首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Isolated rat thymocytes incubated under proper metabolic conditions extrude Ca24 previously taken up under metabolically unfavourable conditions.The extrusion can be supported by both respiratory and glycolytic energy but glycolysis seems to be more efficient for this purpose.La3– (50–200 M) and the ionophore A 23187 inhibit cell Ca2+ extrusion.Ruthenium Red (1–100 M)) does not influence cell Ca2+ extrusion while it inhibits the in situ mitochondrial cation uptake.All the results are consistent with a cell regulation model of Ca 2+ content in which both plasma membrane and mitochondria co-operate, acting in opposite directions, in order to decrease cytosolic Ca 2+ concentration.The possibility of Na+-Ca2+ hetero-exchange participation to cell Ca2+ homeostasis regulation is also discussed.  相似文献   

2.
M Sedova  L A Blatter 《Cell calcium》1999,25(5):333-343
The dynamic regulation of Ca2+ extrusion by the plasma membrane Ca(2+)-ATPase (PMCA) and Na+/Ca2+ exchange (NCX) was investigated in single cultured calf pulmonary artery endothelial (CPAE) cells using indo-1 microfluorimetry to measure cytoplasmic Ca2+ concentration ([Ca2+]i). The quantitative analysis of the recovery from an increase of [Ca2+]i elicited by activation of capacitative Ca2+ entry (CCE) served to characterize kinetic parameters of these Ca2+ extrusion systems in the intact cell. In CPAE cells the PMCA is activated in a Ca(2+)- and time-dependent manner. Full activation of the pump occurs only after [Ca2+]i has been elevated for at least 1 min which results in an increase of the affinity of the pump for Ca2+ and an increase in the apparent maximal extrusion rate (Vmax). Application of calmodulin antagonists W-7 and calmidazolium chloride (compound R 24571) revealed that calmodulin is a major regulator of PMCA activity in vivo. Sequential and simultaneous inhibition of PMCA and NCX suggested that both contribute to Ca2+ extrusion in a non-additive fashion. The activity of one system is dynamically adjusted to compensate for changes in the extrusion rate by the alternative transporter. It was concluded that in vascular endothelial cells, the PMCA functions as a calmodulin-regulated, high-affinity Ca2+ removal system. The contribution by the low-affinity NCX to Ca2+ clearance became apparent at [Ca2+]i > approximately 150 nM under conditions of submaximal activation of the PMCA.  相似文献   

3.
1. A procedure recently described to produce rapid changes in [Ca2+] and [Sr2+] within the whole cross-section of skinned muscle preparations (Moisescu, D.G. (1976) Nature 262, 610--613, and Moisescu, D.G. and Thieleczek, R. (1978) J. Physiol. 275, 241--262) has enabled us to obtain whole Ca2+- or Sr2+-activation curves at different sacromere lengths with the same preparation. 2. The maximal isometric force response was found to be very similar in Ca2+-and Sr2+-buffered solutions for otherwise identical conditions. 3. The change in sarcomere length between approx. 2.2 and 2.6 micron reversibly shifted both the Ca2+- and the Sr2+-activation curves by approx. 0.1 log units towards lower concentrations of the activator, without affecting their shape. However, the change in sarcomere length in the range above 2.6 micron did not have an effect upon the relative isometric force response-pCa (and -pSr) relationship. 4. All the Ca2+- and Sr2+-activation curves present a similar steepness and indicate that the relative isometric force increases from approx. 10 to 90% if the concentration of the activator is increased 3-fold. 5. The half time for force development in these experiments did not appear to be influenced by the length of the sarcomeres. 6. A potentiometric method for determining the apparent affinity constants of Ca2+, Mg2+ and Sr2+ to EGTA and ATP under various conditions is described.  相似文献   

