首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In order to develop a sensitive and reliable method for FFA quantification in lipid matrices of seeds, two SPE procedures employed in meat and dairy chemistry were compared using a 100/1 mixture of triolein/heptadecanoic acid. The overall efficiency of the SPE procedure retained was satisfactory since it allowed removal of 99.8% of triacylglycerols (TAG) and recovery of 99.2% of FFA as quantified by gas chromatography of fatty acid methyl esters (FAME). However, the low amount of TAG eluted in the FFA fraction represented a non-negligible percentage (17%) of FAME and the procedure thus required further improvement. TAG pollution was successively decreased to 12%, 8% and finally 1.5% by: i) modifying the volume of elution of TAG; ii) removing the saponification step initially performed according to the standard FAME procedure; and iii) reducing the duration of the BF(3)-catalyzed methylation reaction to 1 min. The new SPE/methylation procedure described here was then compared to the most widely used method for FFA measurement in plants which is based on thin-layer chromatography (TLC). Both procedures were applied to coffee seeds stored for 0-18 months at 15 degrees C under 62% relative humidity and provided consistent results. A very clear negative correlation was observed between the loss of seed viability and the accumulation of FFA in seeds during the course of storage independent of the method employed for FFA quantification. However, we demonstrated that the TLC/on-silica methylation procedure underestimates FFA contents in comparison with the new SPE/methylation procedure because of a selective loss of unsaturated FA.  相似文献   

2.
Molecular roles of sterols in plant development remain to be elucidated. To investigate sterol composition during embryogenesis, the occurrence of 25 steroid compounds in stages of developing seeds and pods of Pisum sativum was examined by GC-MS analysis. Immature seeds containing very young embryos exhibited the greatest concentrations of sterols. Regression models indicated that the natural log of seed or pod fr. wt was a consistent predictor of declining sterol content during embryonic development. Although total sterol levels were reduced in mature embryos, the composition of major sterols sitosterol and campesterol remained relatively constant in all 12 seed stages examined. In mature seeds, a significant decrease in isofucosterol was observed, as well as minor changes such as increases in cycloartenol branch sterols and campesterol derivatives. In comparison to seeds and pods, striking differences in composition were observed in sterol profiles of stems, shoots, leaves, flowers and flower buds, as well as cotyledons versus radicles. The highest levels of isofucosterol, a precursor to sitosterol, occurred in young seeds and flower buds, tissues that contain rapidly dividing cells and cells undergoing differentiation. Conversely, the highest levels of stigmasterol, a derivative of sitosterol, were found in fully-differentiated leaves while all seed stages exhibited low levels of stigmasterol. The observed differences in sterol content were correlated to mRNA expression data for sterol biosynthesis genes from Arabidopsis. These findings implicate the coordinated expression of sterol biosynthesis enzymes in gene regulatory networks underlying the embryonic development of flowering plants.  相似文献   

3.
Assessment of free fatty acid (FFA) concentration and isotopic enrichment is useful for studies of FFA kinetics in vivo. A new procedure to recover the major FFA from plasma for concentration and isotopic enrichment measurements is described and validated. The procedure involves extraction of plasma lipids with hexane, methylation with iodomethane (CH(3)I) to form fatty acid methyl esters (FAME), and subsequent purification of FAME by solid phase extraction (SPE) chromatography. The new method was compared with a traditional method using thin-layer chromatography (TLC) to recover plasma FFA, with subsequent methylation by BF(3)/methanol. The TLC method was found to be less reliable than the new CH(3)I method because of contamination with extraneous fatty acids, chemical fractionation of FFA species, and incomplete recovery of FFA associated with TLC. In contrast, the CH(3)I/SPE method was free of contamination, did not exhibit chemical fractionation, and had higher recovery. The iodomethane reaction was specific for free fatty acids; no FAME were formed when esterified fatty acids (triglycerides, cholesteryl esters, phospholipids) were subjected to the methylation reaction.We conclude that the CH(3)I/SPE method provides rapid and convenient recovery of plasma fatty acids for quantification or GC/MS analysis as methyl esters, and is not subject to the problems of contamination, reduced recovery, and chemical fractionation associated with recovery of FFA by TLC.  相似文献   

