首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock proteins (HSPs) have shown promise for the optimization of protein-based vaccines because they can transfer exogenous antigens to dendritic cells and at the same time induce their maturation. Great care must be exercised in interpretating HSP-driven studies, as by-products linked to the recombinant generation of these proteins have been shown to mediate immunological effects. We generated highly purified human recombinant Hsp70 and demonstrated that it strongly enhances the cross-presentation of exogenous antigens resulting in better antigen-specific T cell stimulation. Augmentation of T cell stimulation was a direct function of the degree of complex formation between Hsp70 and peptides and correlated with improved antigen delivery to endosomal compartments. The Hsp70 activity was independent of TAP proteins and was not inhibited by exotoxin A or endosomal acidification. Consequently, Hsp70 enhanced cross-presentation of various antigenic sequences, even when they required different post-uptake processing and trafficking, as exemplified by the tumor antigens tyrosinase and Melan-A/MART-1. Furthermore, Hsp70 enhanced cross-presentation by different antigen-presenting cells (APCs), including dendritic cells and B cells. Importantly, enhanced cross-presentation and antigen-specific T cell activation were observed in the absence of innate signals transmitted by Hsp70. As Hsp70 supports the cross-presentation of different antigens and APCs and is inert to APC function, it may show efficacy in various settings of immune modulation, including induction of antigen-specific immunity or tolerance.  相似文献   

2.
It is well-established that heat shock proteins (HSPs)-peptides complexes elicit antitumor responses in prophylactic and therapeutic immunization protocols. HSPs such as gp96 and Hsp70 have been demonstrated to undergo receptor-mediated uptake by APCs with subsequent representation of the HSP-associated peptides to MHC class I molecules on APCs, facilitating efficient cross-presentation. On the contrary, despite its abundant expression among HSPs in the cytosol, the role of Hsp90 for the cross-presentation remains unknown. We show here that exogenous Hsp90-peptide complexes can gain access to the MHC class I presentation pathway and cause cross-presentation by bone marrow-derived dendritic cells. Interestingly, this presentation is TAP independent, and followed chloroquine, leupeptin-sensitive, as well as cathepsin S-dependent endosomal pathways. In addition, we show that Hsp90-chaperoned precursor peptides are processed and transferred onto MHC class I molecules in the endosomal compartment. Furthermore, we demonstrate that immunization with Hsp90-peptide complexes induce Ag-specific CD8(+) T cell responses and strong antitumor immunity in vivo. These findings have significant implications for the design of T cell-based cancer immunotherapy.  相似文献   

3.
hYVH1 [human orthologue of YVH1 (yeast VH1-related phosphatase)] is an atypical dual-specificity phosphatase that is widely conserved throughout evolution. Deletion studies in yeast have suggested a role for this phosphatase in regulating cell growth. However, the role of the human orthologue is unknown. The present study used MS to identify Hsp70 (heat-shock protein 70) as a novel hYVH1-binding partner. The interaction was confirmed using endogenous co-immunoprecipitation experiments and direct binding of purified proteins. Endogenous Hsp70 and hYVH1 proteins were also found to co-localize specifically to the perinuclear region in response to heat stress. Domain deletion studies revealed that the ATPase effector domain of Hsp70 and the zinc-binding domain of hYVH1 are required for the interaction, indicating that this association is not simply a chaperone-substrate complex. Thermal phosphatase assays revealed hYVH1 activity to be unaffected by heat and only marginally affected by non-reducing conditions, in contrast with the archetypical dual-specificity phosphatase VHR (VH1-related protein). In addition, Hsp70 is capable of increasing the phosphatase activity of hYVH1 towards an exogenous substrate under non-reducing conditions. Furthermore, the expression of hYVH1 repressed cell death induced by heat shock, H2O2 and Fas receptor activation but not cisplatin. Co-expression of hYVH1 with Hsp70 further enhanced cell survival. Meanwhile, expression of a catalytically inactive hYVH1 or a hYVH1 variant that is unable to interact with Hsp70 failed to protect cells from the various stress conditions. The results suggest that hYVH1 is a novel cell survival phosphatase that co-operates with Hsp70 to positively affect cell viability in response to cellular insults.  相似文献   

