首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primase activity of DNA polymerase alpha from calf thymus   总被引:14,自引:0,他引:14  
The nearly homogeneous 9 S DNA polymerase alpha from calf thymus contains a primase activity that allows priming of DNA synthesis on single-stranded templates in the presence of ribonucleoside triphosphates. Both on synthetic and natural single-stranded templates, RNA primers of 8-15 nucleotides in length are formed. In the absence of dNTPs, primers of some hundred nucleotides in length are observable. ATP and/or GTP are required for the priming reaction. UTP and CTP cannot initiate the RNA synthesis. M13 single-stranded DNA can be converted to the nicked double helical form upon primase-primed replication by the 9 S enzyme. Priming occurs mostly at specific sites on the M13 genome and replication products of up to 6000 nucleotides in length are formed. In the presence of the single-stranded DNA binding protein from Escherichia coli, specificity of priming is strongly increased. The primase is inhibited by salt and actinomycin; it is insensitive to alpha-amanitin and N-ethylmaleimide. Due to the strong complex formation between DNA polymerase and primase, it has not been possible to separate the two activities of the multisubunit 9 S enzyme.  相似文献   

2.
Yeast DNA primase and DNA polymerase I can be purified by immunoaffinity chromatography as a multipeptide complex which can then be resolved into its functional components and further reassembled in vitro. Isolated DNA primase synthesizes oligonucleotides of a preferred length of 9-10 nucleotides and multiples thereof on a poly(dT) template. In vitro reconstitution of the DNA primase:DNA polymerase complex allows the synthesis of long DNA chains covalently linked to RNA initiators shorter than those synthesized by DNA primase alone. The SS (single-stranded) circular DNA of phage M13mp9 can also be replicated by the DNA primase:DNA polymerase complex. Priming by DNA primase occurs at multiple sites and the initiators are utilized by the DNA polymerase moiety of the complex, so that almost all the SS template is converted into duplex form. The rate of DNA synthesis catalyzed by isolated yeast DNA polymerase I on the M13mp9 template is not constant and is characterized by distinct pausing sites, which partly correlate with secondary structures on the template DNA. Thus, replication of M13mp9 SS DNA with the native primase:polymerase complex gives rise to a series of DNA chains with significantly uniform termini specified by the primase start sites and the polymerase stop sites.  相似文献   

3.
To determine whether cellular replication factors can influence the fidelity of DNA replication, the effect of HeLa cell single-stranded DNA-binding protein (SSB) on the accuracy of DNA replication by HeLa cell DNA polymerase alpha has been examined. An in vitro gap-filling assay, in which the single-stranded gap contains the supF target gene, was used to measure mutagenesis. Addition of SSB to the in vitro DNA synthesis reaction increased the accuracy of DNA polymerase alpha by 2- to 8-fold. Analysis of the products of DNA synthesis indicated that SSB reduces pausing by the polymerase at specific sites in the single-stranded supF template. Sequence analysis of the types of errors resulting from synthesis in the absence or presence of SSB reveals that, while the errors are primarily base substitutions under both conditions, SSB reduces the number of errors found at 3 hotspots in the supF gene. Thus, a cellular replication factor (SSB) can influence the fidelity of a mammalian DNA polymerase in vitro, suggesting that the high accuracy of cellular DNA replication may be determined in part by the interaction between replication factors, DNA polymerase and the DNA template in the replication complex.  相似文献   

4.
The pausing of DNA replication has been used as a tool for analyzing secondary structures in a single-stranded DNA. M13mp8 (+) single-stranded DNA was replicated in vitro by the DNA polymerase alpha from calf thymus. The positions of pausing were determined from DNA sequencing gels. All experimentally observed pausing sites could be correlated with computer-predicted secondary structures of the M13 single-stranded DNA. In the computer calculations of the secondary structures, long-range base-pairing, G.T mispairs and loop-out of bases were allowed. By using six different primers, the pausing site pattern and the corresponding secondary structure map of a region comprising 1400 nucleotides of the M13 genome has been established. Our experiments indicate that the M13 DNA is highly structured. Most of the stable structures are clustered around the origin of replication. With fragments of the M13 DNA, we show that long-range base-pairing exists in the M13 single-stranded genome and we present evidence for tertiary structure interactions. Furthermore we observe structures that form newly during the course of replication. The Escherichia coli single-stranded DNA-binding protein facilitates replication through the barriers.  相似文献   