4.
Arachidonic acid activates Ca2+ extrusion in macrophages   总被引:2,自引:0,他引:2  
Stimulation of macrophages with platelet-activating factor (PAF) elicits an increase of intracellular calcium concentration, Ca2+i, which was monitored here at the single cell level with the calcium-sensitive dye Fura-2. The sustained component of this Ca2+i increase reflects the dynamic balance achieved between enhanced Ca2+ influx and efflux. In macrophages where a steady increase of Ca2+i has been evoked by 50 nM thapsigargin (a molecule known to empty Ca2+ stores and elevate Ca2+i in various cell types), PAF activates Ca2+ efflux, without causing a preceding increase in Ca2+i. This result shows that in this case, Ca2+ extrusion is not merely a consequence of a Ca2+i increase. PAF-evoked Ca2+ extrusion does not result from the activation of the Na+/Ca2+ exchanger. Exogenous arachidonic acid (10-100 microM) elicits Ca2+ efflux in macrophages where Ca2+i has been previously elevated by either PAF or thapsigargin. PAF-induced Ca2+ extrusion is blocked by 4-bromophenacylbromide, an inhibitor of arachidonic acid production by phospholipase A2. Together, these results suggest that arachidonic acid, which is produced in PAF-stimulated macrophages, contributes to the regulation of a Ca2+ extrusion system, which is presumably a Ca2(+)-ATPase.  相似文献   

5.
Cell volume regulation has not been completely clarified in Coelenterates. The present investigation focuses on cell volume regulation under anisosmotic conditions, both hyposmotic and hypertonic, and on the underlying signals in nematocytes isolated from the Coelenterate Aiptasia mutabilis living in sea water. Nematocytes, once isolated from acontia, that were submitted to either hyposmotic (35%) and hypertonic shock (45%) show RVD and RVI capabilities, respectively. In order to ascertain the role of Ca2+ in triggering such regulatory mechanisms and the possible involvement of cytoskeleton components, tests were performed by employing either Ca2+ free conditions, Gd3+ as Ca2+ channel blockers, TFP as calmodulin inhibitor, colchicine as microtubule inhibitor and cytochalasin B as microfilament polymerization inhibitor. Results show that isolated nematocytes of A. mutabilis can regulate their volume upon both hyposmotic and hypertonic challenge. Ca2+ both from external medium and from internal stores is needed to perform RVD mechanisms, whereas, intracellular Ca2+ seems to be mainly involved in RVI. Moreover cytoskeletal components may play an important role since a significant RVD and RVI inhibition was observed in treated cells. On the basis of our observations further studies are warranted to further verify the role of signals, including phosphatases and phosphorylases, in cell volume regulation of primitive eukaryotic cells.  相似文献   

6.
A theoretical study of calcium microdomains in turtle hair cells.   总被引:4,自引:1,他引:3       下载免费PDF全文
Y C Wu  T Tucker    R Fettiplace 《Biophysical journal》1996,71(5):2256-2275
Confocal imaging has revealed microdomains of intracellular free Ca2+ in turtle hair cells evoked by depolarizing pulses and has delineated factors affecting the growth and dissipation of such domains. However, imaging experiments have limited spatial and temporal resolution. To extend the range of the results we have developed a three-dimensional model of Ca2+ diffusion in a cylindrical hair cell, allowing part of the Ca2+ influx to occur over a small circular region (radius 0.125-1.0 micron) representing a high-density array of voltage-dependent channels. The model incorporated experimental information about the number of channels, the fixed and mobile Ca2+ buffers, and the Ca2+ extrusion mechanism. A feature of the calculations was the use of a variable grid size depending on the proximity to the Ca2+ channel cluster. The results agreed qualitatively with experimental data on the localization of the Ca2+ transients, although the experimental responses were smaller and slower, which is most likely due to temporal and spatial averaging in the imaging. The model made predictions about 1) the optimal Ca2+ channel number and density within a cluster, 2) the conditions to ensure independence of neighboring clusters, and 3) the influence of the Ca2+ buffers on the kinetics and localization of the microdomains. We suggest that an increase in the mobile Ca2+ buffer concentration in high-frequency hair cells (which possess a larger number of release sites) would allow lower amplitude and faster Ca2+ responses and promote functional independence of the sites.  相似文献   