4.
Heat shock protein 70 (Hsp70) family consists of at least eight chaperone proteins that differ from each other by their pattern of expression and intracellular localization. Whereas ample experimental and clinico-pathological data has implicated the major stress-inducible Hsp70-1 as a protein required for cancer cell survival, the study of the other family members has been limited by the lack of experimental tools to differentiate between the highly homologous family members. This limitation has been recently overcome by the RNA interference technology that for the first time allows targeted knockdown of the individual Hsp70 family members. Data based on this technology has revealed that also Hsp70-2, a protein essential for spermatogenesis, is required for cancer cell growth and survival. Remarkably, the highly homologous Hsp70 proteins enhance cancer cell growth and survival by distinct molecular mechanisms.  相似文献   

5.
The Hsp70 class of heat shock proteins (Hsps) has been implicated at multiple points in the immune response, including initiation of proinflammatory cytokine production, antigen recognition and processing, and phenotypic maturation of antigen-presenting cells (APCs). This class of chaperones is highly conserved in both sequence and structure, from prokaryotes to higher eukaryotes. In all cases, these chaperones function to bind short segments of either peptides or proteins through an adenosine triphosphate-dependent process. In addition to a possible role in antigen presentation, these chaperones have also been proposed to function as a potent adjuvant. We compared 4 evolutionary diverse Hsp70s, E. coli DnaK, wheat cytosolic Hsc70, plant chloroplastic CCS1, and human Hsp70, for their ability to prime and augment a primary immune response against herpes simplex virus-1 (HSV1). We discovered that all 4 Hsp70s were highly effective as adjuvants displaying similar ability to lipopolysaccharides in upregulating cytokine gene expression. In addition, they were all capable of inducing phenotypic maturation of APCs, as measured by the display of various costimulatory molecules. However, only the human Hsp70 was able to mediate sufficient cross-priming activity to afford a protective immune response to HSV1, as judged by protection from a lethal viral challenge, in vitro proliferation, cytotoxicity, and intracellular interferon-gamma production. The difference in immune response generated by the various Hsp70s could possibly be due to their differential ability to interact productively with other coreceptors and different regulatory cochaperones.  相似文献   

6.
Using a gel-overlay technique of biotinylated calmodulin (CaM), we showed that maize cytosolic Hsp70 protein could bind to CaM in the presence of 1 mM CaCl2. The purified maize cytosolic Hsp70 inhibited the activity of CaM-dependent NADK in a concentration-dependent manner. A synthetic peptide, which possesses the 21 amino acid sequence, PRALRRLRTACERAKRTLSST, at positions 261-281 in maize cytosolic Hsp70, could associate with CaM in the presence of 1 mM calcium. The synthetic peptide inhibited CaM-dependent NADK activity and PDE activity. This indicates that the 21-amino acid sequence at positions 261-281 is the CaM-binding site. The binding of CaM to Hsp70 inhibited the ATPase activity of Hsp70. The possible regulator function of Hsp70 in cell signaling events in response to heat stress is discussed.  相似文献   

7.
Intracellular pathogens like Toxoplasma gondii often target proteins and pathways critical for host cell survival and stress response. Molecular chaperones encoded by the evolutionary conserved Heat shock proteins (Hsps) maintain proteostasis and are vital to cell survival following exposure to any form of stress. A key protein of this family is Hsp70, an ATP-driven molecular chaperone, which is stress inducible and often indiscernible in normal cells. Role of this protein with respect to intracellular survival and multiplication of protozoan parasite like T. gondii remains to be examined. We find that T. gondii infection upregulates expression of host Hsp70. Hsp70 selective inhibitor 2-phenylethynesulfonamide (PES) attenuates intracellular T. gondii multiplication. Biotinylated PES confirms selective interaction of this small molecule inhibitor with Hsp70. We show that PES acts by disrupting Hsp70 chaperone function which leads to dysregulation of host autophagy. Silencing of host Hsp70 underscores its importance for intracellular multiplication of T. gondii, however, attenuation achieved using PES is not completely attributable to host Hsp70 indicating the presence of other intracellular targets of PES in infected host cells. We find that PES is also able to target T. gondii Hsp70 homologue which was shown using PES binding assay. Detailed molecular docking analysis substantiates PES targeting of TgHsp70 in addition to host Hsp70. While establishing the importance of protein quality control in infection, this study brings to the fore a unique opportunity of dual targeting of host and parasite Hsp70 demonstrating how structural conservation of these proteins may be exploited for therapeutic design.  相似文献   

