首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cholera toxin secretion is dependent upon the extracellular protein secretion apparatus encoded by the eps gene locus of Vibrio cholerae . Although the eps gene locus encodes several type four prepilin-like proteins, the peptidase responsible for processing these proteins has not been identified. This report describes the identification of a prepilin peptidase from the V. cholerae genomic database by virtue of its homology with the PilD prepilin peptidase of Pseudomonas aeruginosa . Plasmid disruption or deletion of this peptidase gene in either El Tor or classical V. cholerae O1 biotype strains results in a dramatic decrease in cholera toxin secretion. In the case of the El Tor biotype mutants, surface expression of the type 4 pilus responsible for mannose-sensitive haemagglutination is abolished. The cloned V. cholerae peptidase processes either EpsI or MshA preproteins when co-expressed in E. coli . Mutation of the V. cholerae peptidase gene also results in a defect in virulence and decreased levels of OmpU. The V. cholerae peptidase gene sequence shows 80% homology with the Vibrio vulnificus VvpD type 4 prepilin peptidase required for pilus assembly and cytolysin secretion in V. vulnificus . Accordingly, the V. cholerae type 4 prepilin peptidase required for pilus assembly and cholera toxin secretion has been designated VcpD.  相似文献   

2.
Type IV pili are virulence factors in various bacteria. Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Although type IVa pili have been implicated in the virulence of Ralstonia solanacearum, type IVb pili have not previously been described in this plant pathogen. Here, we report the characterization of two distinct tad loci in the R. solanacearum genome. The tad genes encode functions necessary for biogenesis of the Flp subfamily of type IVb pili initially described for the periodontal pathogen Aggregatibacter actinomycetemcomitans. To determine the role of the tad loci in R. solanacearum virulence, we mutated the tadA2 gene located in the megaplasmid that encodes a predicted NTPase previously reported to function as the energizer for Flp pilus biogenesis. Characterization of the tadA2 mutant revealed that it was not growth impaired in vitro or in planta, produced wild-type levels of exopolysaccharide galactosamine, and exhibited swimming and twitching motility comparable with the wild-type strain. However, the tadA2 mutant was impaired in its ability to cause wilting of potato plants. This is the first report where type IVb pili in a phytopathogenic bacterium contribute significantly to plant pathogenesis.  相似文献   

3.
Enteropathogenic Escherichia coli, a leading agent of infantile diarrhea worldwide, adheres to tissue culture cells in a pattern called "localized adherence." Localized adherence is associated with bundle-forming pili encoded by the plasmid bfpA gene, the product of which is homologous with the major structural subunit proteins of type IV fimbriae in other bacteria. Several of these proteins have been shown to be processed from a precursor by a specific prepilin peptidase. We cloned restriction fragments downstream of the bfpA gene into an E. coli-Pseudomonas aeruginosa shuttle vector and mobilized them into a P. aeruginosa prepilin peptidase (pilD) mutant. A plasmid containing a 1.3-kb PstI-BamHI fragment was able to complement the pilD mutation, as demonstrated by restoration of sensitivity to the pilus-specific bacteriophage PO4. The DNA sequence of this fragment revealed an open reading frame, designated bfpP, the predicted product of which is homologous to other prepilin peptidases, including TcpJ of Vibrio cholerae (30% identical amino acids), PulO of Klebsiella oxytoca (29%), and PilD of P. aeruginosa (28%). A bfpA::TnphoA mutant complemented with a bfpA-containing DNA fragment only partially processes the BfpA protein. When complemented with a larger fragment containing bfpP as well as bfpA, the mutant expresses the fully processed BfpA protein. P. aeruginosa PAK, but not a pilD mutant of PAK, expresses mature BfpA protein when the bfpA gene is mobilized into this strain. Thus, as in other type IV fimbria systems, enteropathogenic E. coli utilizes a specific prepilin peptidase to process the major subunit of the bundle-forming pilus. This prepilin petidase contains sequence and reciprocal functional homologies with the PilD protein of P. aeruginosa.  相似文献   

