AdoHcy). In contrast, sinefungin is an extremely potent inhibitor of the yeast cap methyltransferase Abd1, to which sinefungin binds 900-fold more avidly than AdoHcy or AdoMet. We find that the sensitivity of Saccharomyces cerevisiae to growth inhibition by sinefungin is diminished when Abd1 is overexpressed. These results highlight cap methylation as a principal target of the antifungal activity of sinefungin.  相似文献   

7.
Y Takata  M Fujioka 《Biochemistry》1992,31(17):4369-4374
Exposure of rat guanidinoacetate methyltransferase to ultraviolet light in the presence of S-adenosyl-L-[methyl-3H]methionine ([methyl-3H]AdoMet) results in covalent linking of radioactivity to the enzyme protein. The incorporation of radioactivity shows no lag and is linear with respect to time up to 1 h. The photolabeling is saturable with [methyl-3H]AdoMet, and the binding constant of the enzyme for AdoMet determined in this experiment is similar to that obtained by equilibrium dialysis. Low concentrations of competitive inhibitors S-adenosyl-L-homocysteine and sinefungin effectively prevent the photoinduced labeling by AdoMet. Although guanidinoacetate methyltransferase is irreversibly inactivated upon ultraviolet irradiation in the absence of AdoMet, the enzyme inactivated by 1-h exposure to ultraviolet irradiation has been shown to bind AdoMet with an affinity identical to that of the native enzyme. These results indicate that photolabeling occurs at the active site. Following proteolysis of the [methyl-3H]-AdoMet-labeled enzyme with chymotrypsin, a radioactive peptide is isolated having a sequence Asp-Thr-X-Pro-Leu-Ser-Glu-Glu-Thr-Trp. The peptide corresponds to residues 134-143, with X being modified Tyr-136. The same peptide is photolabeled when [carboxy-14C]AdoMet is used. High-performance liquid chromatography of this peptide after acid hydrolysis and phenyl isothiocyanate derivatization suggests that the entire molecule of AdoMet is attached to Tyr-136.  相似文献   

8.
Anamorsin is a recently identified molecule that inhibits apoptosis during hematopoiesis. It contains an N‐terminal methyltransferase‐like domain and a C‐terminal Fe‐S cluster motif. Not much is known about the function of the protein. To better understand the function of anamorsin, we have solved the crystal structure of the N‐terminal domain at 1.8 Å resolution. Although the overall structure resembles a typical S‐adenosylmethionine (SAM) dependent methyltransferase fold, it lacks one α‐helix and one β‐strand. As a result, the N‐terminal domain as well as the full‐length anamorsin did not show S‐adenosyl‐l ‐methionine (AdoMet) dependent methyltransferase activity. Structural comparisons with known AdoMet dependent methyltransferases reveals subtle differences in the SAM binding pocket that preclude the N‐terminal domain from binding to AdoMet. The N‐terminal methyltransferase‐like domain of anamorsin probably functions as a structural scaffold to inhibit methyl transfers by out‐competing other AdoMet dependant methyltransferases or acts as bait for protein–protein interactions.Proteins 2014; 82:1066–1071. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The important features of the enzymes involved in methionine synthesis in sheep were found to be the low activity of betaine-homocysteine methyltransferase and the high activity of 5-methyltetrahydrofolate-homocysteine methyltransferase. The rate of the methionine synthesis in sheep liver was significantly lower than that in rats due to the low activity of hepatic betaine-homocysteine methyltransferase. The hepatic methionine recycling was stimulated by the addition of betaine in both species. These results indicate that in sheep 5-methyltetrahydrofolate-homocysteine methyltransferase plays a significant role in hepatic methionine synthesis along with betaine-homocysteine methyltransferase. In contrast, in the rat hepatic system methionine synthesis is virtually dependent on betaine-homocysteine methyltransferase.  相似文献   