5.
A binding protein for single-stranded DNA (ssDNA) was purified from calf thymus to near homogeneity by chromatography on DEAE-cellulose, blue-Sepharose, ssDNA-cellulose and FPLC Mono Q. The most purified fraction consisted of four polypeptides with molecular masses of 70, 55, 30, and 11 kDa. The polypeptide with the molecular mass of 55 kDa is most likely a degraded form of the largest polypeptide. The complex migrated as a whole on both glycerol gradient ultracentrifugation (s = 5.1 S) and gel filtration (Stokes' radius approximately 5.1 nm). Combining these data indicates a native molecular mass of about 110 kDa, which is in accord with a 1:1:1 stoichiometry for the 70 + 55/30/11-kDa complex. The ssDNA binding protein (SSB) covered approximately 20-25 nucleotides on M13mp8 ssDNA, as revealed from both band shift experiments and DNase I digestion studies. The homologous DNA-polymerase-alpha-primase complex was stimulated by the ssDNA binding protein 1.2-fold on poly(dA).(dT)14 and 10-13-fold on singly primed M13mp8 DNA. Stimulation was mainly due to facilitated DNA synthesis through stable secondary structures, as demonstrated by the vanishing of many, but not all, pausing sites. Processivity of polymerase-primase was not affected on poly(dA).(dT)14; with poly(dT).(rA)10 an approximately twofold increase in product lengths was observed when SSB was present. The increase was attributed to a facilitated rebinding of polymerase alpha to an already finished DNA fragment rather than to an enhancement of the intrinsic processivity of the polymerase. Similarly, products 300-600 nucleotides long were formed on singly primed M13 DNA in the presence of SSB, in contrast to 20-120 nucleotides when SSB was absent. DNA-primase-initiated DNA replication on M13 DNA was inhibited by SSB in a concentration-dependent manner. However, with less sites available to begin with RNA priming, more homogeneous products were formed.  相似文献   

6.
The initiation of new DNA strands at origins of replication in animal cells requires de novo synthesis of RNA primers by primase and subsequent elongation from RNA primers by DNA polymerase alpha. To study the specificity of primer site selection by the DNA polymerase alpha-primase complex (pol alpha-primase), a natural DNA template containing a site for replication initiation was constructed. Two single-stranded DNA (ssDNA) molecules were hybridized to each other generating a duplex DNA molecule with an open helix replication 'bubble' to serve as an initiation zone. Pol alpha-primase recognizes the open helix region and initiates RNA-primed DNA synthesis at four specific sites that are rich in pyrimidine nucleotides. The priming site positioned nearest the ssDNA-dsDNA junction in the replication 'bubble' template is the preferred site for initiation. Using a 40 base oligonucleotide template containing the sequence of the preferred priming site, primase synthesizes RNA primers of 9 and 10 nt in length with the sequence 5'-(G)GAAGAAAGC-3'. These studies demonstrate that pol alpha-primase selects specific nucleotide sequences for RNA primer formation and suggest that the open helix structure of the replication 'bubble' directs pol alpha-primase to initiate RNA primer synthesis near the ssDNA-dsDNA junction.  相似文献   

7.
DNA primase associated with 10 S DNA polymerase alpha from calf thymus   总被引:2,自引:0,他引:2  
Among multiple subspecies of DNA polymerase alpha of calf thymus, only 10 S DNA polymerase alpha had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase alpha through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase alpha. These results indicate that the primase is tightly bound to 10 S DNA polymerase alpha. The RNA polymerizing activity was resistant to alpha-amanitin, required high concentration of all four ribonucleoside triphosphates (800 microM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase alpha because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