7.
In non-excitable cells, one major route for Ca2+ influx is through store-operated Ca2+ channels in the plasma membrane. These channels are activated by the emptying of intracellular Ca2+ stores, and in some cell types store-operated influx occurs through Ca2+ release-activated Ca2+ (CRAC) channels. Here, we report that intracellular Ca2+ modulates CRAC channel activity through both positive and negative feedback steps in RBL-1 cells. Under conditions in which cytoplasmic Ca2+ concentration can fluctuate freely, we find that store-operated Ca2+ entry is impaired either following overexpression of a dominant negative calmodulin mutant or following whole-cell dialysis with a calmodulin inhibitory peptide. The peptide had no inhibitory effect when intracellular Ca2+ was buffered strongly at low levels. Hence, Ca2+-calmodulin is not required for the activation of CRAC channels per se but is an important regulator under physiological conditions. We also find that the plasma membrane Ca2+ATPase is the dominant Ca2+ efflux pathway in these cells. Although the activity of the Ca2+ pump is regulated by calmodulin, the store-operated Ca2+ entry is more sensitive to inhibition by the calmodulin mutant than by Ca2+ extrusion. Hence, these two plasmalemmal Ca2+ transport systems may differ in their sensitivities to endogenous calmodulin. Following the activation of Ca2+ entry, the rise in intracellular Ca2+ subsequently feeds back to further inhibit Ca2+ influx. This slow inactivation can be activated by a relatively brief Ca2+ influx (30-60 s); it reverses slowly and is not altered by overexpression of the calmodulin mutant. Hence, the same messenger, intracellular Ca2+, can both facilitate and inactivate Ca2+ entry through store-operated CRAC channels and through different mechanisms.  相似文献   

8.
The process of electrostatic extrusion as a method for cell immobilization was investigated that could be used for potential applications in medicine. An attempt was made to assess the effects of cell addition and polymer concentration on the overall entrapment procedure, ie, on each stage of immobilization: polymer-cell suspension rheological characteristics, electrostatic extrusion process, and the process ofgelation. The findings should contribute to a better understanding of polymer-cell interactions, which could be crucial in possible medical treatments. Alginate-yeast was used as a model system for carrier-cells. The electrostatic extrusion was considered as a complex two-phase flow system and the effects of cell and alginate concentrations on the resulting microbead size and uniformity were assessed. Under investigated conditions, microbeads 50-600 microm in diameter were produced and the increase in both alginate and cell concentrations resulted in larger microbeads with higher standard deviations in size. We attempted to rationalize the findings by rheological characterization of the cell-alginate suspensions. Rheological characterization revealed non-Newtonian, pseudoplastic behavior of cell-alginate suspensions with higher viscosities at higher alginate concentrations. However, the presence of cells even at high concentrations (5x10(8) and 1x10(9) cells/mL) did not significantly affect the rheological properties of Na-alginate solution. Lastly, we investigated the kinetics of alginate gelation with respect to the quantity of Ca2+ ions and cell presence. The gelation kinetics were examined under conditions of limited supply with Ca2+ ions, which can be essential for immobilization of highly sensitive mammalian cells that require minimal exposure to CaCl2 solution. The molar ratio of G units to Ca2+ ions of 3.8:1 provided complete crosslinking, while the increase in alginate concentration resulted in prolonged gelation times but higher strength of the resulting gel. The cell presence decreased the rate of network formation as well as the strength of the obtained Ca-alginate hydrogel.  相似文献   

9.
Cytochemical techniques have been employed to study the localization of adenylate cyclase and (Ca2+ + Mg2+)-stimulated ATPase activities in platelets after fixation. Biochemical analysis of adenylate cyclase demonstrated a 70% reduction in activity in homogenates from fixed cells, but the residual activity could be stimulated 10--20 times by prostaglandin E1 (1 micrometer) under the same incubation conditions as employed in the cytochemical studies (e.g. media containing 2 mM lead nitrate and 10 mM NaF). Adenylate cyclase activity employing 5'-adenylyl-imiodiphosphate (AMP-P(NH)P) as substrate was found to be associated with the dense tubular system (smooth endoplasmic reticulum) in intact fixed platelets, and was apparent only when the cells were incubated with prostaglandin E1. Less activity was found along the membranes of the surface connected open canalicular system and occasionally at the outer cell surface. Enzymatic activity was blocked by the adenylate cyclase inhibitor 9-(tetrahydro-2-furyl) adenine and was not due to AMP-P(NH)P phosphohydrolase activity. The low adenylate cyclase activity in the surface membranes may be due to enzyme inactivation as a result of fixation, since a surface membrane fraction obtained by the glycerol lysis technique from unfixed cells had an adenylate cyclase specific activity equivalent to that in the microsomal membrane fraction. (Ca2+ + Mg2+)-stimulated ATPase activity was found associated with the membranes of the surface connected open canalicular system in unfixed cells. After brief fixation (5--15 min) with glutaradehyde, strong (Ca2+ + Mg2+)ATPase activity became apparent in the dense tubular system. Longer periods of fixation inactivated enzymatic activity. Addition of Ca2+ (1.0 mM) to incubation medium with low Mg2+ (0.2 mM), or increasing Mg2+ to 4.0 mM, in both cases strongly stimulated enzyme activity. The ATPase activity in the platelet membranes was not inhibited by ouabain. It is suggested that the Ca2+-stimulated ATPase and adenylate cyclase activities in the dense tubules may possibly be involved in regulation of intracellular Ca2+ transport.  相似文献   