4.
Grass and grass silage represent a rich and natural source of omega-3 polyunsaturated fatty acids, in particular linolenic acid, for ruminants. Recent research, focusing on improving the content of these beneficial fatty acids in grass, requires storage of the forage samples prior to analysis. In this study, we evaluated whether conservation of fresh grass and grass silage by freezing (1 and 4 weeks,--18 degrees C) and/or drying (24h, 50 degrees C) affected its fatty acid content and induced shifts between lipid classes. FA were extracted using chloroform/methanol (2/1, v/v) and triacylglycerols (TAG), free fatty acids (FFA) and polar lipids (PL) were separated by thin layer chromatography. Fatty methyl esters (FAME) were identified by gas chromatography. Loss of thawing liquor might provoke a dramatic decrease in extractable lipid after frozen storage of both grass and grass silage. Morever, after frozen storage, fatty acids in grass but not in grass silage seem subjected to a higher rate o f lipolysis and oxidation, as suggested by increased quantities of FFA (3.1, 7.6, 8.4 % of total FAME) and reduced proportions of poly-unsaturated fatty acids (79.5, 73.6 and 74.1 % of total FAME) when analysing fresh grass samples directly or after 1 and 4 weeks of frozen storage, respectively. Drying of fresh grass did not provoke changes in FA composition, but distribution of FA over lipid classes was significantly altered, with an increase in TAG (5.1 to 17.9 % of total FAME) and FFA (2.4 to 14.9 % of total FAME) and lower proportions of PL (90.7 to 55.7 % of total FAME).  相似文献   

5.
6.
Triacylglycerol (TAG) biosynthesis is a principal metabolic pathway in most organisms, and TAG is the major form of carbon storage in many plant seeds. Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is the only acyltransferase enzyme that has been confirmed to contribute to TAG biosynthesis in Arabidopsis thaliana seeds. However, dgat1 null mutants display only a 20 to 40% decrease in seed oil content. To determine whether other enzymes contribute to TAG synthesis, candidate genes were expressed in TAG-deficient yeast, candidate mutants were crossed with the dgat1-1 mutant, and target genes were suppressed by RNA interference (RNAi). An in vivo role for phospholipid:diacylglycerol acyltransferase 1 (PDAT1; At5g13640) in TAG synthesis was revealed in this study. After failing to obtain double homozygous plants from crossing dgat1-1 and pdat1-2, further investigation showed that the dgat1-1 pdat1-2 double mutation resulted in sterile pollen that lacked visible oil bodies. RNAi silencing of PDAT1 in a dgat1-1 background or DGAT1 in pdat1-1 background resulted in 70 to 80% decreases in oil content per seed and in disruptions of embryo development. These results establish in vivo involvement of PDAT1 in TAG biosynthesis, rule out major contributions by other candidate enzymes, and indicate that PDAT1 and DGAT1 have overlapping functions that are essential for normal pollen and seed development of Arabidopsis.  相似文献   

7.
Phospholipase D (PLD) is capable of hydrolyzing membrane phospholipids, producing phosphatidic acid. To alter phospholipid profiles in soybean seed, we attenuated PLD enzyme activity by an RNA interference construct using the partial sequence from a soybean PLDα gene. Two transgenic soybean lines were established by particle inflow gun (PIG) bombardment by co‐bombarding with pSPLDi and pHG1 vectors. The lines were evaluated for the presence and expression of transgenes thoroughly through the T4 generation. PLD‐suppressed soybean lines were characterized by decreased PLDα enzyme activity and decreased PLDα protein both during seed development and in mature seeds. There was no change in total phospholipid amount; however, the PLD‐attenuated transgenic soybean seed had higher levels of di18 : 2 (dilinoleoyl)‐phosphatidylcholine (PC) and ‐phosphatidylethanolamine (PE) in seeds than the non‐transgenic lines. The increased polyunsaturation was at the expense of PC and PE species containing monounsaturated or saturated fatty acids. In addition to increased unsaturation in the phospholipids, there was a decrease in unsaturation of the triacylglycerol (TAG) fraction of the soybean seeds. Considering recent evidence for the notion that desaturation of fatty acids occurs in the PC fraction and that the PC → DAG (diacylglycerol) → TAG pathway is the major route of TAG biosynthesis in developing soybean seed, the current data suggest that PLDα suppression slows the conversion of PC to TAG. This would be consistent with PLD playing a positive role in that conversion. The data indicate that soybean PLD attenuation is a potentially useful approach to altering properties of edible and industrial soybean lecithin.  相似文献   