4.
The tad locus of Actinobacillus actinomycetemcomitans encodes genes for the biogenesis of Flp pili, which allow the bacterium to adhere tenaciously to surfaces and form strong biofilms. Although tad (tight adherence) loci are widespread among bacterial and archaeal species, very little is known about the functions of the individual components of the Tad secretion apparatus. Here we characterize the mechanism by which the pre-Flp1 prepilin is processed to the mature pilus subunit. We demonstrate that the tadV gene encodes a prepilin peptidase that is both necessary and sufficient for proteolytic maturation of Flp1. TadV was also found to be required for maturation of the TadE and TadF pilin-like proteins, which we term pseudopilins. Using site-directed mutagenesis, we show that processing of pre-Flp1, pre-TadE, and pre-TadF is required for biofilm formation. Mutation of a highly conserved glutamic acid residue at position +5 of Flp1, relative to the cleavage site, resulted in a processed pilin that was blocked in assembly. In contrast, identical mutations in TadE or TadF had no effect on biofilm formation, indicating that the mechanisms by which Flp1 pilin and the pseudopilins function are distinct. We also determined that two conserved aspartic acid residues in TadV are critical for function of the prepilin peptidase. Together, our results indicate that the A. actinomycetemcomitans TadV protein is a member of a novel subclass of nonmethylating aspartic acid prepilin peptidases.  相似文献   

5.
Aeromonas hydrophila secretes several extracellular proteins that are associated with virulence including an enterotoxin, a protease, and the hole-forming toxin, aerolysin. These degradative enzymes and toxins are exported by a conserved pathway found in many Gram-negative bacteria. In Pseudomonas aeruginosa this export pathway and type IV pilus biogenesis are dependent on the product of the pilD gene. PilD is a bifunctional enzyme that processes components of the extracellular secretory pathway as well as a type IV prepilin. An A. hydrophila genomic library was transferred into a P. aeruginosa pilD mutant that is defective for type IV pilus biogenesis. The A. hydrophila pilD homologue, tapD , was identified by its ability to complement the pilD mutation in P. aeruginosa . Transconjugants containing tapD were sensitive to the type IV pilus-specific phage, PO4. Sequence data revealed that tapD is part of a cluster of genes ( tapABCD ) that are homologous to P. aeruginosa type IV pilus biogenesis genes ( pilABCD ). We showed that TapB and TapC are functionally homologous to P. aeruginosa PilB and PilC, the first such functional complementation of pilus assembly demonstrated between bacteria that express type IV pili. In vitro studies revealed that TapD has both endopeptidase and N -methyltransferase activities using P. aeruginosa prepilin as substrate. Furthermore, we show that tapD is required for extracellular secretion of aerolysin and protease, indicating that tapD may play an important role in the virulence of A. hydrophila  相似文献   

6.
7.
The assembly of pilus colonization factor antigen III (CFA/III) of human enterotoxigenic Escherichia coli requires the processing of CFA/III major pilin (CofA) by a peptidase, likely another type IV pilus formation system. Western blot analysis of CofA reveals that CofA is produced initially as a 26.5-kDa preform pilin (prepilin) and then processed to 20.5-kDa mature pilin by a prepilin peptidase. This processing is essential for exportation of the CofA from the cytoplasm to the periplasm. In this experiment, the structural gene, cofP, encoding CFA/III prepilin peptidase which cleavages at the Gly-30-Met-31 junction of CofA was identified, and the nucleotide sequence of the gene was determined. CofP consists of 819 bp encoding a 273-amino acid protein with a relative molecular mass of 30,533 Da. CofP is predicted to be localized in the inner membrane based on its hydropathy index. The amino acid sequence of CofP shows a high degree of homology with other prepilin peptidases which play a role in the assembly of type IV pili in several gram-negative bacteria.  相似文献   