10.
A microprocessor-controlled system of microinjections and microaspirations has been developed to change, within approximately 1 ms, the [free Ca2+] at the outer surface of the sarcoplasmic reticulum (SR) wrapped around individual myofibrils (0.3-0.4 micron radius) of a skinned canine cardiac Purkinje cell (2.5-4.5 micron overall radius) at different phases of a Ca2+ transient. Simultaneously monitoring tension and aequorin bioluminescence provided two methods for estimating the peak myoplasmic [free Ca2+] reached during the spontaneous cyclic Ca2+ release from the SR obtained in the continuous presence of a bulk solution [free Ca2+] sufficiently high to overload the SR. These methods gave results in excellent agreement for the spontaneous Ca2+ release under a variety of conditions of pH and [free Mg2+], and of enhancement of Ca2+ release by calmodulin. Disagreement was observed, however, when the Ca2+ transient was modified during its ascending phase. The experiments also permitted quantification of the aequorin binding within the myofibrils and determination of its operational apparent affinity constant for Ca2+ at various [free Mg2+] levels. An increase of [free Ca2+] at the outer surface of the SR during the ascending phase of the Ca2+ transient induced further release of Ca2+. In contrast, an increase of [free Ca2+] during the descending phase of the Ca2+ transient did not cause further Ca2+ release. Varying [free H+], [free Mg2+], or the [Na+]/[K+] ratio had no significant effect on the Ca2+ transient during which the modification was applied, but it altered the subsequent Ca2+ transient. Therefore, Ca2+ appears to be the major, if not the only, ion controlling Ca2+ release from the SR rapidly enough to alter a Ca2+ transient during its course.  相似文献   

11.
The role of calcium and guanosine 3':5'-monophosphate (cyclic GMP) in the regulation of thyroid metabolism has been investigated in dog thyroid slices. Carbamoylcholine enhanced glucose carbon-1 oxidation, protein iodination, cyclic GMP accumulation and decreased thyrotropin-induced adenosine 3':5'-monophosphate (cyclic AMP) accumulation and iodine secretion; it did not affect protein synthesis. The effects of carbamoylcholine were reproduced under various experimental conditions by supplementary calcium in the medium, ouabain, and in media in which Na+ had been replaced by choline chloride. They were inhibited by lanthanum. These results further support the hypothesis that free intracellular Ca2+ is the intracellular signal for carbamoylcholine effects and suggest that a Na+ -gradient-driven Ca2+ extrusion mechanism operates in the thyroid cell. Mn2+ reproduced the effect of Ca2+ on glucose oxidation, protein iodination and cyclic GMP accumulation in Ca2+ -depleted slices and medium, and thus mimicked some intracellular effects of Ca2+. On the other hand Mn2+ inhibited the carbamoylcholine effect on thyrotropin-induced thyroid secretion and cyclic AMP accumulation, and Ca2+ inhibited the Mn2+-induced cyclic GMP accumulation. This suggests that the two ions compete for the same channel. Similarly Mn2+ inhibited calcium effects in the presence of ionophore A23187. Procaine inhibited protein iodination under all conditions suggesting a primary effect; it also inhibited all carbamoylcholine and ouabain actions. However the drug did not inhibit the effects of choline chloride and its action was reversed by raising carbamoylcholine but not Ca2+ concentration; it is therefore doubtful that procaine acts by blocking Ca2+ channels. In media without added Ca2+, Mn2+ increased cyclic GMP accumulation but did not decrease thyrotropin-induced cyclic AMP accumulation or iodine secretion, which suggests that cyclic GMP cannot be the sole mediator of the latter two effects of carbamoylcholine.  相似文献   

