首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hedgehog (Hh) signaling is important for development and homeostasis in vertebrates and invertebrates. Ligand-independent, deregulated Hh signaling caused by loss of negative regulators such as Patched causes excessive cell proliferation, leading to overgrowth in Drosophila and tumors in humans, including basal-cell carcinoma and medulloblastoma. We show that in Drosophila deregulated Hh signaling also promotes cell survival by increasing the resistance to apoptosis. Surprisingly, cells with deregulated Hh activity do not protect themselves from apoptosis; instead, they promote cell survival of neighboring wild-type cells. This non-cell autonomous effect is mediated by Hh-induced Notch signaling, which elevates the protein levels of Drosophila inhibitor of apoptosis protein-1 (Diap-1), conferring resistance to apoptosis. In summary, we demonstrate that deregulated Hh signaling not only promotes proliferation but also cell survival of neighboring cells. This non-cell autonomous control of apoptosis highlights an underappreciated function of deregulated Hh signaling, which may help to generate a supportive micro-environment for tumor development.  相似文献   

2.
Hedgehog (Hh) signalling plays a crucial role in the development and patterning of many tissues in both vertebrates and invertebrates. Aberrations in this pathway lead to severe developmental defects and cancer. Hh signal transduction in receiving cells is a well studied phenomenon; however questions still remain concerning the mechanism of repression of the pathway activator Smoothened (Smo) in the absence of Hh. Here we describe a novel repressor of the Hh pathway, Target of Wingless (Tow). Tow represents the Drosophila homolog of a conserved uncharacterised protein family. We show that Tow acts in Hh receiving cells, where its overexpression represses all levels of Hh signalling, and that this repression occurs upstream or at the level of Smo and downstream of the Hh receptor Patched (Ptc). In addition, we find that like Ptc, overexpression of Tow causes an accumulation of lipophorin in the wing disc. We demonstrate that loss of tow enhances different ptc alleles in a similar manner to another pathway repressor, Suppressor of Fused (SuFu), possibly through mediating Ptc dependant lipophorin internalisation. Combined, these results demonstrate that Tow is an important novel regulator of the Hh pathway in the wing imaginal disc, and may shed light on the mechanism of Ptc repression of Smo.  相似文献   

3.
Hedgehog (Hh) signaling regulates multiple aspects of metazoan development and tissue homeostasis, and is constitutively active in numerous cancers. We identified Ubr3, an E3 ubiquitin ligase, as a novel, positive regulator of Hh signaling in Drosophila and vertebrates. Hh signaling regulates the Ubr3-mediated poly-ubiquitination and degradation of Cos2, a central component of Hh signaling. In developing Drosophila eye discs, loss of ubr3 leads to a delayed differentiation of photoreceptors and a reduction in Hh signaling. In zebrafish, loss of Ubr3 causes a decrease in Shh signaling in the developing eyes, somites, and sensory neurons. However, not all tissues that require Hh signaling are affected in zebrafish. Mouse UBR3 poly-ubiquitinates Kif7, the mammalian homologue of Cos2. Finally, loss of UBR3 up-regulates Kif7 protein levels and decreases Hh signaling in cultured cells. In summary, our work identifies Ubr3 as a novel, evolutionarily conserved modulator of Hh signaling that boosts Hh in some tissues.  相似文献   

4.
5.
Hedgehog (Hh) proteins are secreted molecules that play an essential role in development and tumorigenesis. In Drosophila cultured cells, phosphorylation of the kinesin-like Costal2 (Cos2) protein at Ser572 is triggered by the kinase fused (Fu) upon Hh pathway activation. Here, we validate the first phospho-antibody for one of the Hh pathway components, Cos2, as a universal in situ readout of Hh signal transduction. For the first time, this tool allows the visualisation of a gradient of signalling activity and therefore the range of the activating Hh ligand in different tissues. We also show that, in vivo, Fu kinase is activated by and necessary to transduce all levels of intracellular Hh signalling. Our study fills a gap in the understanding of the Hh pathway by showing that the molecular cascade leading to Cos2 phosphorylation is conserved in all cells activated by Hh. Therefore, we propose that the extracellular Hh information is conveyed to an intracellular signal through graded Fu kinase activity.  相似文献   