8.
Pseudomonas aeruginosa exports a number of hydrolytic enzymes and toxins using the type II or general secretion pathway, found in a variety of Gram-negative bacteria and requiring the functions of at least 12 gene products (XcpP–Z and PilD/XcpA in P. aeruginosa ). A number of these gene products are homologues of components of the type IV pilus biogenesis system, including four proteins, XcpT–W, which are highly similar to the pilin subunit in their size, localization and post-translational modifications. These proteins, in addition to the pilin subunit, are cleaved and methylated by the PilD/XcpA prepilin peptidase, but their interactions with other components of the export apparatus are unclear. Using a medium developed for the selection of export-proficient P. aeruginosa strains, we have isolated temperature-sensitive mutations in the xcpT gene and extragenic suppressors for one of the mutants. These suppressors fall into two classes, one that maps outside of the xcpP–Z gene cluster and may define additional cellular functions that are required for export, and a second that maps to the xcpR gene product and indicates a potential protein–protein interaction connecting two different cellular compartments and required for the assembly or function of the export apparatus.  相似文献   

9.
Type IV pili are long filamentous appendages required for both adhesion and a unique form of motility known as twitching. Twitching motility involves the extension and retraction of the pilus and requires a number of gene products, including five conserved pilin-like proteins of unknown function (FimU, PilV, PilW, PilX, and PilE in Pseudomonas aeruginosa), termed ‘minor’ pilins. Maintenance of a specific stoichiometric ratio among the minor pilins was important for function, as loss or overexpression of any component impaired motility. Disruption of individual minor pilin genes, or of the AlgR positive regulator of minor pilin operon expression in a strain where pilus retraction was blocked by inactivation of the PilT retraction ATPase, revealed that pili were produced, although levels of piliation were reduced relative to pilT positive control. Differences in the levels of piliation of complemented strains pointed to specific roles for each protein in the assembly process, with FimU and PilX being implicated as key promoters of pilus assembly on the cell surface. Using specific antibodies for each protein, we showed that the minor pilins FimU, PilV, PilW, PilX, and PilE were processed by the pre-pilin peptidase PilD and incorporated throughout the growing pilus filament. This is the first study to demonstrate that the minor pilins, conserved among bacteria expressing type IVa pili, are incorporated into the fiber and support a role for them in the initiation, but not termination, of pilus assembly.  相似文献   

10.
M S Strom  D Nunn    S Lory 《Journal of bacteriology》1991,173(3):1175-1180
In Pseudomonas aeruginosa, the genes pilB, pilC, and pilD encode proteins necessary for posttranslational modification and assembly of pilin monomers into pilus organelles (D. Nunn, S. Bergman, and S. Lory, J. Bacteriol. 172:2911-2919, 1990). We show that PilD, encoding a putative pilin-specific leader peptidase, also controls export of alkaline phosphatase, phospholipase C, elastase, and exotoxin A. pilD mutants accumulate these proteins in the periplasmic space, while secretion of periplasmic and outer membrane proteins appears to be normal. The periplasmic form of exotoxin A was fully mature in size, contained all cysteines in disulfide bonds, and was toxic in a tissue culture cytotoxicity assay, suggesting that in pilD mutants, exotoxin A was folded into its native conformation. The function of the other two accessory proteins, PilB and PilC, appears to be restricted to pilus biogenesis, and strains carrying mutations in their respective genes do not show an export defect. These studies show that in addition to cleaving the leader sequence from prepilin, PilD has an additional role in secretion of proteins that are released from P. aeruginosa into the surrounding media. PilD most likely functions as a protease that is involved in processing and assembly of one or more components of the membrane machinery necessary for the later stages of protein extracellular localization.  相似文献   