10.
11.
CIAPIN1 is a newly identified anti-apoptosis molecule which plays an important role in definitive haematopoiesis in mouse fetal liver and confers multidrug resistance in gastric cancer cells. However, the biophysical function of CIAPIN1 is far from elucidated. Bioinformatics predicts that CIAPIN1 may contain a generic methyltransferase motif and a Zn-ribbon-like motif. Based on these data, we postulated that CIAPIN1 might be a DNA or RNA methyltransferase. To substantiate this proposal, recombinant human CIAPIN1 (rhCIAPIN1) was expressed by a baculovirus-insect cell system and purified by Ni-NTA affinity chromatography. In vitro DNA and RNA methyltransferring tests, DNA demethylation test and S-adenosyl-l-[methyl-3H]methionine (3H-AdoMet) binding test were carried out. Our experiments failed to demonstrate that rhCIAPIN1 had any DNA, RNA methyltransferase activity, DNA demethylase activity, or had the capability of binding AdoMet in vitro. Further studies are needed to definitely clarify whether CIAPIN1 has methyltransferase activity.  相似文献   

12.
tRNA:m5C methyltransferase Trm4 generates the modified nucleotide 5-methylcytidine in archaeal and eukaryotic tRNA molecules, using S-adenosyl-l-methionine (AdoMet) as methyl donor. Most archaea and eukaryotes possess several Trm4 homologs, including those related to diseases, while the archaeon Methanocaldococcus jannaschii has only one gene encoding a Trm4 homolog, MJ0026. The recombinant MJ0026 protein catalyzed AdoMet-dependent methyltransferase activity on tRNA in vitro and was shown to be the M. jannaschii Trm4. We determined the crystal structures of the substrate-free M. jannaschii Trm4 and its complex with sinefungin at 1.27 Å and 2.3 Å resolutions, respectively. This AdoMet analog is bound in a negatively charged pocket near helix α8. This helix can adopt two different conformations, thereby controlling the entry of AdoMet into the active site. Adjacent to the sinefungin-bound pocket, highly conserved residues form a large, positively charged surface, which seems to be suitable for tRNA binding. The structure explains the roles of several conserved residues that were reportedly involved in the enzymatic activity or stability of Trm4p from the yeast Saccharomyces cerevisiae. We also discuss previous genetic and biochemical data on human NSUN2/hTrm4/Misu and archaeal PAB1947 methyltransferase, based on the structure of M. jannaschii Trm4.  相似文献   

13.
The BcgI restriction-modification system consists of two subunits, A and B. It is a bifunctional protein complex which can cleave or methylate DNA. The regulation of these competing activities is determined by the DNA substrates and cofactors. BcgI is an active endonuclease and a poor methyltransferase on unmodified DNA substrates. In contrast, BcgI is an active methyltransferase and an inactive endonuclease on hemimethylated DNA substrates. The cleavage and methylation reactions share cofactors. While BcgI requires Mg2+and S -adenosyl methionine (AdoMet) for DNA cleavage, its methylation reaction requires only AdoMet and yet is significantly stimulated by Mg2+. Site-directed mutagenesis was carried out to investigate the relationship between AdoMet binding and BcgI DNA cleavage/methylation activities. Most substitutions of conserved residues forming the AdoMet binding pocket in the A subunit abolished both methylation and cleavage activities, indicating that AdoMet binding is an early common step required for both cleavage and methylation. However, one mutation (Y439A) abolished only the methylation activity, not the DNA cleavage activity. This mutant protein was purified and its methylation, cleavage and AdoMet binding activities were tested in vitro . BcgI-Y439A had no detectable methylation activity, but it retained 40% of the AdoMet binding and DNA cleavage activities.  相似文献   

14.
ABSTRACT. The fate of methionine in eukaryotic cells is divided between protein synthesis and the branched pathway encompassing polyamine synthesis, methylation of proteins and lipids, and transsulphuration reactions. Aside from protein synthesis, the first step to all other uses of methionine is conversion to S-adenosylmethionine. Blockade of polyamine synthesis in African trypanosomes by the ornithine decarboxylase inhibitor DL-α-difluoromethylomithine (Ornidyl, DFMO) the AdoMet decarboxylase inhibitor 5′-{[(Z)-4-amino-2-butenyl]-methylamino}-5′-deoxyadenosine or the protein methylase inhibitor sinefungin induces dramatic increases in intracellular AdoMet. In a previous study, distribution and pool sizes of [15S] or [U-14C]methionine were followed in bloodform trypanosomes as incorporation into the total TCA precipitable fraction. In the present study, the effects of pretreatment with DFMO (1 mM), MDL 73811 (1 μM) and sinefugin (2 nM) on [35S] and [U-14C]methionine incorporation were studied in blood forms. DFMO or MDL 73811 pretreatment increased protein methylation 1.5-fold through incorporation of [U14C]methionine, while sinefungin caused a 40% reduction of incorporation. The increases in incorporation of [U-14C]methionine due to DFMO and MDL 73811 were reduced 40% to 70% by including cold AdoMet (1 mM) in the incubation medium, an indication of AdoMet transport by bloodform trypanosomes and the utilization of [U-14C]methionine as AdoMet. Exogenous AdoMet had no effect on [35S]methionine incorporation. The agents studied are curative for African trypnosomiasis infections, either clinically (DFMO) or in model infections (MDL 73811, sinefungin) and thus highlight interference with AdoMet metabolism and methylation reactions as biochemical consequences of these agents.  相似文献   

