首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test whether heat-sensitive receptors participate in the cutaneous vascular responses to direct heating, we monitored skin blood flow (SkBF; laser Doppler flowmetry) where the sensation of heat was induced either by local warming (T(Loc); Peltier cooling/heating unit) or by both direct warming and chemical stimulation of heat-sensitive nociceptors (capsaicin). In part I, topical capsaicin (0.075 or 0.025%) was applied to 12 cm(2) of skin 1 h before stepwise local warming of untreated and capsaicin-treated forearm skin. Pretreatment with 0.075% capsaicin cream shifted the SkBF/T(Loc) relationship to lower temperatures by an average of 6 +/- 0.8 degrees C (P < 0.05). In part II, we used a combination of topical capsaicin (0.025%) and local warming to evoke thermal sensation at one site and only local warming to evoke thermal sensation at a separate site. Cutaneous vasomotor responses were compared when the temperatures at these two sites were perceived to be the same. SkBF differed significantly between capsaicin and control sites when compared on the basis of actual temperatures, but that difference became insignificant when compared on the basis of the perceived temperatures. These data suggest heat-sensitive nociceptors are important in the cutaneous vasodilator response to local skin warming.  相似文献   

2.
3.
Heat sensitive points on the body skin were investigated in the course of psychophysiological research using thermal and mechanical stimulation on 98 volunteers residing under conditions of pronounced continental climate, in the town of Alma-Ata, with an age range of 20 to 46. Heat sensitive and cold sensitive points were divided into four and two classes respectively on the basis of minimum arousal threshold and nature of the sensation. Receptors of each class were located in the skin at the areas of greatest concentration. Comparison of the thermal range of activity and numbers of active points at different cutaneous sites in humans revealed their differing capacity for perception of different temperature levels.Institute of Physiology, Kazakhstan Academy of Sciences, Alma-Ata. Translated from Neirofiziologiya, Vol. 24, No. 5, pp. 591–598, September–October, 1992.  相似文献   

4.
Reduction mammaplasty improves breast sensibility   总被引:2,自引:0,他引:2  
The belief that breast hypesthesia is an expected consequence of reduction mammaplasty is based on past reports that failed to objectively quantify breast sensibility. Forty-five women undergoing reduction mammaplasty by one plastic surgeon using a single operative technique were followed prospectively for change in breast sensation. Pressure threshold measurements were taken preoperatively and at 2 and 6 weeks postoperatively, by using Semmes-Weinstein monofilaments. Areas tested included the nipple, four points on the areola, and four points 1 cm from the areola on the breast skin. The data were nonparametric and were analyzed by using the Wilcoxon signed rank test. For all areas tested, sensation significantly improved from preoperatively to 2 weeks (i.e., nipple: 33.1 versus 29.3, p<0.0004) and again from 2 to 6 weeks (i.e., nipple: 29.3 versus 19.3, p<0.002). Relief of chronic nerve traction injury is conjectured as the reason for sensibility improvement. Numb nipples persisted in 2 percent of breasts at 6 weeks.  相似文献   

5.
The primary objective of this pilot study was to assess if the magnitude estimation of suprathreshold brushing, warmth (40?°C), and cold (25?°C) stimuli of the skin over the dorsum of the hand and the dorsum of the foot are comparable to the perceived intensity for the same stimuli applied to the skin over any of the following areas: forehead, m. trapezius, m. deltoideus, thoracic back, and lumbar back, respectively. Thirty-two subjects aged 18–64 years were included. Participants were examined by two physicians on two different occasions, 1–58 days apart. Participants rated the magnitude of the perceived sensation of each stimulus on an 11-point numerical rating scale (NRS) 0–10, where 0 was anchored to “no sensation at all for touch/cold/warmth” and 10 anchored to “the most intense imaginable non-painful sensation of touch/cold/warmth”. The criterion for sensory equivalence for one modality was arbitrarily considered satisfactory if two regions had the same numerical rating ±1 point in at least 85% of the individuals. Based on the pre-study criteria for sensory equivalence applied in this study only one area was found to be equivalent to the foot skin for the percept of brushing, that is, the skin over the deltoid muscle and one area for the hand, that is, the skin over the forehead. We failed to find any area with equivalent sensitivity to the hand or the foot for the cold or warm stimuli.  相似文献   

6.
It is argued that knowledge of cognitive psychology, and hence also of sensation and perception, one of its branches, is indispensable when one aims at improving our artificial environment. Four examples of sensation and perception studies are described. Firstly, an experiment was discussed to design a postal code format that can be used accurately in terms of the capacity of short-term visual memory. The second example describes a perceptual conflict between visual and bodily (kinesthetic/proprioceptive) sensations that arises as a result of wrongly designing buildings. In the third example it is shown that vibrotactual displays should present frequencies that trigger the Pacinian system in the skin if people have to make quick and accurate decisions. Finally, a study of a simple acoustic orientation system that can promote indoor travel and activity by blind people was described.  相似文献   

