首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Proteomics, gene/protein families including both specialized and non-specialized paralogs are an invaluable tool to study the evolution of structure/function relationships in proteins. Metallothioneins (MTs) of the pulmonate gastropod molluscs (snails) offer one of the best materials to study the metal-binding specificity of proteins, because they consist of a polymorphic system that includes members with extremely distinct metal preferences but with a high protein sequence similarity. Cantareus aspersus was the first snail where three paralogous MTs were isolated: the highly specific cadmium (CaCdMT) and copper (CaCuMT) isoforms, and an unspecific CaCd/CuMT isoform, so called because it was natively isolated as a mixed Cd and Cu complex. In this work, we have thoroughly analyzed the Zn2 +-, Cd2 +- and Cu+-binding abilities of these three CaMTs by means of the spectroscopic and spectrometric characterization of the respective recombinant, as well as in vitro-substituted, metal-complexes. The comparison with the orthologous HpMTs and the study of the isoform-determinant residues allow correlating the protein sequence variability with the coordination capabilities of these MTs. Surprisingly, the CaCuMT isoform exhibits a stronger Cu-thionein character than the HpCuMT ortholog, and the CaCd/CuMT isoform could be defined as a non-optimized Cu-thionein, which has not attained any defined functional differentiation in the framework of the snail MT gene/protein family.  相似文献   

2.
Metallobiologists have, at large, neglected soil dwelling invertebrates; exceptions are the nematode (Caenorhabditis elegans) and snails (Helix pomatia and Cantareus aspersus). This review aims to compare and contrast the molecular, protein and cellular mechanisms of the multifunctional nematode and snail metallothioneins (MTs). The C. elegans genome contains two MT genes, mtl-1, which is constitutively expressed in the pharynx and likely to act as an essential and/or toxic metal sensor, and mtl-2, which plays a negligible role under normal physiological conditions but is strongly induced (as mtl-1) in intestinal cells upon metal exposure. It has been possible to follow the intricate phenotypic responses upon the knockdown/knockout of single and multiple MT isoforms and we have started to decipher the multifunctional role of C. elegans MTs. The snails have contributed to our understanding regarding MT evolution and diversity, structure and metal-specific functionality. The H. pomatia and C. aspersus genomes contain at least three MT isoform genes. CdMT is responsible for cadmium detoxification, CuMT is involved in copper homeostasis and Cd/CuMT is a putative ancestral MT possibly only of minor importance in metal metabolism. Further investigations of nematode, snail and other invertebrate MTs will allow the development of alternative biomarker approaches and lead to an improved understanding of metallobiology, protein evolution and toxicogenomics.  相似文献   

3.
Metallothioneins (MTs) are commonly used as biomarker for metal pollution assessment in marine ecosystems. Using integrated genomic and proteomic analyses, this study characterized two types of MT isoform in the digestive gland of a common biomonitor, the green‐lipped mussel Perna viridis, towards the challenges of a metal (cadmium; Cd) and a non‐metal oxidant (hydrogen peroxide; H2O2) respectively. The two isoforms differed in their deduced protein sequences, with 73 amino acids for MT10‐I and 72 for MT10‐II (a novel type), but both consisted of a high percentage (27.4 to 29.2%) of cysteine. Two‐dimensional gel and Western blot showed that the MT proteins were present in multiple isoform spots, and they were further validated to be MT10‐I and MT10‐II using MS analysis coupled with unrestricted modifications searching. Expression of mRNA revealed that MT10‐I responded promptly to Cd but had a lagged induction to H2O2 treatments, while MT10‐II was exclusively induced by Cd treatment over the course of exposure. Expression of the MT proteins also showed a delayed response to H2O2, compared to Cd treatments. This study uncovered the potential different functional roles of various MTs isoforms in P. viridis and thus advances the resolution of using MTs as biomarkers in future applications.  相似文献   