15.
S-Adenosylmethionine (AdoMet) is metabolized through three main pathways, i.e. (a) transfer of its methyl group to a variety of methyl acceptors, (b) decarboxylation followed by aminopropylation leading to polyamine synthesis, and (c) cleavage of the bond between the sulfur atom and carbon 4 of the amino acid chain, resulting in formation of methylthioadenosine and homoserine thiolactone. In this study the metabolism of AdoMet through these pathways was studied after intravenous administration to rats of [1-14C]-, [3,4-14C]-, [methyl-14C]-, and [35S]AdoMet at various doses. The relative utilization of AdoMet and methionine was also investigated. The results show that intravenously administered AdoMet is efficiently metabolized in vivo up to the highest tested dose (250 mumol X kg-1 body weight), about two-thirds of the metabolized compound being utilized via transmethylation and cleavage to methylthioadenosine and one-third via decarboxylation. The efficient incorporation of the methyl group of AdoMet into muscle creatine indicates unambiguously that the compound is taken up and metabolized by the liver. Moreover, intravenously administered AdoMet is shown to be a better precursor than methionine both in creatine formation and in the utilization of the sulfur atom in transsulfuration reactions.  相似文献   

16.
To expand our understanding of the role of Jak2 in cellular signaling, we used the yeast two-hybrid system to identify Jak2-interacting proteins. One of the clones identified represents a human homologue of the Schizosaccaromyces pombe Shk1 kinase-binding protein 1, Skb1, and the protein encoded by the Saccharomyces cerevisiae HSL7 (histone synthetic lethal 7) gene. Since no functional motifs or biochemical activities for this protein or its homologues had been reported, we sought to determine a biochemical function for this human protein. We demonstrate that this protein is a protein methyltransferase. This protein, designated JBP1 (Jak-binding protein 1), and its homologues contain motifs conserved among protein methyltransferases. JBP1 can be cross-linked to radiolabeled S-adenosylmethionine (AdoMet) and methylates histones (H2A and H4) and myelin basic protein. Mutants containing substitutions within a conserved region likely to be involved in AdoMet binding exhibit little or no activity. We mapped the JBP1 gene to chromosome 14q11.2-21. In addition, JBP1 co-immunoprecipitates with several other proteins, which serve as methyl group acceptors and which may represent physiological targets of this methyltransferase. Messenger RNA for JBP1 is widely expressed in human tissues. We have also identified and sequenced a homologue of JBP1 in Drosophila melanogaster. This report provides a clue to the biochemical function for this conserved protein and suggests that protein methyltransferases may have a role in cellular signaling.  相似文献   

17.
Four methionine analog inhibitors of methionine adenosyltransferase, the enzyme which catalyzes S-adenosylmethionine biosynthesis, were tested in cultured L1210 cells for their effects on cell growth, leucine incorporation, S-adenosylmethionine (AdoMet) formation and polyamine biosynthesis. The IC50 values were as follows: selenomethionine, 0.13 mM; L-2-amino-4-methoxy-cis-but-3-enoic acid (L-cis-AMB), 0.4 mM; cycloleucine, 5 mM and 2-aminobicyclo[2.1.1]hexane-2-carboxylic acid, 5 mM. At IC50 levels, the analogs significantly reduced AdoMet pools by approximately 50% while not similarly affecting leucine incorporation or polyamine biosynthesis. In combination with inhibitors of polyamine biosynthesis, growth inhibition was greatly increased with methylglyoxal bis(guanylhydrazone), an inhibitor of AdoMet decarboxylase, but only slightly increased with alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase. Overall, the data indicate that the methionine analogs, and particularly L-cis-AMB, seem to inhibit cell growth by interference with AdoMet biosynthesis. Since polyamine biosynthesis is not affected, the antiproliferative effect may be mediated through perturbations of certain transmethylation reactions.  相似文献   