7.
Thermal sensation and distribution of skin temperatures in persons exercising at 36.5 W on a bicycle ergometer and resting in a cool environment (10 degrees C) in two different clothings, one with the insulation mainly over the trunk (1.22 clo), and one with well insulated limbs (1.67 clo), were studied. Their general thermal sensations varied from slightly warm to slightly cool. The placing of the insulation had a decisive influence on skin temperature distribution, so that skin temperature was always high in well-insulated areas. When the insulation was placed over the limbs, a greater amount of heat was lost than if a similar insulation was placed on the trunk. Neither Tsk nor skin temperature distribution correlated with general thermal sensation. Instead, mean body temperature seemed to be the determinant of general thermal sensation in these conditions. The best prediction of general thermal sensation was obtained by adding Tre with a weighting factor of 0.8-0.9 and Tsk with a weighting factor of 0.1-0.2.  相似文献   

8.

1. 1. To examine the influence of different bed conditions (ondol sleep, bed sleep on ondol with same bedding) of the Korean ondol traditional heating system on human response during sleep, bed climates and physiological responses such as skin and rectal temperatures, weight loss, body movement and subjective sensation were measured with 4 grown-up females as subjects while they were sleeping for 7 h.

2. 2. Bed climate: Temperatures under the mattress and inside the quilt were higher on ondol while temperatures on the mattress and humidity inside the quilt were higher on the bed.

3. 3. Rectal temperature was significantly higher on ondol; skin temperature showed no major differences in relation to bed conditions. The frequency of body movements had the highest correlation with bed climate of the parameters measured.

4. 4. Mattress weight decreased on ondol and increased on the bed.

5. 5. The frequency of body movements was significantly higher in ondol sleep.

6. 6. The subjects sensation showed difference on cushion sensation between the two types of bed condition.

7. 7. To obtain the same level of comfort on both ondol and bed sleeping conditions less thermal insulating value is needed for ondol sleep.

Author Keywords: Bed climate; floor heating; ondol; skin temperature; body movement  相似文献   


9.
Pain sensation has been studied extensively, over a range of scales, from the molecular level to the entire human neural system. Thermal stimulation of pain has been widely used in the study of pain sensation. Skin thermal pain is induced through both direct (an increase/decrease in temperature) and indirect (thermomechanical and thermochemical) ways, and is governed by complicated thermomechanical–chemical–neurophysiologic responses. This paper is focused on the theoretical modeling of the underlying mechanisms in the process of skin thermal pain. A holistic model has been developed, which is composed of three sub-models, namely, transduction, transmission, and modulation and perception. The model can contribute to the understanding of thermally related pain phenomena in skin tissue and to improvements in a range of thermal therapeutic methods.  相似文献   

10.
Studies dating back to 1834 have shown that the temperature of objects contacting the skin can substantially intensify their apparent pressure on the skin. Later research demonstrated qualitatively that object temperature can also sharpen the spatial acuity of the skin as revealed by gap perception (two-point and two-edge thresholds). Pressure intensification and sharpening probably relate intimately. The present experiments sought to provide several more accurate and parametric extensions of thermal sharpening: (1) sharpening can improve tactile spatial acuity by as much as 60%, but the degree of sharpening is graded as a function of deviation of stimulator temperature from normal (neutral) skin temperature; (2) thermal sharpening seems to characterize the body surface since it takes place freely in forearm, forehead, and palm; local differences do, however, become apparent; (3) large thermal sharpening can even occur when one tip of the stimulator is warm, the other cold; and (4) thermal sharpening is easily captured by experiment and is basically the same in magnitude whether assessed by modern forced-choice procedure (controlled criterion) or by the more traditional procedures (uncontrolled criterion) used for more than a century before the advent of signal detection theory. Various arguments are put forth here and elsewhere to suggest that both thermal intensification of pressure sensation and thermal sharpening of gap perception result from direct thermal stimulation of mechanoreceptors and/or polymodal nociceptor networks; neither phenomenon yields readily to a “cognitive” interpretation.  相似文献   