8.
9.
Recent findings in purified systems demonstrate the universality of DNA polymerase-primase complexes which may function in the priming and continuation of eucaryotic DNA replication. In this report we characterize an in vitro, nuclear matrix-associated, priming and continuation system that can utilize either endogenous matrix-bound DNA or exogenous single-stranded DNA as template. 30-40% of total nuclear DNA primase activity was recovered in association with the isolated nuclear matrix fraction from regenerating rat liver. Matrix-bound primase catalyzed the alpha-amanitin, actinomycin D-resistant synthesis of oligonucleotide chains of 8-50 nucleotides on the endogenous template. At least a portion of the RNA primers were continued by DNA polymerase alpha with deoxynucleoside triphosphate incorporation up to 300-600 nucleotides. Nearest neighbor analysis revealed ribodeoxynucleotide covalent linkages in these RNA-DNA chains. The matrix-bound primase preferred single-stranded fd DNA as exogenous template over synthetic homopolymers and was strictly dependent on the presence of ribonucleoside triphosphates. Appropriate subfractionation revealed that the matrix-bound primase activity is exclusively localized in the nuclear matrix interior. The ability of primase and DNA polymerase to synthesize covalently linked RNA-DNA products demonstrates the potentially useful role of the nuclear matrix in vitro system for elucidating the organizational and functional properties of the eucaryotic replication apparatus in the cell nucleus.  相似文献   

10.
Single-stranded DNA binding protein is a key component in growth of bacteriophage T7. In addition, DNA synthesis by the purified in vitro replication system is markedly stimulated when the DNA template is coated with Escherichia coli single-stranded DNA binding protein (SSB). In an attempt to understand the mechanism for this stimulation, we have studied the effect of E. coli SSB on DNA synthesis by the T7 DNA polymerase using a primed single-stranded M13 DNA template which serves as a model for T7 lagging strand DNA synthesis. Polyacrylamide gel analysis of the DNA product synthesized on this template in the absence of SSB indicated that the T7 DNA polymerase pauses at many specific sites, some stronger than others. By comparing the position of pausing with the DNA sequence of this region and by using a DNA template that contains an extremely stable hairpin structure, it was found that many, but not all, of these pause positions correspond to regions of potential secondary structure. The presence of SSB during synthesis resulted in a large reduction in the frequency of hesitations at many sites that correspond to these secondary structures. However, the facts that a large percentage of the pause sites remain unaffected even at saturating levels of SSB and that SSB stimulates synthesis on a singly primed poly(dA) template suggested that other mechanisms also contribute to the stimulation of DNA synthesis caused by SSB. Using a sucrose gradient analysis, we found that SSB increases the affinity of the polymerase for single-stranded DNA that this increased binding is only noticed when the polymerase concentration is limiting. The effect of this difference in polymerase affinity was clearly observed by a polyacrylamide gel analysis of the product DNA synthesized during a limited DNA synthesis reaction using conditions where only two nucleotides are added to the primer. Under these circumstances, where the presence of hairpin structures should not contribute to the stimulatory effect of SSB, we found that the extension of the primer is stimulated 4-fold if the DNA template is coated with SSB. Furthermore, SSB had no effect on this synthesis at large polymerase to template ratios.  相似文献   

11.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

12.
Isolation and characterization of a DNA primase from human mitochondria   总被引:4,自引:0,他引:4  
A family of enzymatic activities isolated from human mitochondria is capable of initiating DNA replication on single-stranded templates. The principal enzymes include at least a primase and DNA polymerase gamma and require that rNTPs as well as dNTPs be present in the reaction mixture. Poly(dC) and poly(dT), as well as M13 phage DNA, are excellent templates for the primase activity. A single-stranded DNA containing the cloned origin of mitochondrial light-strand synthesis can be a more efficient template than M13 phage DNA alone. Primase and DNA polymerase activities were separated from each other by sedimentation in a glycerol density gradient. Using M13 phage DNA as template, these mitochondrial enzymes synthesize RNA primers that are 9 to 12 nucleotides in size and are covalently linked to nascent DNA. The formation of primers appears to be the rate-limiting step in the replication process. Replication of M13 DNA is sensitive to N-ethylmaleimide and dideoxynucleoside triphosphates, but insensitive to rifampicin, alpha-amanitin, and aphidicolin.  相似文献   