18.
Protein arginine N‐methyltransferase (PRMT) dimerization is required for methyl group transfer from the cofactor S‐adenosyl‐L ‐methionine (AdoMet) to arginine residues in protein substrates, forming S‐adenosyl‐L ‐homocysteine (AdoHcy) and methylarginine residues. In this study, we use Förster resonance energy transfer (FRET) to determine dissociation constant (KD) values for dimerization of PRMT1 and PRMT6. By attaching monomeric Cerulean and Citrine fluorescent proteins to their N‐termini, fluorescent PRMTs are formed that exhibit similar enzyme kinetics to unconjugated PRMTs. These fluorescent proteins are used in FRET‐based binding studies in a multi‐well format. In the presence of AdoMet, fluorescent PRMT1 and PRMT6 exhibit 4‐ and 6‐fold lower dimerization KD values, respectively, than in the presence of AdoHcy, suggesting that AdoMet promotes PRMT homodimerization in contrast to AdoHcy. We also find that the dimerization KD values for PRMT1 in the presence of AdoMet or AdoHcy are, respectively, 6‐ and 10‐fold lower than the corresponding values for PRMT6. Considering that the affinity of PRMT6 for AdoHcy is 10‐fold higher than for AdoMet, PRMT6 function may be subject to cofactor‐dependent regulation in cells where the methylation potential (i.e., ratio of AdoMet to AdoHcy) is low. Since PRMT1 affinity for AdoMet and AdoHcy is similar, however, a low methylation potential may not affect PRMT1 function.  相似文献   

19.
The mechanism of reductive methylation of cobalamin-dependent methionine synthase (5-methyltetrahydrofolate:homocysteine methyltransferase, EC 2.1.1.13) has been investigated by electron paramagnetic resonance (EPR) spectroelectrochemistry. The enzyme as isolated is inactive, and its UV/visible absorbance and EPR spectra are characteristic of cob(II)alamin. There is an absolute requirement for catalytic amounts of AdoMet and a reducing system for the formation and maintenance of active enzyme during in vitro turnover. The midpoint potentials of the enzyme-bound cob(II)alamin/cob(I)alamin and cob(III)alamin/cob(II)alamin couples have been determined to be -526 +/- 5 and +273 +/- 4 mV (versus the standard hydrogen electrode), respectively. The presence of either CH3-H4folate or AdoMet shifts the equilibrium distribution of cobalamin species observed during reduction by converting cob(I)alamin to methylcobalamin. The magnitude of these shifts is however vastly different, with AdoMet lowering the concentration of cob(II)alamin at equilibrium by a factor of at least 3 X 10(7), while CH3-H4folate lowers it by a factor of 19. These studies of coupled reduction/methylation reactions elucidate the absolute requirement for AdoMet in the in vitro assay system, in which the ambient potential is approximately -350 mV versus the standard hydrogen electrode. At this potential, the equilibrium distribution of cobalamin in the presence of CH3-H4folate would be greatly in favor of the cob(II)alamin species, whereas in the presence of AdoMet the equilibrium favors methylated enzyme. In these studies, a base-on form of cob(II)alamin in which the dimethylbenzimidazole substituent of the corrin ring is the lower axial ligand for the cobalt has been observed for the first time on methionine synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Biotin synthase (BioB) catalyzes the insertion of a sulfur atom between the C6 and C9 carbons of dethiobiotin. Reconstituted BioB from Escherichia coli contains a [4Fe-4S](2+/1+) cluster thought to be involved in the reduction and cleavage of S-adenosylmethionine (AdoMet), generating methionine and the reactive 5'-deoxyadenosyl radical responsible for dethiobiotin H-abstraction. Using EPR and M?ssbauer spectroscopy as well as methionine quantitation we demonstrate that the reduced S = 1/2 [4Fe-4S](1+) cluster is indeed capable of injecting one electron into AdoMet, generating one equivalent of both methionine and S = 0 [4Fe-4S](2+) cluster. Dethiobiotin is not required for the reaction. Using site-directed mutagenesis we show also that, among the eight cysteines of BioB, only three (Cys-53, Cys-57, Cys-60) are essential for AdoMet reductive cleavage, suggesting that these cysteines are involved in chelation of the [4Fe-4S](2+/1+) cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号