4.
Astroglia cells structurally and nutritionally support neurons in the central nervous system. They play an important role in guiding the construction of the nervous system and controlling the chemical and ionic environment of neurons. They also represent the major sites for accumulation and immobilisation of toxic metal ions most probably connected with metallothioneins. For this reason astroglia cells possess high cytosolic levels of metallothioneins I, II and III (MT-I,II,III). Our aim was to establish the inducibility and metal binding of MTs in two human astrocytoma cell lines, U87 MG (astrocytoma–glioblastoma, grade IV) and IPDDC-2A (astrocytoma, grade II), on exposure to cadmium chloride (1 μM). MTs were identified by molecular weight (size exclusion chromatography) and their metal content (Cd, Zn and Cu) to follow the interactions between metals. We showed that MTs are constitutively expressed in both human astrocytoma cell lines. In accordance with the higher malignancy grade of U87 MG, the amount of MTs was higher in U87 MG than in IPDDC-2A cells. After 24 hours of exposure to Cd their expression greatly increased in both cell lines and they were capable of immobilising almost all water soluble Cd. Induction of MTs in U87 MG cells was additionally followed up to 48 hours with exposure to different concentrations of CdCl2 (1, 10 μM). Induction was a time dependent process throughout the period. Isoform III (identified by chromatographic separation of isoform III from I/II) was present at all exposure times, but only in traces with respect to the prevailing amounts of MT-I/II isoforms. So induction can be attributed to isoform I/II only.  相似文献   

5.
Metallothioneins (MTs) are a superfamily of Cys-rich polypeptides that bind heavy metal ions, both for physiological and detoxification purposes. They are present in all organisms, but their origin is probably polyphyletic, so that MT evolutionary studies are rather scarce. We present a thorough search and analysis of the MT coding sequences in the 12 Drosophila genomes completely sequenced, taking as reference the features reported for D. melanogaster, where four isogenes (MtnA to MtnD) are known and deeply characterized. We include a fifth isoform in this study, named MtnE, and recently annotated. The MTs polymorphism pattern is essentially the same for the 12 Drosophila species. Invariably, a MtnA form and an MtnB-cluster, comprising the MtnB-to-MtnE forms in tandem array, are observed. The whole set of genes are kept in the same synteny element (Muller E), but implicated in rearrangement events (mainly inversions), encompassing all or some of the isogenes. Gene exon/intron architecture, and cDNA and protein sequences appear highly conserved through Drosophila speciation, concordantly with an essential function for MT isoforms in flies, even for those previously considered as minor products. Data presented here will be comprehensively analyzed to provide a valuable guide for future MT evolutionary, structure and function studies.  相似文献   

6.
Metallothioneins (MTs) are ubiquitous proteins with the capacity to bind heavy metal ions (mainly Cd, Zn or Cu), and they have been found in animals, plants, eukaryotic and prokaryotic micro‐organisms. We have carried out a comparative analysis of ciliate MTs (Tetrahymena species) to well‐known MTs from other organisms, discussing their exclusive features, such as the presence of aromatic amino acid residues and almost exclusive cysteine clusters (CCC) present in cadmium‐binding metallothioneins (CdMTs), higher heavy metal‐MT stoichiometry values, and a strictly conserved modular–submodular structure. Based on this last feature and an extensive gene duplication, we propose a possible model for the evolutionary history of T. thermophila MTs. We also suggest possible functions for these MTs from consideration of their differential gene expressions and discuss the potential use of these proteins and/or their gene promoters for designing molecular or whole‐cell biosensors for a fast detection of heavy metals in diverse polluted ecosystems.  相似文献   

7.
Metallothioneins (MTs) are ubiquitous, low‐molecular weight, cysteine‐rich proteins. Despite a well‐established protective role in metal excess detoxification, there is little data about their putative physiological functions, commonly assumed to be metal homeostasis and redox equilibrium. Protein–protein interactions should have provided useful information to unveil unsuspected functions, but reports on MT interactions are scarce. This is probably due to the MT metal‐dependent 3D structure, a fact that has been seldom taken into account when performing proteomic interaction assays. In the present work, we have detected that the two major D. melanogaster isoforms (MtnA and MtnB) interact with the peroxiredoxin (Prx) encoded by the gene Jafrac1, both in a clear metal‐dependent pattern. The MT–Prx interaction is further confirmed in Saccharomyces cerevisiae by assaying both yeast MTs (Crs5p and Cup1p) versus Tsa1p and Tsa2p, the Jafrac1 homologous Prxs in this organism. Thus, a new methodological approach to detect MT‐interacting proteins in different proteomes is established on the basis of assaying MTs in the form of different metal complexes. Furthermore, new perspectives to investigate the often hypothesized contribution of MTs to the redox physiological networks are open.  相似文献   