8.
The economics surrounding five algae-to-fuels process scenarios were examined. The different processes modeled were as follows: an open pond producing either triacylglycerides (TAG) or free fatty acid methyl ester (FAME), a solar-lit photobioreactor producing either FAME or free fatty acids (FFA), and a light emitting diode irradiated (LED-lighted) photobioreactor producing TAG. These processes were chosen to represent both classical and esoteric approaches presented in the open literature. Viable (or suggested) processing techniques to liberate and purify (and convert) the microalgal triacylglycerides were then modeled to accompany each growth option. The investment and cost per kg of fuel or fuel precursor for each process was determined. The open pond produced TAG at ~$7.50/kg, while the process using the LED-lit photobioreactor produced TAG at ~$33/kg. The scenario containing the solar-lit photobioreactor produced FAME at ~$25/kg, while the open pond produced FAME at ~$4/kg. The scenario containing the solar-lit photobioreactor produced FFA at ~$29/kg. The open pond scenarios appear to be closest to the $1/kg pricepoint at this time, and thus are the most viable economic options. Future technological advancements that reduce the cost of bioreactor vessels, LED lighting, and solvent recovery, may reduce the oil production costs of these scenarios to a more attractive level.  相似文献   

9.
The presence of high levels of free fatty acids (FFA) in oil is a barrier to one‐step biodiesel production. Undesirable soaps are formed during conventional chemical methods, and enzyme deactivation occurs when enzymatic methods are used. This work investigates an efficient technique to simultaneously convert a mixture of free fatty acids and triglycerides (TAG). A partial soybean hydrolysate containing 73.04% free fatty acids and 24.81% triglycerides was used as a substrate for the enzymatic production of fatty acid methyl ester (FAME). Whole‐cell Candida antarctica lipase B‐expressing Aspergillus oryzae, and Novozym 435 produced only 75.2 and 73.5% FAME, respectively. Fusarium heterosporum lipase‐expressing A. oryzae produced more than 93% FAME in 72 h using three molar equivalents of methanol. FFA and TAG were converted simultaneously in the presence of increasing water content that resulted from esterification. Therefore, F. heterosporum lipase with a noted high level of tolerance of water could be useful in the industrial production of biodiesel from feedstock that has high proportion of free fatty acids.  相似文献   

10.
油菜是世界上重要油料作物之一,是世界食用植物油的重要来源。近十年来,随着其种植面积的不断扩大,目前已成为世界第二大植物油来源,因此提高油菜种子含油量具有重大的经济利用价值。近年来,基因工程技术的飞速发展带来了优化油菜品种资源的新方法。三酰甘油对种子油脂的形成十分重要,它是油菜种子最主要的储藏脂类。将三酰甘油合成代谢途径中的关键酶基因及一些转录因子转入到油菜组基因中,一方面增加种子中关键酶基因的表达;另一方面增加转录因子表达以增强糖酵解和三酰甘油形成的相关基因表达,增加底物浓度和三酰甘油合成的速度,期待获得高含油量的转基因油菜。本文综述了国内外关于油菜油酯代谢关键酶基因及调控基因的研究进展,并展望了未来提高油菜含油量的发展思路。  相似文献   

11.
Hu Z  Ren Z  Lu C 《Plant physiology》2012,158(4):1944-1954
We previously identified an enzyme, phosphatidylcholine diacylglycerol cholinephosphotransferase (PDCT), that plays an important role in directing fatty acyl fluxes during triacylglycerol (TAG) biosynthesis. The PDCT mediates a symmetrical interconversion between phosphatidylcholine (PC) and diacylglycerol (DAG), thus enriching PC-modified fatty acids in the DAG pool prior to forming TAG. We show here that PDCT is required for the efficient metabolism of engineered hydroxy fatty acids in Arabidopsis (Arabidopsis thaliana) seeds. When a fatty acid hydroxylase (FAH12) from castor (Ricinus communis) was expressed in Arabidopsis seeds, the PDCT-deficient mutant accumulated only about half the amount of hydroxy fatty acids compared with that in the wild-type seeds. We also isolated a PDCT from castor encoded by the RcROD1 (Reduced Oleate Desaturation1) gene. Seed-specific coexpression of this enzyme significantly increased hydroxy fatty acid accumulation in wild type-FAH12 and in a previously produced transgenic Arabidopsis line coexpressing a castor diacylglycerol acyltransferase 2. Analyzing the TAG molecular species and regiochemistry, along with analysis of fatty acid composition in TAG and PC during seed development, indicate that PDCT acts in planta to enhance the fluxes of fatty acids through PC and enrich the hydroxy fatty acids in DAG, and thus in TAG. In addition, PDCT partially restores the oil content that is decreased in FAH12-expressing seeds. Our results add a new gene in the genetic toolbox for efficiently engineering unusual fatty acids in transgenic oilseeds.  相似文献   