12.
It was found that carbacholine stimulated pepsinogen extrusion by isolated guinea pig stomach glands which were incubated in Ca(2+)-free medium, containing EGTA (0.25 mM). This effect could be imitated by caffeine (10 mM), a specific activator of Ca2+ release from intracellular pools. Extracellular Ca2+ in the concentrations over 0.125 mM increased pepsinogen extrusion which was stimulated by carbacholine. The interdependence between the level of pepsinogen extrusion and Ca2+ concentration in the medium had S-shaped character. La3+ ions (10(-4) mM) inhibited pepsinogen extrusion already in the first minutes after its activation by carbacholine. When testing other cations (Sr2+, Mg2+, Ba2+) it was found that only Sr2+ had some influence on pepsinogen extrusion. Thus, it can be concluded that both intra- and extracellular Ca2+ take part in the activation of pepsinogen extrusion. Obviously the role of extracellular Ca2+ consists in the support of reactivity of stomach glands to the action of stimulators of secretion.  相似文献   

13.
Apical membrane H+ extrusion in the renal outer medullary collecting duct, inner stripe, is mediated by a Na(+)-independent H+ pump. To examine the regulation of this transporter, cell pH and cell Ca2+ were measured microfluorometrically in in vitro perfused tubules using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and fura-2, respectively. Apical membrane H+ pump activity, assayed as cell pH recovery from a series of acid loads (NH3/NH+4 prepulse) in the total absence of ambient Na+, initially occurred at a slow rate (0.06 +/- 0.02 pH units/min), which was not sufficient to account for physiologic rates of H+ extrusion. Over 15-20 min after the initial acid load, the rate of Na(+)-independent cell pH recovery increased to 0.63 +/- 0.09 pH units/min, associated with a steady-state cell pH greater than the initial pre-acid load cell pH. This pattern suggested an initial suppression followed by a delayed activation of the apical membrane H+ pump. Replacement of peritubular Na+ with choline or N-methyl-D-glucosamine resulted in an initial spike increase in cell Ca2+ followed by a sustained increase in cell Ca2+. The initial rate of Na(+)-independent cell pH recovery could be increased by elimination of the Na+ removal-induced sustained cell Ca2+ elevation by: (a) performing studies in the presence of 135 mM peritubular Na+ (1 mM peritubular amiloride used to inhibit basolateral membrane Na+/H+ antiport); (b) clamping cell Ca2+ low with dimethyl-BAPTA, an intracellular Ca2+ chelating agent; or (c) removal of extracellular Ca2+. Cell acidification induced a spike increase in cell Ca2+. The late acceleration of Na(+)-independent cell pH recovery was independent of Na+ removal and of the method used to acidify the cell, but was eliminated by prevention of the cell Ca2+ spike and markedly delayed by the microfilament-disrupting agent, cytochalasin B. This study demonstrates that peritubular Na+ removal results in a sustained elevation in cell Ca2+, which inhibits the apical membrane H+ pump. In addition, rapid cell acidification associated with a spike increase in cell Ca2+ leads to a delayed activation of the H+ pump. Thus, cell Ca2+ per se, or a Ca(2+)-activated pathway, can modulate H+ pump activity.  相似文献   

14.
The effects of protein kinase C (PKC) activation on the cytoplasmic free Ca2+ concentration ([Ca2+]i) were studied in clonal insulin-producing RINm5F cells, using the fluorescent Ca2+ indicators quin-2 and fura-2. Both under basal and stimulatory conditions PKC activation lowered [Ca2+]i in these cells by promoting an active extrusion of Ca2+ to the extracellular space. PKC activation therefore assists insulin-producing cells in recovery from raised [Ca2+]i. Such an effect might be part of the signal regulating the insulin secretory process.  相似文献   