8.
MTs are small cysteine-rich metal-binding proteins found in many species and, although there are differences between them, it is of note that they have a great deal of sequence and structural homology. Mammalian MTs are 61 or 62 amino acid polypeptides containing 20 conserved cysteine residues that underpin the binding of metals. The existence of MT across species is indicative of its biological demand, while the conservation of cysteines indicates that these are undoubtedly central to the function of this protein. Four MT isoforms have been found so far, MT-1, MT-2, MT-3, and MT-4, but these also have subtypes with 17 MT genes identified in man, of which 10 are known to be functional. Different cells express different MT isoforms with varying levels of expression perhaps as a result of the different function of each isoform. Even different metals induce and bind to MTs to different extents. Over 40 years of research into MT have yielded much information on this protein, but have failed to assign to it a definitive biological role. The fact that multiple MT isoforms exist, and the great variety of substances and agents that act as inducers, further complicates the search for the biological role of MTs. This article reviews the current knowledge on the biochemistry, induction, regulation, and degradation of this protein in mammals, with a particular emphasis on human MTs. It also considers the possible biological roles of this protein, which include participation in cell proliferation and apoptosis, homeostasis of essential metals, cellular free radical scavenging, and metal detoxification.  相似文献   

9.
This article represents an updated review of ciliate metallothioneins (Tetrahymena species) including a comparative analysis with regard to well-known metallothioneins (MTs) from other organisms and discussion of their exclusive features. It opens with an introduction to ciliates, summarizing the main characteristics of these eukaryotic microorganisms and their use as cellular models to study metallothioneins and metal–eukaryotic cell interactions. It has been experimentally proved that at least three different metal resistance mechanisms exist in ciliates, of which bioaccumulation is the most studied. Structural comparative analysis reveals that Tetrahymena MTs have unique characteristics, such as longer length, a considerably higher cysteine content, different metal–MT stoichiometry values, the presence of new cysteine clusters, and a strictly conserved modular–submodular structure. Gene expression analysis reveals a multistress and differential response to diverse metals and other environmental stressors, which corroborates the classification of these MTs. An in silico analysis of the promoter sequences of some MT genes reveals the presence of conserved motifs that are probably involved in gene expression regulation. We also discuss the great advantages of the first ciliate whole-cell biosensors based on MT promoters from Tetrahymena thermophila to detect heavy metal ions in environmental samples.  相似文献   