12.
Soybean seed samples inoculated with spores of Aspergillus ruber were stored for 20 to 140 days at 25 ± 1 °C with moisture content varying from 11.3% to 17.7%. Seeds were colonised by the fungus within 20 days at all moisture levels. Ergosterol concentration in seeds increased with time of storage, being slow in samples with moisture content of 11.3% to 13.1% and more rapidly in those with higher moisture content. Free fatty acid (FFA) content also increased following the pattern of ergosterol. Equations were used to predict minimum safe storage period of the seeds at 25 °C. The rise in FFA is due to increase of A. ruber mass within the seed. Fungal growth did not affect fatty acids profiles or iodine index of the extracted oil. The results suggest revision of the present recommendations regarding seed moisture during storage. The FFA concentration of a seed lot can be used as a sensitive indicator of seed deterioration due to storage fungi. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Kroon JT  Wei W  Simon WJ  Slabas AR 《Phytochemistry》2006,67(23):2541-2549
Seed oil from castor bean (Ricinus communis) contains high amounts of hydroxy fatty acid rich triacylglycerols (TAGs) that can serve as raw material for production of bio-based products such as nylon, cosmetics, lubricants, foams, and surfactants. Diacylglycerol acyltransferase (DGAT) catalyses the terminal reaction in the acyl-CoA dependent Kennedy pathway of triglyceride biosynthesis. There is still some debate whether there are three or four enzymes in yeast that have DGAT activity and catalyse the synthesis of TAG but of these the DGAT2 homologue Dga1 contributes in a major way to TAG biosynthesis. Here we report on the cloning of a cDNA for DGAT2 from castor bean and prove its biological activity following expression in yeast and enzymatic assays using diricinolein as the acceptor and ricinoleoyl-CoA as the donor. Previous reports of DGAT in castor have focussed on DGAT1 which has little amino acid sequence homology to DGAT2. Expressional studies demonstrate that DGAT2 is 18-fold more highly expressed in seeds than in leaves and shows temporal specific expression during seed development. In contrast, DGAT1 shows little difference in expression in seeds versus leaves. We conclude that in castor bean DGAT2 is more likely to play a major role in seed TAG biosynthesis than DGAT1.  相似文献   

14.
15.
Under accelerated ageing at high relative humidity and high temperature for 4 days germination and membrane permeability remained unaffected both in sunflower and chick pea seeds. However, the steryl glycoside concentration in the pooled leachate increased progressively with ageing. Total sterols, as well as steryl glycosides and free sterols of the seeds, increased with a concomitant decline in steryl esters under accelerated ageing. Pretreatment with the sterol biosynthesis inhibitor SK & F 7997A3 prevented the increase of total sterols under accelerated ageing conditions but there were increases in the amounts of steryl glycosides and free sterols and a decrease in steryl ester after such treatment, therefore, indicating interconversions of the various sterol types. Accelerated ageing also caused increases in free amino acids and soluble carbohydrate. Low relative humidity-high temperature and high relative humidity-low temperature failed to produce such effects.  相似文献   

16.
17.
Triacylglycerols (TAGs) are major storage materials that accumulate in developing seeds and serve as carbon and energy reserves for germination and growth of the seedling. One of the critical reactions in TAG biosynthesis is activation of fatty acyl chains to fatty acyl CoAs, catalyzed by long-chain acyl CoA synthetases (LACSs). Of the nine LACSs identified in Arabidopsis, only LACS9 is known to reside in the plastid, the site of de novo fatty acid synthesis, and is considered the major LACS isoform involved in plastidial fatty acid export for TAG formation. Because the lacs9 null mutant did not show any detectable phenotype, it was hypothesized that at least one additional LACS enzyme must be active in the plastid. Expression analyses to identify potential plastid-localized LACSs involved in TAG biosynthesis revealed that, in addition to LACS9, isoforms LACS1, LACS2, LACS4 and LACS8 are transcribed in the seed. LACS8 showed the highest expression level in the embryo and a high sequence similarity with LACS9, and was therefore characterized further and shown to be associated with the ER, not the plastid. Furthermore, disruption of LACS8 in the lacs8 mutant and lacs8 lacs9 double mutant, and over-expression of LACS8, did not affect the seed fatty acid content. In contrast, 11 and 12% decreases in fatty acid content were detected in lacs1 lacs9 and lacs1 lacs8 lacs9 seeds, respectively, indicating that LACS1 and LACS9 have overlapping functions in TAG biosynthesis. This result is surprising because, unlike LACS9, LACS1 is localized in the ER and has been shown to be involved in cuticular lipid synthesis.  相似文献   