11.
Studies dating back to 1834 have shown that the temperature of objects contacting the skin can substantially intensify their apparent pressure on the skin. Later research demonstrated qualitatively that object temperature can also sharpen the spatial acuity of the skin as revealed by gap perception (two-point and two-edge thresholds). Pressure intensification and sharpening probably relate intimately. The present experiments sought to provide several more accurate and parametric extensions of thermal sharpening: (1) sharpening can improve tactile spatial acuity by as much as 60%, but the degree of sharpening is graded as a function of deviation of stimulator temperature from normal (neutral) skin temperature; (2) thermal sharpening seems to characterize the body surface since it takes place freely in forearm, forehead, and palm; local differences do, however, become apparent; (3) large thermal sharpening can even occur when one tip of the stimulator is warm, the other cold; and (4) thermal sharpening is easily captured by experiment and is basically the same in magnitude whether assessed by modern forced-choice procedure (controlled criterion) or by the more traditional procedures (uncontrolled criterion) used for more than a century before the advent of signal detection theory. Various arguments are put forth here and elsewhere to suggest that both thermal intensification of pressure sensation and thermal sharpening of gap perception result from direct thermal stimulation of mechanoreceptors and/or polymodal nociceptor networks; neither phenomenon yeilds readily to a "cognitive" interpretation.  相似文献   

12.
Abstract

Background: Many researchers have tried to investigate pain by studying brain responses. One method used to investigate pain-related brain responses is continuous electroencephalography (EEG). The objective of the current study is to add on to our understanding of EEG responses during pain, by differentiation between EEG patterns indicative of (i) the noxious stimulus intensity and (ii) the subjective pain sensation.

Methods: EEG was recorded during the administration of tonic experimental pain, consisting of six minutes of contact heat applied to the leg via a thermode. Two stimuli above pain threshold, one at pain threshold and two non-painful stimuli were administered. Thirty-six healthy participants provided a subjective pain rating during thermal stimulation. Relative EEG power was calculated for the frequency bands alpha1, alpha2, beta1, beta2, delta, and theta.

Results: Whereas EEG activity could not be predicted by stimulus intensity (except in one frequency band), subjective pain sensation could significantly predict differences in EEG activity in several frequency bands. An increase in the subjective pain sensation was associated with a decrease in alpha2, beta1, beta2 as well as in theta activity across the midline electrodes.

Conclusion: The subjective experience of pain seems to capture unique variance in EEG activity above and beyond what is captured by noxious stimulus intensity.  相似文献   

13.
The ability of human subjects to discriminate direction of tactile stimulus motion on the dorsum of the hand was determined (1) in the absence and (2) in the presence of a moving stimulus delivered to a second skin site on the ipsilateral or contralateral forelimb. When the two skin sites were simultaneously contacted by stimuli moving in the same direction, directional sensitivity was typically below that predicted for a hypothetical subject who could independently process the information provided at each of the two skin sites. Even when the stimulus delivered to a second site was deliberately ignored, it could still alter a subject's perception of stimulus direction on the dorsal hand. Moreover, its influence was greatest whenever it moved in a direction opposite to that of the attended stimulus. Whenever the two moving stimuli were delivered nonsimultaneously to two skin sites, directional sensitivity rarely matched the levels predicted for a hypothetical subject who could independently process the information provided at each site. This, in part, resulted from the subjects' utilization of "long-range" cues provided by the temporal order of stimulation. Subjects frequently failed to distinguish these cues from the sensation of stimulus direction provided at each skin site.  相似文献   

14.
Seasonal variations of human thermal characteristics were inspected in thermal comfort and when constantly indoors. Metabolic rate, tympanic temperature, skin temperature, body fat, body weight and thermal sensation were measured under identical thermal conditions in a chamber over the course of one year. Experiments were carried out for each subject in both summer and winter. Six subjects were measured 35 times in summer and 45 times in winter. one subject was measured weekly for 14 months. Measurements for analyses were taken 40-60 min after entrance into the chamber. Results revealed the following. 1) For all subjects, the metabolic rate, tympanic temperature and body fat were lower in summer than in winter; thigh skin temperatures were higher in summer than in winter. The averaged individual ratio of seasonal difference was 11.9% for metabolic rate, 14.9% for body fat, 1.8% for thigh temperature and 0.53% for tympanic temperature. Seasonal differences of about 10% in metabolic rate were maintained in this study. 2) Seasonal variations of the variables were examined for phase relationships against the outdoor temperature. 2-1) Metabolic rate, thermal sensation, body weight and body fat changed in reverse phase, whereas skin temperature was in-phase. 2-2) Skin temperature lagged by about one month in both summer and winter. Body fat also lagged by about one month in summer, but corresponded to the phase in winter. Metabolic rates were also in-phase in winter but led about three months in summer. Thermal sensations lagged by about three months in winter but were in-phase in summer. Body weight was in-phase in summer and winter. 2-3) Summer disorders were observed particularly in seasonal variations of metabolic rates, tympanic temperature, skin temperatures, and thermal sensation, thereby suggesting that the effect of temperature exposure was altered by air-conditioner use.  相似文献   