13.
A previous paper reported the purification (from mouse cell extracts) and some of the properties of a protein, alpha accessory factor (AAF), that specifically stimulates DNA polymerase alpha/primase (1). We describe here studies on the mechanism of action of AAF. In the presence of AAF and a large excess of single-stranded circular DNA template, a molecule of DNA polymerase alpha/primase interacts with a single template DNA molecule priming and synthesizing multiple short DNA fragments covering thousands of nucleotides without detaching from the template, and, by many-fold repetition of the process, accomplishes serial replication of the population of DNA molecules. In contrast, without AAF the reaction involves the whole population of DNA molecules in parallel and with a very large number of binding events between DNA polymerase alpha/primase and DNA [corrected] template. The profound [corrected] increase in affinity of DNA polymerase alpha/primase for the DNA template that characterizes the mechanism suggests a functional identification of AAF as a template affinity protein. The resulting greater efficiency accounts for the ability of AAF to stimulate both the primase and polymerase activities of DNA polymerase alpha/primase. AAF also increases the processivity of DNA polymerase alpha/primase from approximately 15 to approximately 115 nucleotides, a size similar to that of mammalian Okazaki fragments, and it appears to allow DNA polymerase alpha/primase to traverse double-stranded regions of a DNA template. These features of the mechanism of AAF suggest that it may have a role in assisting DNA polymerase alpha/primase in synthesis of the lagging strand of a replication fork.  相似文献   

14.
To asses the possible roles of the two active forms of mouse DNA polymerase alpha: primase--DNA-polymerase alpha complex (DNA replicase) and DNA polymerase alpha free from primase activity (7.3S polymerase), in nuclear DNA replication the correlation of their activity levels with the rate of nuclear DNA replication was determined and a comparison made of their catalytic properties. The experiments using either C3H2K cells, synchronized by serum starvation, or Ehrlich culture cells, arrested at the S phase by aphidicolin, showed DNA replicase to increase in cells in the S phase to at least six times that of the G0-phase cells but 7.3S polymerase to increase but slightly in this phase. This increase in DNA replicase activity most likely resulted from synthesis of a new enzyme, as shown by experiments using a specific monoclonal antibody, aphidicolin and cycloheximide. Not only with respect to the presence or absence of primase activity, but in other points as well the catalytic properties of these two forms were found to differ; DNA replicase preferred the activated calf thymus DNA with wide gaps of about 100 nucleotides long as a template-primer, while the optimal gap size for 7.3S polymerase was 40-50 nucleotides long. Size analysis of the products synthesized on M13 single-stranded circular DNA with a single 17-nucleotide primer by DNA replicase and 7.3S polymerase suggested the ability of DNA replicase to overcome a secondary structure formed in single-stranded DNA to be greater than that of 7.3S polymerase.  相似文献   

15.
M Méchali  R M Harland 《Cell》1982,30(1):93-101
We describe a eucaryotic in vitro system for DNA replication derived from Xenopus eggs. In this system, priming and elongation of DNA chains occurs with unusually high efficiency on single-stranded circular DNA templates. Up to 1.5 micrograms M13 DNA can be converted to a completely double-stranded form by 100 microliters egg extract in 1 hr at 22 degrees C, a rate of synthesis comparable with the fastest rates of chromosomal DNA synthesis in early embryogenesis. Initiation of DNA synthesis on double-stranded circular DNA templates was undetectable however. The enzymatic events responsible for complementary-strand synthesis in vitro resemble those presumed to act at the lagging strand of the eucaryotic replication fork in vivo in three ways. First, inhibitor studies indicate that DNA polymerase alpha is required. Second, priming of DNA synthesis by oligoribonucleotides is strongly supported by the complete dependence on ribonucleoside triphosphates in the assay, and the detection of an oligoribonucleotide terminus of 9 or possibly 10 nucleotides associated with nascent DNA chains. Third, the priming reaction is resistant to alpha-amanitin.  相似文献   

16.
A DNA replication system was developed that could generate rolling-circle DNA molecules in vitro in amounts that permitted kinetic analyses of the movement of the replication forks. Two artificial primer-template DNA substrates were used to study DNA synthesis catalyzed by the DNA polymerase III holoenzyme in the presence of either the preprimosomal proteins (the primosomal proteins minus the DNA G primase) and the Escherichia coli single-stranded DNA binding protein or the DNA B helicase alone. Helicase activities have recently been demonstrated to be associated with the primosome, a mobile multiprotein priming apparatus that requires seven E. coli proteins (replication factor Y (protein n'), proteins n and n', and the products of the dnaB, dnaC, dnaG, and dnaT genes) for assembly, and with the DNA B protein. Consistent with a rolling-circle mechanism in which a helicase activity permitted extensive (-) strand DNA synthesis on a (+) single-stranded, circular DNA template, the major DNA products formed were multigenome-length, single-stranded, linear molecules. The replication forks assembled with either the preprimosome or the DNA B helicase moved at the same rate (approximately 730 nucleotides/s) at 30 degrees C and possessed apparent processivities in the range of 50,000-150,000 nucleotides. The single-stranded DNA binding protein was not required to maintain this high rate of movement in the case of leading strand DNA synthesis catalyzed by the DNA polymerase III holoenzyme and the DNA B helicase.  相似文献   