18.
Summary The changes in the level of indole-3-acetic acid (IAA) were investigated in seeds and fruit tissues-placenta and mesocarp-during tomato (Lycopersicon esculentum Mill.) zygotic embryogenesis, which was characterized through eight morphological embryo stages [from globular (stage 1) to mature embryo (stage 8)]. In whole seeds, IAA levels increased mainly at stage 3 (young torpedo) and at stage 5 (late torpedo stage). As the seed matured and dehydrated, IAA levels decreased and showed a new distribution pattern within seed structures, preferentially in endosperm tissue. IAA contents in fruit tissues were lower but followed the same pattern as those of seeds. These data support the hypothesis of IAA biosynthesis in seeds with a transient role of the endosperm at the end of embryo development and suggest a role of IAA in fruit and seed growth. Moreover a comparison of IAA and ABA changes suggests that IAA could be especially necessary for the beginning of embryo growth, whereas ABA could act mainly at the end of the growth phase.Abbreviations ABA abscisic acid - ABTS 2,2-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) - BHT butylhydroxytoluene - DW dry weight - ELISA enzyme linked immunosorbent assay - HPLC high performance liquid chromatography - IAA indole-3-acetic acid. PGRs: plant growth regulators  相似文献   

19.
Assessment of dormancy inception, maintenance and release was studied for artificially dried immature seeds harvested throughout seed development in the barley cv. Triumph and its mutant line TL43. Each was grown in Spain and Scotland under low and high dormancy inducing conditions, respectively. Both TL43 and Triumph followed a similar pattern of release from dormancy across the seasons, although seeds of TL43 were able to germinate at an earlier seed development stage. Abscisic acid (ABA) content was also studied in immature grains throughout the seed development period. Total amount of ABA in seeds of Triumph and TL43 was higher in plants grown in Scotland than in Spain. However, no clear genotypic differences in ABA pattern in the course of grain development could be detected whilst significant genotypic differences were observed for germination percentage (GP). Endogenous ABA content alone throughout grain development did not explain genetic differences in GP within environments. Environmental and genetic differences in dormancy were also observed on mature seeds throughout the after-ripening period. The initial germination (GP(0)) played a key role in the sensitivity to ABA of post-harvest mature seeds. For the same after-ripening stage, TL43 was more insensitive to exogenous ABA than Triumph. However, ABA responses in seeds of the two genotypes with similar GP(0) at different after-ripening stages were comparable. Therefore, differences in exogenous ABA sensitivity of post-harvest mature grain of these two genotypes seemed to be determined by, or coincident with, the initial germination percentage.  相似文献   

20.
In developing seeds of mustard ( Brassica juncea L. cv. RLM 198) the period between 20 and 30 days after fertilization (DAF) was identified as the period of active lipid biosynthesis, although dry matter continued to accumulate until maturity. The period of lipid synthesis was associated with a decrease in starch, soluble sugars and protein, thus, giving rise to precursors for the biosynthesis of lipids. Besides decreasing the dry matter content (on both % and seed basis), Zn and S deficiency caused a significant ( P > 0.05) reduction in oil content. As compared to control, the decrease in oil content was 11, 12 and 18% at 30 DAF and 4, 9 and 16% at maturity in Zn, S and (Zn+S) deficient treatments, respectively. Throughout the period of seed development, a significant decrease in starch and protein with a slight accumulation of soluble sugars was observed due to deficiency of Zn or S. The rate of [l-14C]-acetate incorporation into total lipids, which was maximal at 30 DAF, also displayed a significant decrease due to the abovementioned mineral deficiencies. Addition of Zn or S in vitro, enhanced the lipid synthesis at all stages of seed development. Under Zn and S deficiency, the phospholipids increased from 10 to 30 DAF and then declined until maturity. However, the proportion of glycolipids and free fatty acids increased, with a corresponding decrease in total glycerides. Further, in deficiency treatments, there was an increase in 22:1 with a corresponding decrease in 18:1, 18:2 and 18:3 in developing and mature mustard seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号