11.
The PulO protein required for extracellular secretion of pullulanase by Klebsiella oxytoca is known to be highly homologous to two type IV prepilin peptidases, namely XcpA(PilD) (Pseudomonas aeruginosa) and TcpJ (Vibrio cholerae). The predicted prepilin peptidase activity of PulO was confirmed by showing that it could correctly process the product of the cloned pilE.1 type IV pilin structural gene from Neisseria gonorrhoeae in Escherichia coli. The P. aeruginosa prepilin peptidase and another putative prepilin peptidase, ComC from Bacillus subtilis, also processed prePilE. Subcellular fractionation showed that the pilE gene product that had been processed by PulO remained associated with the cytoplasmic membrane, as did the unprocessed precursor. PulO was also shown to process three of the four prePilE-PhoA hybrids tested. Southern hybridization experiments suggest that a pulO homologue is present in the N. gonorrhoeae chromosome.  相似文献   

12.
PilD, originally isolated as an essential component for the biogenesis of the type IV pili of Pseudomonas aeruginosa, is a unique endopeptidase responsible for processing the precursors of the P. aeruginosa pilin subunits. It is also required for the cleavage of the leader peptides from the Pdd proteins, which are essential components of an extracellular secretion pathway specific for the export of a number of P. aeruginosa hydrolytic enzymes and toxins. Substrates for PilD are initially synthesized with short, i.e., 6- to 8-amino-acid-long, leader peptides with a net basic charge and share a high degree of amino acid homology through the first 16 to 30 residues at the amino terminus. In addition, they all have a phenylalanine residue at the +1 site relative to the cleavage site, which is N methylated prior to assembly into the oligomeric structures. In this study, the kinetics of leader peptide cleavage from the precursor of the P. aeruginosa pilin subunit by PilD was determined in vitro. The rates of cleavage were compared for purified enzyme and substrate as well as for enzyme and substrate contained within total membranes extracted from P. aeruginosa strains overexpressing the cloned pilD or pilA genes. Optimal conditions were obtained only when both PilD and substrate were contained within total membranes. PilD catalysis of P. aeruginosa prepilin followed normal Michaelis-Menten kinetics, with a measured apparent Km of approximately 650 microM, and a kcat of 180 min-1. The kinetics of PilD processing of another type IV pilin precursor, that from Neisseria gonorrhoeae with a 7-amino-acid-long leader peptide, were essentially the same as that measured for wild-type P. aeruginosa prepilin. Quite different results were obtained for a number of prepilin substrates containing substitutions at the conserved phenylalanine at the +1 position relative to the cleavage site, which were previously shown to be well tolerated in vivo. Substitutions of methionine, serine, and cysteine for phenylalanine show that Km values remain close to that measured for wild-type substrate, while kcat and kcat/Km values were significantly decreased. This indicates that while the affinity of enzyme for substrate is relatively unaffected by the substitutions, the maximum rate of catalysis favors a phenylalanine at this position. Interesting, PilD cleavage of one mutated pillin (asparagine) resulted in a lower Km value of 52.5 microM, which indicates a higher affinity for the enzyme, as well as a lower kcat value of 6.1 min m(-1). This suggests that it may be feasible to design peptide inhibitors of PilD.  相似文献   

13.
The assembly of type IV pili in Neisseria gonorrhoeae is a complex process likely to require the products of many genes. One of these is the enzyme prepilin peptidase, which cleaves and then N methylates the precursor pilin subunits prior to their assembly into pili. We have used a PCR amplification strategy to clone the N. gonorrhoeae prepilin peptidase gene, pilDNg. A single copy of the gene is shown to be present in the chromosome. Its product promotes correct cleavage of the gonococcal prepillin in Escherichia coli cells carrying both the prepilin peptidase gene and the pilin structural gene. PilDNg also cleaves prePulG, a type IV pilin-like protein of Klebsiella oxytoca. Moreover, PilDNg complements a mutation in the gene coding for the prepilin peptidase-like protein of K. oxytoca, pulO, partially restoring PulG-PulO-dependent extracellular secretion of the enzyme pullulanase. Finally, we show that genes homologous to pilDNg are present and expressed in a variety of species in the genus Neisseria, including some commensal strains.  相似文献   