15.
The possibility and degree of recovery of motor and sensory functions in cats were studied after one-stage or two-stage bilateral division of the posterior columns and spinocervical tracts at the cervical level. Blocking the afferent inflow along these systems led to severe and prolonged disturbances of sensation and motor activity and was accompanied by a sharp decrease in nociceptive sensation. Weak (6–8 V) electrical stimulation of the skin of the limbs, which evoked a primary response of maximal amplitude in intact waking animals, evoked no electrical response in the somatosensory cortex of the chordotomized animals. However, on increasing the intensity of stimulation by 2, 3, or more times, low-amplitude negative waves with a spike latency of about 15 msec, together with slow late waves, were recorded in foci of maximal activity of the cortex. Recovery of motor activity and, to some extent, of proprioception was observed 2–4 months after injury; responses to tactile stimulation were not restored. In the course of compensatory reconstruction evoked activity in the somatosensory cortex did not recover. It is concluded that the recovery of motor activity in cats after injury to the afferent systems of the spinal cord can take place despite a considerable defect of somatic sensation.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 5, No. 3, pp. 281–288, May–June, 1973.  相似文献   

16.
This paper is focused on the study of the stripes orientation in the fish skin patterns. Based on microscopic observations of the pigment cells behavior at the embryonic stage, the key aspects of the pigmentation process are implemented in an experimental reaction-diffusion system. The experiment consists of a photosensitive Turing pattern of stripes growing directionally in one direction with controlled velocity. Different growth velocities of the system rearrange the stripes in the same three possible orientations observed in the skin of the colored fishes: parallel, oblique, and perpendicular. Our results suggest that the spreading velocity of the pigment cells in the fish dermis selects the orientation in the patterning processes.  相似文献   

17.
The patterns of tonic activity in the neurons of rabbit superior cervical ganglion at rest and during noxious stimulation of the skin were studied using intracellular recording. According to reflex changes in the activity patterns, all neurons studied were classified into three groups. Cardiac rhythmicity is more pronounced in the neurons of the second type than in those of the first type. The magnitude of the cardiac rhythmicity in both types of neurons was reduced after noxious stimulation of the skin. In the third type of neurons the cardiac rhythmicity was absent. In some neurons slow excitatory and inhibitory postsynaptic potentials appeared resulting from skin stimulation.  相似文献   

18.
Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin.  相似文献   

19.
Changes in spontaneous unit activity in the dorsal zones of the spinal cord in response to temperature stimulation of the skin of the thigh and leg were investigated in acute experiments on cats lightly anesthetized with pentobarbital. Two groups of neurons were distinguished by the character of their response. The firing rate of the first group of neurons was changed only in response to cold or warmth. The neurons of the second group responded in opposite ways to the two types of stimulation. Frequency characteristics of spontaneous activity of temperature-sensitive units located in both white and gray matter were determined. In all the lumbar segments their depth was not below the 5th layer of gray matter. Mechanisms of the changes in spontaneous activity and the possible pathways of conduction of temperature sensation are discussed.  相似文献   

20.
In a first experiment, human subjects used a bipolar scale to rate the irritant sensation elicited by 10 sequentially repeated applications of either 3 ppm capsaicin or 250 mM citric acid on one side of the dorsal surface of the tongue, at 1 min intervals (30 s inter-stimulus interval). Citric acid-evoked irritation significantly increased across trials, consistent with sensitization. With capsaicin there was a large degree of inter- and intra-individual variation in successive ratings with no overall sensitization. Following the sequential stimulation series and a 10 min rest period, self- and cross-desensitization effects were tested in a two-alternative forced choice (2-AFC) paradigm by placing either citric acid or capsaicin on both sides of the tongue and asking subjects to indicate which side of the tongue yielded a stronger irritant sensation. Subjects also gave separate intensity ratings for irritation on each side of the tongue. Capsaicin self-desensitization was confirmed, while cross-desensitization to citric acid was not observed. In addition, citric acid self-desensitization and cross-desensitization to capsaicin were observed. In a second experiment a stronger capsaicin solution (33 ppm) was applied to one side of the tongue using cotton swabs. After the burning sensation elicited by capsaicin had disappeared, citric acid was applied bilaterally and cross-desensitization was observed using the same 2-AFC and rating procedures. This was followed by repeated re-application of citric acid at 1 min intervals to the capsaicin-treated side. The irritant sensation elicited by citric acid increased significantly, indicating a 'cross-stimulus-induced recovery' from capsaicin desensitization. In a final experiment we investigated the effect of the sodium channel blocker amiloride on the perceived irritation elicited by citric acid or capsaicin. Following application of amiloride to one side of the tongue with cotton swabs, either citric acid or capsaicin was applied bilaterally and subjects asked to perform a 2-AFC and intensity ratings. Amiloride significantly, albeit weakly, reduced the irritation elicited by citric acid while it weakly but significantly enhanced capsaicin-evoked irritation. These findings are discussed in terms of involvement of vanilloid and acid-sensitive ion channels in acid-evoked irritation and pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号