10.
Human metallothioneins (MTs) are important regulators of metal homeostasis and protectors against oxidative damage. Their altered mRNA expression has been correlated with metal toxicity and a variety of cancers. Current immunodetection methods lack the specificity to distinguish all 12 human isoforms. Each, however, can be distinguished by the mass of its acetylated, cysteine-rich, hydrophilic N-terminal tryptic peptides. These properties were exploited to develop a bottom-up MALDI-TOF/TOF-MS-based method for their simultaneous quantitation. Key features included enrichment of N-terminal acetylated peptides by strong cation exchange chromatography, optimization of C18 reversed-phase chromatography, and control of methionine oxidation. Combinations of nine isoforms were identified in seven cell lines and two tissues. Relative quantitation was accomplished by comparing peak intensities of peptides generated from pooled cytosolic proteins alkylated with 14N- or 15N-iodoacetamide. Absolute quantitation was achieved using 15N-iodoacetamide-labeled synthetic peptides as internal standards. The method was applied to the cadmium induction of MTs in human kidney HK-2 epithelial cells expressing recombinant MT-3. Seven isoforms were detected with abundances spanning almost 2 orders of magnitude and inductions up to 12-fold. The protein-to-mRNA ratio for MT-1E was one-tenth that of other MTs, suggesting isoform-specific differences in protein expression efficiency. Differential expression of MT-1G1 and MT-1G2 suggested tissue- and cell-specific alternative splicing for the MT-1G isoform. Protein expression of MT isoforms was also evaluated in human breast epithelial cancer cell lines. Estrogen-receptor-positive cell lines expressed only MT-2 and MT-1X, whereas estrogen-receptor-negative cell lines additionally expressed MT-1E. The combined expression of MT isoforms was 38-fold greater in estrogen-receptor-negative cell lines than in estrogen-receptor-positive cells. These findings demonstrate that individual human MT isoforms can be accurately quantified in cells and tissues at the protein level, complementing and expanding mRNA measurement as a means for evaluating MTs as potential biomarkers for cancers or heavy metal toxicity.The metallothioneins (MTs)1 are a family of small, highly conserved proteins with the specific capacity to bind metal ions (13). Mammalian MTs, typically 61 to 68 amino acid residues in length, contain 20 invariant cysteine residues that form two distinct metal-binding domains. Up to seven or eight metal ions may be coordinated per MT. Many functions have been attributed to this redox-active protein, including zinc homeostasis; heavy metal detoxification; metal exchange; metal transfer; and protection against oxidative damage, inflammatory responses, and other cellular stresses (46). Changes in MT expression have been associated with human pathologies including cadmium-induced renal toxicity (7), neurodegeneration (8), and many forms of cancer (9, 10). The understanding of these changes is complicated by the 11 functional MT genes, seven pseudogenes, and four MT-like genes encoded in the genome, most of which contain only small differences in amino acid sequence (11). Seventeen of the 18 genes and pseudogenes are clustered together on chromosome 16, which is known to be enriched for intrachromosomal duplications (12). The various MT gene products differ in their patterns of mRNA and protein expression in human tissues and cell lines. Immunohistochemical detection using antibodies that do not discriminate between MT-1 and MT-2 isoforms indicates wide tissue and cell type distribution of MTs, as illustrated with the MT-1A entry of the Human Protein Atlas (13, 14). Measurements of individual MT mRNA levels, however, clearly demonstrate differential expression of specific MT-1 isoforms in human tissues and cell lines (1517). The MT-3 (18, 19) and MT-4 (20) mRNAs are expressed in even narrower ranges of cell types.An abundance of immunohistochemical and mRNA measurements show that alteration of MT isoform expression is correlated with a variety of cancers (9, 10). For example, several studies show that the expression of specific MT isoforms is altered in invasive ductal breast carcinomas. Elevated MT-2A (21) or MT-1F (22) is correlated with increased proliferation or tumor grade, respectively. Expression of MT-3 is associated with poor prognosis (23, 24). The MT-1E isoform is found in estrogen-receptor-negative (ER), but not estrogen-receptor-positive (ER+), tumors (25) and cell lines (26). Parallel assessment of changes in MT protein expression via immunohistochemistry supports the mRNA data up to a point. Except for antibodies specific for the MT-3 isoform (27), all commercially available MT antibodies are pan-specific for the MT-1, MT-2, and MT-4 protein isoforms (28). This is because epitopes recognized by antibodies raised against MT-1 or MT-2 are limited to the first five residues of the acetylated N terminus, which are invariant among all MT-1, MT-2, and MT-4 isoforms (2931). This includes the commercially available E9 antibody that has been used to demonstrate the overexpression of MT in a wide variety of human cancers (28, 32, 33). In general, the overexpression of MT in various cancers has been associated with resistance to anticancer therapies and linked to a poor prognosis.The mounting evidence that specific MT isoforms may be useful prognostic and diagnostic markers for cancers highlights the need for alternative approaches to the assessment of MT isoform expression at the protein level. A few mass-spectrometry-based studies have succeeded in identifying the complement of MT isoforms in human cells (34, 35). Though top-down approaches hold promise for the quantitation of MTs based on the unique masses of intact isoforms (34, 36), this has yet to be exploited. Inductively coupled plasma MS has been used to quantify total metal-bound MTs in cells and tissues, but it cannot assign relative abundance values of MT isoforms because the proteins are reduced to their elemental composition with this technique. Thus far, MALDI-MS has been used in parallel with inductively coupled plasma MS for the qualitative identification of isoforms (35). Bottom-up quantitative approaches specifically targeting MTs have not yet been reported.The use of mass spectrometry to quantify MT isoforms is not straightforward. The N-terminal tryptic peptide of each human MT isoform encompasses the only sequence that distinguishes all 12 and therefore may be used for their identification and quantitation in complex biological samples from cells and tissues (34). Any attempt at quantitation of this family of small, highly conserved, cysteine-rich proteins therefore requires reproducible detection of these signature peptides.An optimized bottom-up proteomic method is presented here that is capable of identifying and quantifying all isoforms that constitute the human MT gene family in a single experiment. The approach is comparable in sensitivity and dynamic range to quantitative PCR methods used to measure mRNA levels. Quantitative and qualitative differences between mRNA and protein expression indicate that isoform-specific measurements of protein levels complement and extend our understanding of MT isoform expression in complex biological samples. The method was applied to the characterization of MT isoforms in ER+ and ER breast cancer cell lines. Protein and mRNA measurements showed the same complement of isoform expression, confirming differential MT expression between ER+ and ER cell lines. The mass spectrometry assay further showed dramatic differences in the abundance of protein and mRNA in specific isoforms, an observation that has not been previously reported.  相似文献   