14.
The tad locus of Actinobacillus actinomycetemcomitans encodes a molecular transport system required for tenacious, nonspecific adherence to surfaces and formation of extremely strong biofilms. This locus is dedicated to the biogenesis of Flp pili, which are required for colonization and virulence. We have previously shown that 11 of the 14 tad locus genes are required for adherence and Flp pilus production. Here, we present genetic and phylogenetic analyses of flp-2, tadV, and rcpB genes in biofilm formation. We show that tadV, predicted to encode prepilin peptidase, is required for adherence. In contrast, targeted insertional inactivation of flp-2, a gene closely related to the prepillin gene flp-1, did not abrogate biofilm formation. Expression studies did not detect Flp2-T7 protein under standard laboratory conditions. We present phylogenetic data showing that there is no significant evidence for natural selection in the available flp-2 sequences from A. actinomycetemcomitans, suggesting that flp-2 does not play a significant role in the biology of this organism. Mutants with insertions at the 3' end of rcpB formed biofilms equivalent to wild-type A. actinomycetemcomitans. Surprisingly, 5' end chromosomal insertion mutants in rcpB were obtained only when a wild-type copy of the rcpB gene was provided in trans or when the Tad secretion system was inactivated. Together, our results strongly suggest that A. actinomycetemcomitans rcpB is essential in the context of a functional tad locus. These data show three different phenotypes for the three genes.  相似文献   

15.
Three gonococcal genes have been identified which encode proteins with substantial similarities to known components of the type IV pilus biogenesis pathway in Pseudomonas aeruginosa. Two of the genes were identified based on their hybridization with a DNA probe derived from the pilB gene of P. aeruginosa under conditions of reduced stringency. The product of the gonococcal pilF gene is most closely related to the pilus assembly protein PilB of P. aeruginosa while the product of the gonococcal pilT gene is most similar to the PilT protein of P. aeruginosa which is involved in pilus-associated twitching motility and colony morphology. The products of both of these genes display canonical nucleoside triphosphate binding sites and are predicted to be to cytoplasmically localized based on their overall hydrophilicity. The gonococcal pilD gene, identified by virtue of its linkage to the pilF gene, is homologous to a family of prepilin leader peptidase genes. When expressed in Escherichia coli, the gonococcal PilD protein functions to process gonococcal prepilin in a manner consistent with its being gonococcal prepilin peptidase. These results suggest that Neisseria gonorrhoeae is capable of expressing many of the essential elements of a highly conserved protein translocation system and that these gene products are probably involved in pilus biogenesis.  相似文献   

16.
The xcp gene products in Pseudomonas aeruginosa are required for the secretion of proteins across the outer membrane. Four of the Xcp proteins, XcpT, U, V and W, present sequence homology to the subunits of type IV pili at their N-termini, and they were therefore designated pseudopilins. In this study, we characterized the xcpX gene product, a bitopic cytoplasmic membrane protein. Remarkably, amino acid sequence comparisons also suggested that the XcpX protein resembles the pilins and pseudopilins at the N-terminus. We show that XcpX could be processed by the prepilin peptidase, PilD/XcpA, and that the highly conserved glycine residue preceding the hydrophobic segment could not be mutated without loss of the XcpX function. We, therefore, classified XcpX (GspK) as the fifth pseudopilin of the system.  相似文献   

17.
18.
The general secretion pathway (GSP) of Vibrio cholerae is required for secretion of proteins including chitinase, enterotoxin, and protease through the outer membrane. In this study, we report the cloning and sequencing of a DNA fragment from V. cholerae, containing 12 open reading frames, epsC to -N, which are similar to GSP genes of Aeromonas, Erwinia, Klebsiella, Pseudomonas, and Xanthomonas spp. In addition to the two previously described genes, epsE and epsM (M. Sandkvist, V. Morales, and M. Bagdasarian, Gene 123: 81-86, 1993; L. J. Overbye, M. Sandkvist, and M. Bagdasarian, Gene 132:101-106, 1993), it is shown here that epsC, epsF, epsG, and epsL also encode proteins essential for GSP function. Mutations in the eps genes result in aberrant outer membrane protein profiles, which indicates that the GSP, or at least some of its components, is required not only for secretion of soluble proteins but also for proper outer membrane assembly. Several of the Eps proteins have been identified by use of the T7 polymerase-promoter system in Escherichia coli. One of them, a pilin-like protein, EpsG, was analyzed also in V. cholerae and found to migrate as two bands on polyacrylamide gels, suggesting that in this organism it might be processed or otherwise modified by a prepilin peptidase. We believe that TcpJ prepilin peptidase, which processes the subunit of the toxin-coregulated pilus, TcpA, is not involved in this event. This is supported by the observations that apparent processing of EpsG occurs in a tcpJ mutant of V. cholerae and that, when coexpressed in E. coli, TcpJ cannot process EpsG although the PilD peptidase from Neisseria gonorrhoeae can.  相似文献   