6.
The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression.  相似文献   

7.
Sulfs are secreted sulfatases that catalyse removal of sulfate from Heparan Sulfate Proteoglycans (HSPGs) in the extracellular space. These enzymes are well known to regulate a number of crucial signalling pathways during development. In this study, we report that DSulfatase-1 (DSulf1), the unique Drosophila Sulf protein, is a regulator of Hedgehog (Hh) signalling during wing development. DSulf1 activity is required in both Hh source and Hh receiving cells for proper positioning of Hh target gene expression boundaries. As assessed by loss- and gain-of-function experiments in specific compartments, DSulf1 displays dual functions with respect to Hh signalling, acting as a positive regulator in Hh producing cells and a negative regulator in Hh receiving cells. In either domain, DSulf1 modulates Hh distribution by locally lowering the concentration of the morphogen at the apical pole of wing disc cells. Thus, we propose that DSulf1, by its desulfation catalytic activity, lowers Hh/HSPG interaction in both Hh source and target fields, thereby enhancing Hh release from its source of production and reducing Hh signalling activity in responding cells. Finally, we show that Dsulf1 pattern of expression is temporally regulated and depends on EGFR signalling, a Hh-dependent secondary signal in this tissue. Our data reveal a novel Hh regulatory feedback loop, involving DSulf1, which contributes to maintain and stabilise expression domains of Hh target genes during wing disc development.  相似文献   

8.
9.
Incorporation of DL-[2-14C]mevalonic acid ([2-14C]MVA) into4-desmethylsterols in Nicotiana tabacum cv. Turkish Samson seedlingswas inhibited by SK&F 7997-A3,1 SK&F 7732-A3, AY 9944,and the plant growth retardant, Amo 1618. Reductions in 4-desmethylsterol levels resulted from treatmentwith AY 9944 and Amo 1618, but not the SK&F compounds. Amo1618 and SK&F 7997-A3 both significantly reduced the specificactivity of each of the four major 4-desmethylsterols examined.Although SK&F 7732-A3 reduced the specific activity of campesterol,and AY 9944 reduced the specific activity of stigmasterol, neitherhad an effect on the specific activity of ß-sitosterol. Stem elongation of tobacco seedlings was retarded by SK&F7997-A3, AY 9944, and SK&F 7732-A3, particularly the former,and the retarded plants thus produced were morphologically indistinguishablefrom the Amo 1618-treated plants. Application of exogenous stigmasterol,or GA3, to the chemically-retarded plants resulted in a reversalof stem growth retardation.  相似文献   

10.
Hedgehog (Hh) signaling plays vital roles in animal development and tissue homeostasis, and its misregulation causes congenital diseases and several types of cancer. Suppressor of Fused (Su(fu)) is a conserved inhibitory component of the Hh signaling pathway, but how it is regulated remains poorly understood. Here we demonstrate that in Drosophila Hh signaling promotes downregulation of Su(fu) through its target protein HIB (Hh-induced BTB protein). Interestingly, although HIB-mediated downregulation of Su(fu) depends on the E3 ubiquitin ligase Cul3, HIB does not directly regulate Su(fu) protein stability. Through an RNAi-based candidate gene screen, we identify the spliceosome factor Crooked neck (Crn) as a regulator of Su(fu) level. Epistasis analysis indicates that HIB downregulates Su(fu) through Crn. Furthermore, we provide evidence that HIB retains Crn in the nucleus, leading to reduced Su(fu) protein level. Finally, we show that SPOP, the mammalian homologue of HIB, can substitute HIB to downregulate Su(fu) level in Drosophila. Our study suggests that Hh regulates both Ci and Su(fu) levels through its target HIB, thus uncovering a novel feedback mechanism that regulates Hh signal transduction. The dual function of HIB may provide a buffering mechanism to fine-tune Hh pathway activity.  相似文献   