15.
Although many of the processes involved in the regulation of Ca2+ in smooth muscle have been studied separately, it is still not well known how they are integrated into an overall regulatory system. To examine this question and to study the time course and spatial distribution of Ca2+ in cells after activation, one- and two-dimensional diffusion models of the cell that included the major processes thought to be involved in Ca regulation were developed. The models included terms describing Ca influx, buffering, plasma membrane extrusion, and release and reuptake by the sarcoplasmic reticulum. When possible these processes were described with known parameters. Simulations with the models indicated that the sarcoplasmic reticulum Ca pump is probably primarily responsible for the removal of cytoplasmic Ca2+ after cell activation. The plasma membrane Ca-ATPase and Na/Ca exchange appeared more likely to be involved in the long term regulation of Ca2+. Pumping processes in general had little influence on the rate of rise of Ca transients. The models also showed that spatial inhomogeneities in Ca2+ probably occur in cells during the spread of the Ca signal following activation and during the subsequent return of Ca2+ to its resting level.  相似文献   

16.
There is considerable evidence, reviewed by Brostrom and Brostrom [1], that Ca2+ stores are involved in the regulation of protein synthesis. We provide evidence in HeLa cells that is consistent with their findings that depletion of Ca2+ stores and not changes in cytosolic free Ca2+ ([Ca2+]i) inhibit protein synthesis, but we also show that the mechanism leading to depletion is critical. Specifically, depletion of stores by the Ca(2+)-mobilizing hormone histamine does not inhibit protein synthesis. In assessing the role of Ca2+ stores in protein synthesis, experiments in certain cell types have been complicated by the use of Ca2+ ionophores, which simultaneously elevate [Ca2+]i and deplete Ca2+ stores. We have measured total cell Ca2+, [Ca2+]i and protein synthesis in HeLa cells under conditions that allowed evaluation of the separate contributions of stores and [Ca2+]i. Using 1,2-bis(2-aminophenoxyethane)-N,N,N'N'-tetraacetic acid (BAPTA) as an intracellular Ca2+, chelator and thapsigargin, which inhibits the membrane Ca(2+)-ATPase of storage vesicles, total cell Ca2+ can be depleted and this depletion is enhanced by extracellular EGTA which blocks Ca2+ influx; [Ca2+]i is actually lowered by BAPTA under these conditions. Protein synthesis is inhibited by BAPTA in the presence of EGTA and by thapsigargin with or without EGTA. However, histamine which with EGTA, affects an equal degree of Ca2+ depletion does not inhibit protein synthesis. Thus, it is suggested that Ca2+ stores are not homogeneous, and that the hormone-sensitive store specifically does not play a role in the regulation of protein synthesis. In this respect, the hormone-sensitive and insensitive stores do not functionally communicate and may be separately regulated.  相似文献   

17.
In primary sensory afferent neurons, Ca2+ plays a vital role in the regulation of cellular processes including receptor and synaptic plasticity, neurotransmitter and trophic factor release and gene regulation. Current understanding of the mechanisms underlying Ca2+ homeostasis of primary sensory afferent neurons is mostly derived from studies on dorsal root ganglia and nodose ganglia neuron cell bodies. Little is known about Ca2+ homeostasis in trigeminal ganglion neurons (TGNs). To determine what cellular processes contribute to electrically-evoked Ca2+ transients in TGNs, we probed Ca2+ regulatory mechanisms in TGN cell bodies from the ophthalmic division with a panel of pharmacological reagents. Ca2+ transients were evoked in fura-2 loaded TGNs by depolarizing the plasma membrane with brief (500 ms) puffs of 50 mM KCl. Cyclopiazonic acid (CPA; 5 microM), an inhibitor of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), significantly decreased the peak amplitude, and slowed the decay, of the KCl-evoked Ca2+ transients in TGNs. The mitochondrial protonophore, carbonyl cyanide 3-chloro-phenylhydrazone (CCCP; 5 microM) significantly increased the peak amplitude of KCl-evoked Ca2+ transients. These data demonstrate that Ca2+ stores do play a major role in Ca2+ homeostasis in TGN cell bodies. To determine the role of the sodium-calcium exchanger (NCX) in KCl-evoked Ca2+ transients in TGNs, we inhibited the exchanger with KB-R7943 (10 microM), or by replacing Na+ with Li+. NCX inhibition did not affect either the peak amplitude or the decay kinetics of the KCl-evoked Ca2+ transients. Therefore, the NCX does not play a significant role in removing cytosolic Ca2+ from TGNs. To test whether the plasma membrane calcium-ATPase (PMCA) contributes to Ca2+ extrusion, we inhibited its activity by a shift to alkaline pH (9.0). At pH 9.0, both the peak amplitude and decay time of the KCl-evoked Ca2+ transient were increased significantly. These data suggest that, in TGNs, the PMCA is the major mechanism for removing cytosolic Ca2+ following electrical activity.  相似文献   