11.
12.
13.
During the last few years the subject of metallothioneins (MTs) in terrestrial invertebrates has gained increasing attention. One reason for this may be that terrestrial invertebrates provide new insights into the biological diversity of MTs, with the potential of discovering alternative models of structural and functional relationships. Four groups of terrestrial invertebrates have been studied in detail, namely nematodes, insects, snails and earthworms, with the present article focusing on MTs from the latter two groups. Snails are interesting because they possess distinct MT isoforms involved in different metal-specific tasks. In the Roman snail (Helix pomatia), for example, one isoform is predominantly expressed in the midgut gland, accounting for the accumulation, binding and detoxification of cadmium. The second isoform, which is present in the snail's mantle, is substantially different regarding its primary structure. Furthermore, it binds nearly exclusively copper, and thus is probably involved in the homeostatic regulation of essential trace elements. Earthworm MTs merit our attention because of another peculiarity: they seem to be much more unstable than snail MTs, particularly under conventional conditions of preparation. The cDNA of the brandling worm (Eisenia foetida), for instance, codes for a putative MT, which is about twice the size of the actual protein. The isolated MT peptide binds four Cd2+ ions and represents a one-domain MT entity that is stable and functional in vitro. This strongly suggests that earthworm MTs are either posttranslationally modified, or subjected to enzymatic cleavage during preparation. Both snail and earthworm MTs are inducible by metal exposure, especially by cadmium, thus supporting the idea of using them as potential biomarkers for environmental metal pollution. Whilst snail MTs have already been tested in this respect with some success, the use of earthworm MTs as biomarkers still remains to be evaluated, especially in the light of the unknown significance of their posttranslational instability.  相似文献   

14.
15.
Lipase (EC.3.1.1.3) from Candida sp. 99-125 was separated into four isoforms (isoform A, isoform B, isoform C, and isoform D) by two steps of ion exchange chromatography. As analyzed on SDS- and non-denaturing PAGE, the four isoforms were homogenous and had the same molecular weight of approximate 38 kDa. MALDI-TOF peptide mass fingerprinting maps and circular dichroism spectra showed the isoforms had similar peptide patterns belonging to the same protein encoded by the YLlip2 gene and different secondary structures. The isoforms had a little distinct optimum temperature in the range of 20–35 °C, and the same optimum pH (8.0). They remained to be active in methanol, ethanol and ethylene glycol at the concentration of 10% and 20% (v/v) and acetone at the concentration of 10% (v/v), and sensitive to EDTA. Triton X-100, Sodium cholate and CHAPS slightly increased their activities. The metal ion Ca2+ and Mg2+ had mild effect on lipase activity. The isoforms showed a preference for long chain fatty acid triglyceride (triolein and olive). The lipase purified by one step of ion exchange chromatography and isoforms were less active than crude enzyme to catalyze cetyl alcohol and oleic acid in n-hexane, whereas the presence of small concentration of added water dramatically activated crude lipase but less the purified preparations.  相似文献   

16.
In order to demonstrate the in vivo antioxidant properties of metallothioneins (MTs), the bacteria Escherichia coli was used as a cell reactor in which we compared the metal binding and antioxidative functions of MTs from different species, with different structures and polypeptide lengths. No protective effects of cytoplasmic MTs from cadmium (Cd) or zinc (Zn) contamination were observed in a wild-type E. coli strain, although these MTs can efficiently bind both Cd and Zn. To test their antioxidant properties, MTs were expressed within the cytoplasm of a sodA sodB deficient mutated strain (QC1726). However, a paradoxical MT toxicity was found when this strain was contaminated with Cd and Zn, suggesting that in a wild-type strain, superoxide dismutase counteracts MT toxicity. The most toxic MT was the one with the strongest Cd and Zn binding capacities. This toxic effect was linked to the generation of superoxide radicals, since a Cd-contaminated QC1726 strain expressing oyster MT isoforms produced 75-85% more O(2)*(-) than the control QC1726 strain. Conversely, under anaerobiosis or in the presence of a copper chelator, MTs protected QC1726 strain from Cd and Zn contamination. A model is proposed to explain the observed MT toxicity.  相似文献   