11.
Follicular fluid meiosis-activating sterol (FF-MAS), an intermediate in the cholesterol biosynthetic pathway, has been identified as a compound that induces the resumption of meiosis in mammalian oocyte. FF-MAS is converted to testis meiosis-activating sterol by a sterol Δ14-reductase. An inhibitor of Δ14-reductase and Δ7-reductase, AY9944 A-7, causes accumulation of FF-MAS by inhibiting its metabolism. The objective of this study was to determine the effects of AY9944 A-7 supplementation to oocyte maturation media on prepubertal sheep oocyte meiotic resumption and subsequent preimplantation development of embryos. Prepubertal sheep oocytes isolated at the germinal vesicle stage from their follicles were cultured with 0, 10, 20, 30, and 40 μM AY9944 A-7 for 24 hours in media with or without a meiotic inhibitor hypoxanthine (Hx, 4 mM). The resumption of meiosis was assessed by the frequency of germinal vesicle breakdown and the first polar body (PBI) extrusion. After maturation for 24 hours, oocytes with PBI were inseminated in vitro, and the percentages developing to the two-cell stage and blastocyst stage were measured as indicators of early embryonic developmental competence. AY9944 A-7 induced maturation of sheep cumulus-oocyte complexes with optimal concentrations of 10 and 20 μM both in Hx-inhibited meiotic maturation and spontaneous maturation, whereas AY9944 A-7 with any concentrations had no significant effect on that of denuded oocytes and split cumulus-oocyte complexes. Furthermore, maturing oocytes treated with either 10 or 20 μM AY9944 A-7 dramatically increased the percentages of ovine embryos developing to the two-cell stage and blastocyst stage. Higher concentrations of AY9944 A-7, 30 and 40 μM, were detrimental to oocytes and led to their degeneration. The present findings indicated for the first time that AY9944 A-7 was not only able to promote meiotic maturation, both Hx-inhibited and spontaneous, but also enhanced preimplantation developmental competence of prepubertal sheep oocytes maturing in vitro.  相似文献   

12.
13.
Smith-Lemli-Opitz syndrome (SLOS) is caused by an inherited defect in the last step in cholesterol (Chol) biosynthesis, leading to abnormal accumulation of 7-dehydrocholesterol and decreased Chol levels. Progressive retinal degeneration occurs in an animal model of SLOS, induced by treating rats with AY9944, a selective inhibitor of the enzyme affected in SLOS. Here we evaluated alterations in the biochemical and physical properties of retinal rod outer segment (ROS) membranes in this animal model. At 1 month of AY9944 treatment, there were modest alterations in fatty acid composition, but no significant differences in cis-parinaric acid (cPA) spectroscopic parameters in ROS membranes from treated versus control rats. However, at 3 months, ROS docosahexaenoic acid (DHA) content was dramatically reduced, and cPA fluorescence anisotropy values were decreased, relative to controls. Also, 1,6-diphenyl-1,3,5-hexatriene exhibited decreased rotational motion and increased orientational order in ROS membranes from 3 month-old AY9944-treated rats, relative to controls. No significant changes in protein:lipid ratios were observed; however, rhodopsin regenerability was compromised by 3 months of treatment. These findings are consistent with reduced ROS membrane fluidity in the SLOS rat model, relative to controls, primarily due to the dramatic reduction in membrane DHA levels, rather than altered sterol composition.  相似文献   

14.
The Drosophila segment polarity gene fused, which encodes a serine threonine kinase, is required to transmit the Hedgehog (Hh) signal in imaginal discs. To explore the functional homology between the human protein FUSED (hFU) and the Drosophila protein fused (dFu), we have subjected hFU to a precise and well-defined Hh signalling assay of Drosophila wing development. In the wildtype, hFU affects the expression of Hh target genes leading thus to defects in adult wings. In fu mutants, overexpression of hFU cannot rescue the fu phenotype. These results suggest that hFU in Drosophila interferes with endogenous Hh signalling probably by competing with endogenous dFu when binding its partners but cannot perform the normal Fu function.Edited by C. Desplan  相似文献   

15.
16.
AY 9944 [trans-1,4-bis(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride] is an amphiphilic cationic molecule. This chemical is an established inhibitor of cholesterol synthesis and is teratogenic in rats. The mechanisms of this teratogenicity remain to be clarified. This study used cultured rat whole embryos to ascertain whether AY 9944 had a direct effect on embryos, or whether its action was indirect, via the maternal cholesterol metabolism. Four experimental conditions were investigated: (A) controls; (B) 10 day untreated embryos were cultured in serum of treated rats; (C) 10 day untreated embryos were cultured in serum containing added AY 9944 (0-1,000 micrograms/ml); and (D) 10 day embryos from females treated on day 4 of gestation were cultured in normal serum. In group B there was no growth retardation; some slight nonspecific abnormalities were not significant. In group C, direct addition of AY 9944 to culture medium retarded growth and differentiation in a dose-dependent manner. No malformation was observed, but histological examinations showed numerous areas of cell necrosis, especially in the CNS. In group D, not only was growth retardation observed, but also characteristic malformations of AY 9944 teratogenesis, including pituitary agenesis. These results show that AY 9944 teratogenicity is initiated prior to day 10.  相似文献   