8.
Vertebrate cells contain at least 12 different genes for Hsp70 proteins, 3 of which are encoded in the major histocompatibility complex (MHC) class III region. In the human MHC, these are named Hsp70-1, -2, and -Hom. To characterize these proteins, we have determined their substrate binding specificity, their cellular and tissue distribution, and the regulation of their expression. We show for the first time (1) peptide binding specificity of Hsp70-Hom; (2) endogenous expression of Hsp70-Hom in human cell lines; (3) cytoplasmic location of Hsp70-Hom protein under basal conditions and concentration in the nucleus after heat shock; (4) unique RNA expression profiles in human tissues for each of the MHC-encoded Hsp70s, significantly different from that for the constitutive Hsc70; (5) a relative increase in levels of Hsp70-Hom protein, compared with other Hsp70s, in response to interferon gamma; and (6) a specific increase on lipopolysaccharide (LPS) treatment of in vivo messenger RNA levels for the MHC-encoded Hsp70s and the DnaJ homologue, hdj2, relative to other chaperones. The unique tissue distributions and specific up-regulation by LPS of the MHC-encoded Hsp70s suggest some specialization of functions for these members of the Hsp70 family, possibly in the inflammatory response.  相似文献   

9.
Chen H  Wu Y  Zhang Y  Jin L  Luo L  Xue B  Lu C  Zhang X  Yin Z 《FEBS letters》2006,580(13):3145-3152
Inducible heat shock protein 70 (Hsp70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a crucial signaling transducer that regulates a diverse array of physiological and pathological processes and is essential for activating NF-kappaB signaling pathway in response to bacterial lipopolysaccharide (LPS). Here we report a novel mechanism of Hsp70 for preventing LPS-induced NF-kappaB activation in RAW264.7 macrophage-like cells. Our results show that Hsp70 can associate with TRAF6 physically in the TRAF-C domain and prevent TRAF6 ubiquitination. The stimulation of LPS dissociates the binding of Hsp70 and TRAF6 in a time-dependent manner. Hsp70 inhibits LPS-induced NF-kappaB signaling cascade activation in heat-shock treated as well as Hsp70 stable transfected RAW264.7 cells and subsequently decreases iNOS and COX-2 expression. Two Hsp70 mutants, Hsp70DeltaC(1-428aa) with N-terminal ATPase domain and Hsp70C(428-642aa) with C-terminal domain, lack the ability to influence TRAF6 ubiquitination and TRAF6-triggered NF-kappaB activation. Taken together, these findings indicate that Hsp70 inhibits LPS-induced NF-kappaB activation by binding TRAF6 and preventing its ubiquitination, and results in inhibition of inflammatory mediator production, which provides a new insight for analyzing the effects of Hsp70 on LPS-triggered inflammatory signal transduction pathways.  相似文献   

10.
Our study demonstrates that tumor-derived heat shock protein (HSP)70 chaperones a tyrosinase peptide and mediates its transfer to human immature dendritic cells (DCs) by receptor-dependent uptake. Human tumor-derived HSP70 peptide complexes (HSP70-PC) thus have the immunogenic potential to instruct DCs to cross-present endogenously expressed, nonmutated, and tumor antigenic peptides that are shared among tumors of the melanocytic lineage for T cell recognition. T cell stimulation by HSP70-instructed DCs is dependent on the Ag bound to HSP70 in that only DCs incubated with HSP70-PC purified from tyrosinase-positive (HSP70-PC/tyr(+)) but not from tyrosinase-negative (HSP70-PC/tyr(-)) melanoma cells resulted in the specific activation of the HLA-A*0201-restricted tyrosinase peptide-specific cytotoxic T cell clone. HSP70-PC-mediated T cell stimulation is very efficient, delivering the tyrosinase peptide at concentrations as low as 30 ng/ml of HSP70-PC for T cell recognition. Receptor-dependent binding of HSP70-PC and active cell metabolism are prerequisites for MHC class I-restricted cross-presentation and T cell stimulation. T cell stimulation does not require external DC maturation signals (e.g., exogenously added TNF-alpha), suggesting that signaling DC maturation is an intrinsic property of the HSP70-PC itself and related to receptor-mediated binding. The cross-presentation of a shared human tumor Ag together with the exquisite efficacy are important new aspects for HSP70-based immunotherapy in clinical anti-cancer vaccination strategies, and suggest a potential extension of HSP70-based vaccination protocols from a patient-individual treatment modality to its use in an allogeneic setting.  相似文献   