18.
Vascular endothelial cells (EC) and smooth muscle cells (SMC) require a decrease in cytoplasmic Ca2+ concentration after activation. This can be achieved by Ca2+ sequestration by the sarco-/endoplasmic reticulum Ca2+ pumps (SERCA) and Ca2+ extrusion by plasma membrane Ca2+ pumps (PMCA) and Na+-Ca2+-exchangers (NCX). Since the two cell types differ in their structure and function, we compared the activities of PMCA, NCX and SERCA in pig coronary artery EC and SMC, the types of isoforms expressed using RT-PCR, and their protein abundance using Western blots. The activity of NCX is higher in EC than in SMC but those of PMCA and SERCA is lower. Consistently, the protein abundance for NCX protein is higher in EC than in SMC and those of PMCA and SERCA is lower. Based on RT-PCR experiments, the types of RNA present are as follows: EC for PMCA1 while SMC for PMCA4 and PMCA1; EC for SERCA2 and SERCA3 and SMC for SERCA2. Both EC and SMC express NCX1 (mainly NCX1.3). PMCA, SERCA and NCX differ in their affinities for Ca2+ and regulation. Based on these observations and the literature, we conclude that the tightly regulated Ca2+ removal systems in SMC are consistent with the cyclical control of contractility of the filaments and those in EC are consistent with Ca2+ regulation of the endothelial nitric oxide synthase near the cell surface. The differences between EC and SMC should be considered in therapeutic interventions of cardiovascular diseases.  相似文献   

19.
Fiekers JF 《Life sciences》2001,70(6):681-698
Single cell calcium microfluorimetry was used to examine the regulation of [Ca2+]i homeostasis in a clonal cell line of corticotropes (AtT-20 cells). Single cells, loaded with fura-2/AM, were exposed briefly to elevated potassium chloride (KCI, 40 mM, 5 sec). The time constant of decay of the [Ca2+]i signal was used as an index of [Ca2+]i extrusion and/or sequestration. Substitution of extracellular sodium with lithium, N-methyl-D-glucamine (NMDG), or Tris, increased resting levels of [Ca2+]i and significantly increased the time constant of [Ca2+]i decay by 40% compared to control indicating the participation of Na+-Ca2+-exchange. Prior exposure of single cells to thapsigargin (1 microM) or BuBHQ (10 microM). inhibitors of the SERCA Ca2+-ATPases, and/or the mitochondrial uncoupler FCCP (1 microM) did not significantly change the time constant of [Ca2+]i decay following KCl. Lanthanum ions (La3+), applied during the decay of the KCI-induced increase in [Ca2+]i, significantly increased the time constant of the return of [Ca2+]i to resting levels by 70% compared to control. Brief exposure of cells to sodium orthovanadate, an inhibitor of ATP-dependent pump activity, slowed and longer exposures prevented, the return of [Ca2+]i to resting levels. We conclude that neither intracellular SERCA pumps nor mitochondrial uptake contribute significantly to [Ca2+]i sequestration following a [Ca2+]i load and that the plasma membrane Ca2+-ATPase contributes to a greater extent than the Na+-Ca2+-exchanger to the return of [Ca2+]i to resting levels following a [Ca2+]i load under these experimental conditions.  相似文献   

20.
Calcium metabolism in Ehrlich Ascites tumour cells   总被引:1,自引:0,他引:1  
Ehrlich ascites tumour cells are able, under the proper experimental conditions, to extrude a substantial amount of Ca2+ from the intracellular space. The Ca2+ extrusion mechanism, probably located at the plasma membrane level, appears to be similar to that found in red blood cells. It is energy-dependent and both respiration and glycolysis are able to drive it. The use of some inhibitors and uncouplers, besides showing that this activity is different from that linked to the mitochondrial Ca2+ pump which acts in the opposite direction, proposes some speculations on the energy compartmentation in the Ehrlich ascites tumour cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号