17.
18.
1. The compound trans-1,4 bis-(2-dichlorobenzylaminomethyl)cyclohexane dihydrochloride (AY9944) blocks cholesterol synthesis at a late stage. This leads to a decrease in cholesterol and accumulation of cholesta-5,7-diene-3-beta-ol (7-dehydrocholesterol) in tissues and plasma. 2. The effect of AY9944 on bile salt synthesis in rat liver was studied. The synthesis of conjugated cholic and chenodeoxycholic acids was measured in hepatocytes isolated from rats 2 h, 24 h and 48 h after administration of a single oral dose of AY9944. Production of the two bile salts was inhibited by 70-80% in hepatocytes from AY9944-treated as compared to untreated animals. 3. When AY9944 was added to the incubation medium in vitro of hepatocytes prepared from untreated rats the synthesis of conjugated cholic and chenodeoxycholic acids was not inhibited during the first hour of incubation, probably because of the presence of endogenous cholesterol. However when hepatocytes from untreated rats were incubated with AY9944 for periods of 2 h or longer, bile salt production was decreased markedly. 4. Bile salt synthesis is stimulated when rats are subjected to total biliary drainage for 24 h. The effect of AY9944 on this stimulation was studied. The content of conjugated cholic and chenodeoxycholic acid in the bile was measured as an indicator of bile salt synthesis. 5. In control animals the rate of secretion of biliary bile salts began to increase after about 24 h of total biliary drainage and reached a maximum after approximately 36 h. A single oral dose of AY9944 given 2 h after the start of total biliary drainage delayed and reduced this response. 6. The results show that inhibition of cholesterol synthesis by AY9944 resulting in the replacement of cholesterol by 7-dehydrocholesterol decreases but does not completely prevent bile salt synthesis.  相似文献   

19.
Smith–Lemli–Opitz syndrome (SLOS) is a recessive disease characterized by markedly elevated levels of 7-dehydrocholesterol (7-DHC) and reduced levels of cholesterol in tissues and fluids of affected individuals, due to defective 3β-hydroxysterol-Δ7-reductase (Dhcr7). Treatment of Sprague Dawley rats with AY9944 (an inhibitor of Dhcr7) leads to similar biochemical features as observed in SLOS. Eighteen oxysterols previously have been identified as oxidation products of 7-DHC (most of them distinct from cholesterol (Chol)-derived oxysterols) in solution, in cells, and in brains obtained from Dhcr7-KO mice and AY9944-treated rats, formed either via free radical oxidation (peroxidation) or P450-catalyzed enzymatic oxidation. We report here the identification of five 7-DHC-derived oxysterols, including 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), 4α- and 4β-hydroxy-7-DHC, 24-hydroxy-7-DHC and 7-ketocholesterol (7-kChol, an oxysterol that is normally derived from Chol), in the retinas of AY9944-treated rats by comparing the retention times and mass spectrometric characteristics with corresponding synthetic standards in HPLC-MS analysis. Levels of 4α- and 4β-hydroxy-7-DHC, DHCEO, and 7-kChol were quantified using d7-DHCEO as an internal standard. Among the five oxysterols identified, only 7-kChol was observed in retinas of control rats, but the levels of 7-kChol in retinas of AY9944-rats were 30-fold higher. Intravitreal injection of 7-kChol (0.25 μmol) into a normal rat eye induced panretinal degeneration within one week; by comparison, contralateral (control) eyes injected with vehicle alone exhibited normal histology. These findings are discussed in the context of the potential involvement of 7-DHC-derived oxysterols in the retinal degeneration associated with the SLOS rat model and in SLOS patients.  相似文献   

20.
We report the crystal structure of two variants of Drosophila melanogaster insulin-like peptide 5 (DILP5) at a resolution of 1.85 Å. DILP5 shares the basic fold of the insulin peptide family (T conformation) but with a disordered B-chain C terminus. DILP5 dimerizes in the crystal and in solution. The dimer interface is not similar to that observed in vertebrates, i.e. through an anti-parallel β-sheet involving the B-chain C termini but, in contrast, is formed through an anti-parallel β-sheet involving the B-chain N termini. DILP5 binds to and activates the human insulin receptor and lowers blood glucose in rats. It also lowers trehalose levels in Drosophila. Reciprocally, human insulin binds to the Drosophila insulin receptor and induces negative cooperativity as in the human receptor. DILP5 also binds to insect insulin-binding proteins. These results show high evolutionary conservation of the insulin receptor binding properties despite divergent insulin dimerization mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号