11.
本文构建了hsp70与S基因的原核融合表达载体pGEX-4T-1/hsp70-S,在大肠杆菌中表达,并通过GSTrapFF柱进行了纯化。同时制备了NP和Hsp70两种纯化蛋白。分别用这三种纯化蛋白免疫BALB/c小鼠,结果表明纯化的NP和Hsp70-NP两种蛋白均可同时诱导产生抗汉滩病毒核蛋白(NP)抗体,且后者刺激产生的抗体效价明显高于前者。淋巴细胞增殖实验表明,两组免疫小鼠的脾细胞均能够对体外抗原刺激产生增殖反应,而Hsp70-NP组免疫小鼠脾细胞对NP的增殖指数明显高于NP组免疫组。结果显示,与单独用NP免疫小鼠相比,Hsp70-NP纯化蛋白可以刺激机体产生更强的抗汉滩病毒体液免疫应答和特异性淋巴细胞增殖反应。  相似文献   

12.
The cellular response to stress is orchestrated by the expression of a family of proteins termed heat shock proteins (hsp) that are involved in the stabilization of basic cellular processes to preserve cell viability and homeostasis. The bulk of hsp function occurs within the cytosol and subcellular compartments. However, some hsp have also been found outside cells released by an active mechanism independent of cell death. Extracellular hsp act as signaling molecules directed at activating a systemic response to stress. The export of hsp requires the translocation from the cytosol into the extracellular milieu across the plasma membrane. We have proposed that membrane insertion is the initial step in this export process. We investigated the interaction of the major inducible hsp from mammalian (Hsp70) and bacterial (DnaK) species with liposomes. We found that mammalian Hsp70 displayed a high specificity for negatively charged phospholipids, such as phosphatidyl serine, whereas DnaK interacted with all lipids tested regardless of the charge. Both proteins were inserted into the lipid bilayer as demonstrated by resistance to acid or basic washes that was confirmed by partial protection from proteolytic cleavage. Several regions of mammalian Hsp70 were inserted into the membrane with a small portion of the N-terminus end exposed to the outer phase of the liposome. In contrast, the N-terminus end of DnaK was inserted into the membrane, exposing the C-terminus end outside the liposome. Mammalian Hsp70 was found to make high oligomeric complexes upon insertion into the membranes whereas DnaK only formed dimers within the lipid bilayer. These observations suggest that both Hsp70s interact with lipids, but mammalian Hsp70 displays a high degree of specificity and structure as compared with the bacterial form.  相似文献   

13.
BAG-1 modulates the chaperone activity of Hsp70/Hsc70.   总被引:29,自引:3,他引:26  
The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG-1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG-1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their carboxy-terminal peptide-binding domain, and can be co-immunoprecipitated with Hsp/Hsc70 from cell lysates. Purified BAG-1 and Hsp/Hsc70 efficiently form heteromeric complexes in vitro. BAG-1 inhibits Hsp/Hsc70-mediated in vitro refolding of an unfolded protein substrate, whereas BAG-1 mutants that fail to bind Hsp/Hsc70 do not affect chaperone activity. The binding of BAG-1 to one of its known cellular targets, Bcl-2, in cell lysates was found to be dependent on ATP, consistent with the possible involvement of Hsp/Hsc70 in complex formation. Overexpression of BAG-1 also protected certain cell lines from heat shock-induced cell death. The identification of Hsp/Hsc70 as a partner protein for BAG-1 may explain the diverse interactions observed between BAG-1 and several other proteins, including Raf-1, steroid hormone receptors and certain tyrosine kinase growth factor receptors. The inhibitory effects of BAG-1 on Hsp/Hsc70 chaperone activity suggest that BAG-1 represents a novel type of chaperone regulatory proteins and thus suggest a link between cell signaling, cell death and the stress response.  相似文献   