19.
Aeromonas salmonicida expresses a large number of proven and suspected virulence factors including bacterial surface proteins, extracellular degradative enzymes, and toxins. We report the isolation and characterization of a 4-gene cluster, tapABCD, from virulent A. salmonicida A450 that encodes proteins homologous to components required for type IV pilus biogenesis. One gene, tapA, encodes a protein with high homology to type IV pilus subunit proteins from many gram-negative bacterial pathogens, including Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio vulnificus. A survey of A. salmonicida isolates from a variety of sources shows that the tapA gene is as ubiquitous in this species as it is in other members of the Aeromonads. Immunoblotting experiments demonstrate that it is expressed in vitro and is antigenically conserved among the A. salmonicida strains tested. A mutant A. salmonicida strain defective in expression of TapA was constructed by allelic exchange and found to be slightly less pathogenic for juvenile Oncorhynchus mykiss (rainbow trout) than wild type when delivered by intraperitoneal injection. In addition, fish initially challenged with a high dose of wild type were slightly more resistant to rechallenge with wild type than those initially challenged with the tapA mutant strain, suggesting that presence of TapA contributes to immunity. Two of the other three genes identified, tapB and tapC, encode proteins with homology to factors known to be required for type IV pilus assembly in P. aeruginosa, but in an as yet unidentified manner. TapB is a member of the ABC-transporter family of proteins that contain characteristic nucleotide-binding regions, and which may provide energy for type IV pilus assembly through the hydrolysis of ATP. TapC homologs are integral cytoplasmic membrane proteins that may play a role in pilus anchoring or initiation of assembly. The fourth gene, tapD, encodes a product that shares homology with a family of proteins with a known biochemical function, namely, the type IV prepilin leader peptidases. These bifunctional enzymes proteolytically cleave the leader peptide from the pilin precursor (prepilin) and then N-methylate the newly exposed N-terminal amino acid prior to assembly of the subunits into the pilus structure. We demonstrate that A. salmonicida TapD is able to restore type IV pilus assembly and type II secretion in a P. aeruginosa strain carrying a mutation in its type IV peptidase gene, suggesting that it plays the same role in A. salmonicida.  相似文献   

20.
Vibrio vulnificus is part of the natural estuarine microflora and accumulates in shellfish through filter feeding. It is responsible for the majority of seafood-associated fatalities in the United States mainly through consumption of raw oysters. Previously we have shown that a V. vulnificus mutant unable to express PilD, the type IV prepilin peptidase, does not express pili on the surface of the bacterium and is defective in adherence to human epithelial cells (R. N. Paranjpye, J. C. Lara, J. C. Pepe, C. M. Pepe, and M. S. Strom, Infect. Immun. 66:5659-5668, 1998). A mutant unable to express one of the type IV pilins, PilA, is also defective in adherence to epithelial cells as well as biofilm formation on abiotic surfaces (R. N. Paranjpye and M. S. Strom, Infect. Immun. 73:1411-1422, 2005). In this study we report that the loss of PilD or PilA significantly reduces the ability of V. vulnificus to persist in Crassostrea virginica over a 66-h interval, strongly suggesting that pili expressed by this bacterium play a role in colonization or persistence in oysters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号