17.
A primase activity which permits DNA synthesis by yeast DNA polymerase I on a single-stranded circular phi X174 or M13 DNA or on poly(dT)n has been extensively purified by fractionation of a yeast enzyme extract which supports in vitro replication of the yeast 2-microns plasmid DNA (Kojo, H., Greenberg, B. D., and Sugino, A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 7261-7265). Most of this DNA primase activity was separated from DNA polymerase activity, although a small amount remained associated with DNA polymerase I. The primase, active as a monomer, has a molecular weight of about 60,000. The primase synthesizes oligoribonucleotides of discrete size, mainly eight or nine nucleotides, in the presence of single-stranded template DNA and ribonucleoside 5'-triphosphates; it utilizes deoxyribonucleoside 5'-triphosphates as substrate with 10-fold lower efficiency. Product size, chromatographic properties, alpha-amanitin resistance, and molecular weight of the primase activity distinguish it from RNA polymerases I, II, and III. The DNA products synthesized by both primase and DNA polymerase I on a single-stranded DNA template were 200-500 nucleotides long and covalently linked to oligoribonucleotides at their 5'-ends. Addition of yeast single-stranded DNA-binding protein (Arendes, J., Kim, K. C., and Sugino, A. (1983) Proc. Natl. Acad. Sci. U.S. A. 80, 673-677) stimulated the DNA synthesis 2-3-fold.  相似文献   

18.
We have prepared several novel phosphoramidites and have synthesised oligonucleotides incorporating them internally. The presence of these residues in an oligonucleotide template presents an impossible barrier to primed synthesis by Taq DNA polymerase. When extended as polymerase chain reaction products, these oligonucleotides no longer serve as templates for the polymerase beyond the insertion sites of the modified intermediates, thereby producing single-stranded tails on amplification products. These tails can then be used for solid phase capture and colorimetric detection of PCR products.  相似文献   

19.
J K Vishwanatha  E F Baril 《Biochemistry》1990,29(37):8753-8759
A single-stranded DNA-dependent ATPase that cofractionates during the early stages of purification of a multiprotein DNA polymerase alpha complex from HeLa cells has been purified to homogeneity. The ATPase is part of a 16S multienzyme DNA polymerase alpha complex that is fully active in SV40 DNA replication in vitro. The ATPase hydrolyzes ATP to ADP in a reaction that is completely dependent on the presence of DNA. DNA in single-stranded form is strongly preferred as a cofactor, and polydeoxynucleotides with adenine or thymidine residues are highly effective. Glycerol gradient sedimentation showed that the purified ATPase sedimented at an s20,w of 7 S, and polyacrylamide gel electrophoresis under denaturing conditions reveals two polypeptides with relative molecular weights of 83,000 and 68,000. Both of these polypeptides have purine nucleotide binding sites as revealed by photoaffinity cross-linking experiments. ATP binds to the two subunits more efficiently than GTP, and CTP or UTP does not cross-link with the two polypeptides. DNA synthesis catalyzed by purified HeLa cell DNA polymerase alpha-primase is stimulated in the presence of ATPase and ATP at an optimum concentration of 2 mM. Analysis of the DNA product by gel electrophoresis indicates that with poly(dT) but not phage M13 DNA as template the ATPase overcomes a lag and decreases the length of nascent DNA chains synthesized by the DNA polymerase alpha-primase complex.  相似文献   

20.
Among multiple subspecies of DNA polymerase α of calf thymus, only 10 S DNA polymerase α had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase α through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase α. These results indicate that the primase is tightly bound to 10 S DNA polymerase α. The RNA polymerizing activity was resistant to α-amanitin, required high concentration of all four ribonucleoside triphosphates (800 μM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase α because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号