14.
Extending earlier studies, this report demonstrates that Leishmania infantum heat shock proteins (Hsps), Hsp70 and Hsp83, expressed as recombinant proteins fused to the Escherichia coil maltose-binding protein (MBP), are potent mitogens for murine splenocytes. The response was not due to lipopolysaccharide (LPS) because the stimulatory activity of Hsp preparations was sensitive to boiling and trypsin treatments, whereas the corresponding activity of LPS was resistant to both treatments. It was found that in vitro incubation of spleen cells with the Leishmania Hsps leads to the expansion of CD220-bearing populations, suggesting a direct effect of these proteins on B lymphocytes. In fact, splenocytes from B cell-deficient mice did not proliferate in response to the Leishmania Hsps. In contrast, spleen cells from athymic nude mice were significantly stimulated by these recombinant proteins as an indication that the MBP-Hsp70 and MBP-Hsp83 recombinant proteins behave as T cell-independent mitogens of B cells. Furthermore, both proteins were able to induce proliferation on B cell populations purified from BALB/c spleen.  相似文献   

15.
Heat shock protein (Hsp) 70B' is a human Hsp70 chaperone that is strictly inducible, having little or no basal expression levels in most cells. Using siRNAs to knockdown Hsp70B' and Hsp72 in HT-29, SW-480, and CRL-1807 human colon cell lines, we have found that the two are regulated coordinately in response to stress. We also have found that proteasome inhibition is a potent activator of Hsp70B'. Flow cytometry was used to assay Hsp70B' promoter activity in HT-29eGFP cells in this study. Knockdown of both Hsp70B'- and Hsp72-sensitized cells to heat stress and increasing concentrations of proteasome inhibitor. These data support the conclusion that Hsp72 is the primary Hsp70 family responder to increasing levels of proteotoxic stress, and Hsp70B' is a secondary responder. Interestingly ZnSO4 induces Hsp70B' and not Hsp72 in CRL-1807 cells, suggesting a stressor-specific primary role for Hsp70B'. Both Hsp70B' and Hsp72 are important for maintaining viability under conditions that increase the accumulation of damaged proteins in HT-29 cells. These findings are likely to be important in pathological conditions in which Hsp70B' contributes to cell survival.  相似文献   

16.
Heat shock protein (Hsp) 70B' is a human Hsp70 chaperone that is strictly inducible, having little or no basal expression levels in most cells. Using siRNAs to knockdown Hsp70B' and Hsp72 in HT-29, SW-480, and CRL-1807 human colon cell lines, we have found that the two are regulated coordinately in response to stress. We also have found that proteasome inhibition is a potent activator of hsp70B'. Flow cytometry was used to assay hsp70B' promoter activity in HT-29eGFP cells in this study. Knockdown of both Hsp70B' and Hsp72 sensitized cells to heat stress and increasing concentrations of proteasome inhibitor. These data support the conclusion that Hsp72 is the primary Hsp70 family responder to increasing levels of proteotoxic stress, and Hsp70B' is a secondary responder. Interestingly ZnSO4 induces Hsp70B' and not Hsp72 in CRL-1807 cells, suggesting a stressor-specific primary role for Hsp70B'. Both Hsp70B' and Hsp72 are important for maintaining viability under conditions that increase the accumulation of damaged proteins in HT-29 cells. These findings are likely to be important in pathological conditions in which Hsp70B' contributes to cell survival.  相似文献   

17.
The induction of heat shock proteins (Hsps) serves not only as a marker for cellular stress but also as a promoter of cell survival, which is especially important in the nervous system. We examined the regulation of the constitutive and stress-induced 70-kD Hsps (Hsc70 and Hsp70, respectively) after sciatic nerve (SN) axotomy in the neonatal mouse. Additionally, the prevention of axotomy-induced SN cell death by administration of several preparations of exogenous Hsc70 and Hsp70 was tested. Immunohistochemistry and Western blot analyses showed that endogenous levels of Hsc70 and Hsp70 did not increase significantly in lumbar motor neurons or dorsal root ganglion sensory neurons up to 24 hours after axotomy. When a variety of Hsc70 and Hsp70 preparations at doses ranging from 5 to 75 microg were applied to the SN stump after axotomy, the survival of both motor and sensory neurons was significantly improved. Thus, it appears that motor and sensory neurons in the neonatal mouse do not initiate a typical Hsp70 response after traumatic injury and that administration of exogenous Hsc/Hsp70 can remedy that deficit and reduce the subsequent loss of neurons by apoptosis.  相似文献   