17.
A range of African and alien macro-invertebrates has been reported preying on freshwater pulmonate snails, including those that serve as intermediate hosts for bloodflukes of the genus Schistosoma. Predation by five molluscivorous taxa is reviewed here: indigenous leeches (Glossiphoniidae), marsh fly larvae (Sciomyzidae), waterbugs (Belostomatidae), crabs (Potamonautidae) and invasive crayfish (Astacidae). Common features are a lack of prey specificity but clear prey-size specificity. Attention is drawn to the ability of invasive snail species (Physidae and Lymnaeidae) to avoid predation by several of these taxa. Evidence suggests that only the alien invasive crayfish Procambarus clarkii has potential as a snail biocontrol agent, but that its use should not be encouraged.  相似文献   

18.
Two thermostable xylanase isoforms T60 and T80 were purified to homogeneity from the cladodes of the xerophytic Cereus pterogonus plant species. After three consecutive purification steps, the specific activity of T60 and T80 isoforms were found to be 178.6 and 216.2 U mg−1 respectively. The molecular mass of both isoforms was determined to be 80 kDa. The optimum temperature for T60 and T80 xylanase isoforms were 60 and 80 °C respectively. The pH was 5.0 for both isoforms. The presence of divalent metal ions (10 mM Co2+) showed stimulatory effects of both catalytic activities, where as in the presence of Hg2+, Cd2+, Cu2+ showed inhibitory effect on these activities at all concentrations studied. The thermodynamic analysis of xylanase activity using denaturation kinetics and the presence divalent cations at 30–100 °C, showed lower ΔH, ΔS, and ΔG values at all the temperatures investigated. The melting temperature of purified T80 xylanase isoform as determined by TG/DTA analysis and it showed the unfolding temperature was 80 °C. The g value and hyperfine (A) value purified xylanase T80 isoform was 2.017 and 10.80 respectively. Immunoblot analysis with antiserum raised against the purified T80 xylanase isoforms revealed single immunolgically related polypeptides of 80 kDa, identical with the polypeptide band produced on SDS-PAGE. The results of double immunodiffusion against the T80 isoforms showed a single precipitin line indicating that the serum used was specific to these xylanase isoforms. The kinetic and thermodynamic properties suggested that xylanase from C. pterogonus may have a potential usage in various industries.  相似文献   

19.
Metallothioneins (MTs) are a superfamily of Cys-rich, low-molecular weight metalloproteins that bind heavy metal ions. These cytosolic metallopeptides, which exist in most living organisms, are thought to be involved in metal homeostasis, metal detoxification, and oxidative stress protection. In this work, we characterise the Zn(II)- and Cd(II)-binding abilities of plant type 3 and type 4 MTs identified in soybean and sunflower, both of them being His-containing peptides. The recombinant metal-MT complexes synthesised in Zn(II) or Cd(II)-enriched Escherichia coli cultures have been analysed by ESI-MS, and CD, ICP-AES, and UV spectroscopies. His-to-Ala type 3 MT mutants have also been constructed and synthesised for the study of the role of His in divalent metal ion coordination. The results show comparable divalent metal-binding capacities for the MTs of type 3, and suggest, for the first time, the participation of their conserved C-term His residues in metal binding. Interesting features for the Zn(II)-binding abilities of type 4 MTs are also reported, as their variable His content may be considered crucial for their biological performance.  相似文献   

20.
Chemistry and biology of mammalian metallothioneins   总被引:1,自引:0,他引:1  
Metallothioneins (MTs) are a class of ubiquitously occurring low molecular mass, cysteine- and metal-rich proteins containing sulfur-based metal clusters formed with Zn(II), Cd(II), and Cu(I) ions. In mammals, four distinct MT isoforms designated MT-1 through MT-4 exist. The first discovered MT-1/MT-2 are widely expressed isoforms, whose biosynthesis is inducible by a wide range of stimuli, including metals, drugs, and inflammatory mediators. In contrast, MT-3 and MT-4 are noninducible proteins, with their expression primarily confined to the central nervous system and certain squamous epithelia, respectively. MT-1 through MT-3 have been reported to be secreted, suggesting that they may play different biological roles in the intracellular and extracellular space. Recent reports established that these isoforms play an important protective role in brain injury and metal-linked neurodegenerative diseases. In the postgenomic era, it is becoming increasingly clear that MTs fulfill multiple functions, including the involvement in zinc and copper homeostasis, protection against heavy metal toxicity, and oxidative damage. All mammalian MTs are monomeric proteins, containing two metal–thiolate clusters. In this review, after a brief summary of the historical milestones of the MT-1/MT-2 research, the recent advances in the structure, chemistry, and biological function of MT-3 and MT-4 are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号