18.
Acclimation to environmental change can impose costs to organisms. One potential cost is the change in cell metabolism that follows a physiological response, e.g., high expression of heat shock proteins may alter specific activity of important enzymes. We examined the significance of this cost in a pair of Drosophila melanogaster lines transformed with additional copies of a gene that encodes the heat shock protein, Hsp70. Heat shock induces Hsp70 expression in all lines, but lines with extra copies produce much more Hsp70 than do excision control strains. The consequence of this supranormal Hsp70 expression is to reduce specific activity of both enzymes analyzed, adult alcohol dehydrogenase (ADH), which is heat sensitive, and lactate dehydrogenase, which is not. Strain differences were most pronounced under those conditions where Hsp70 expression was maximized, and not where the heat stress denatured proteins. That result supported the idea that Hsp70 expression is constrained evolutionarily by its tendency to bind nascent peptides when overabundant within the cell.  相似文献   

19.
Hsp70s are a family of ATP-dependent chaperones of relative molecular mass around 70 kDa. Immunization of mice with Hsp70 isolated from tumor tissues has been proved to elicit specific protective immunity against the original tumor challenge. In this work, we investigated whether Hsp70 can be used as vehicle to elicit immune response to its covalence-accompanying antigen. A recombinant protein expression vector was constructed that permitted the production of recombinant protein fusing tumor-associated antigen (eg, Mela) to the C terminus of Hsp70. We found that the Hsp70-Mela fusion protein can elicit strong cellular immune responses against murine tumor B16, which expresses protein Mela. The Hsp70 peptide-binding domain deletion mutant of the fusion protein was sufficient for inducing Mela-specific cytotoxic T lymphocyte but was not sufficient for engendering potent anti-tumor immunity against B16. We also found that host natural killer (NK) cells were stimulated in vivo by C-terminal domain of Hsp70. We thus presume that Hsp70 fusion proteins suppress tumor growth via at least 2 distinct pathways: one is covalence-accompanying antigen dependent; another is antigen independent. The C-terminal domain of Hsp70 seemed to be the crucial part in eliciting antigen-independent responses, including NK cell stimulation, against tumor challenges. Furthermore, we found that immunization with multiple Hsp70 fusion proteins resulted in a better anti-tumor effect.  相似文献   

20.
Heat shock protein (Hsp) 40 mutants inhibit Hsp70 in mammalian cells   总被引:1,自引:0,他引:1  
Heat shock protein (Hsp) 70 and Hsp40 expressed in mammalian cells had been previously shown to cooperate in accelerating the reactivation of heat-denatured firefly luciferase (Michels, A. A., Kanon, B., Konings, A. W. T., Ohtsuka, K., Bensaude, O., and Kampinga, H. H. (1997) J. Biol. Chem. 272, 33283-33289). We now provide further evidence for a functional interaction between Hsp70 and the J-domain of Hsp40 with denatured luciferase resulting in reactivation of heat-denatured luciferase within living mammalian cells. The stimulating effect of Hsp40 on the Hsp70-mediated refolding is lost when the proteins cannot interact as accomplished by their expression in different intracellular compartments. Likewise, the cooperation between Hsp40 and Hsp70 is lost by introduction of a point mutation in the conserved HPD motif of the Hsp40 J-domain or by deletion of the four C-terminal amino acids of Hsp70 (EEVD motif). Most strikingly, co-expression of a truncated protein restricted to the J-domain of Hsp40 had a dominant negative effect on Hsp70-facilitated luciferase reactivation. Taken together, these experiments indicate for the first time that the Hsp70/Hsp40 chaperones functionally interact with a heat-denatured protein within mammalian cells. The dominant negative effect of the Hsp40 J-domain on the activity of Hsp70 demonstrates the importance of J-domain-containing proteins in Hsp70-dependent processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号