首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fox DT  Poulter CD 《Biochemistry》2005,44(23):8360-8368
The mechanism of the reaction catalyzed by 2-C-methyl-d-erythritol 4-phosphate (MEP) synthase from Escherichia coli has been studied by steady-state and single-turnover kinetic experiments for the 1-deoxy-d-xylulose 5-phosphoric acid (DXP) analogues, 1,1,1-trifluoro-1-deoxy-d-xylulose 5-phosphoric acid (CF(3)-DXP), 1,1-difluoro-1-deoxy-d-xylulose 5-phosphoric acid (CF(2)-DXP), 1-fluoro-1-deoxy-d-xylulose 5-phosphoric acid (CF-DXP), and 1,2-dideoxy-d-hexulose 6-phosphate (Et-DXP). CF(3)-DXP, CF(2)-DXP, and Et-DXP were poor inhibitors, most likely because of the increase in steric bulk at C1 of DXP. The three analogues were also poor substrates for the enzyme. In contrast, CF-DXP was a good substrate (k(cat)(CF)(-)(DXP) = 37 +/- 2 s(-)(1), K(m)(CF)(-)(DXP) = 227 +/- 25 microM) for MEP synthase when compared to DXP (k(cat)(DXP) = 29 +/- 1 s(-)(1), K(m)(DXP) = 45 +/- 4 microM). A primary deuterium isotope effect was observed under single-turnover conditions when CF-DXP was incubated with 4S-[(2)H]NADPH ((H)k/(D)k = 1.34 +/-0.01), whereas no isotope effect was observed upon incubation with DXP and 4S-[(2)H]NADPH ((H)k/(D)k = 1.02 +/- 0.02). The reaction did not exhibit burst kinetics for either substrate, indicating that product release is not rate-limiting. These studies suggest that positive charge does not develop at C2 of DXP during catalysis. In addition, the isotope effect with CF-DXP and 4S-[(2)H]NADPH but not DXP indicates that the rearrangement step, which precedes hydride transfer, is rate-limiting for DXP but becomes partially rate-limiting for CF-DXP. Thus, rearrangement appears to be enhanced by substitution of a hydrogen atom in the methyl group of DXP by fluorine. These observations are consistent with a retro-aldol/aldol mechanism for the rearrangement during conversion of DXP to MEP.  相似文献   

3.
The anomeric specificity and the steady-state kinetic mechanism of homogeneous 3-deoxy-D-manno-2-octulosonate-8-phosphate (KDO8P) synthase were investigated. The open-chain 4-deoxy analogue of arabinose-5-phosphate (Ara5P), which is structurally prohibited from undergoing ring closure, was synthesized and tested as a substrate for the synthase. It was found that the analogue functions as a substrate with a similar kcat value to that of the original substrate. The kcat/Km value for the natural substrate is seven-times greater than that of the 4-deoxy analogue. However, taking into account the 9.5% and approximately 1% concentrations of the aldehyde forms of the 4-deoxy analogue and Ara5P in solution, then the 'true' Km values must be in the range 31.5 microM and 0.26 microM, respectively, requiring about a 3 kcal/mol contribution to the binding energy by the 4-hydroxyl group of Ara5P. The data provides evidence that the enzyme acts upon the acyclic form of the natural substrate. The steady-state kinetic study of KDO8P synthase was analyzed via inhibition using the products KDO8P and inorganic phosphate, and D-ribose-5-phosphate as a dead-end inhibitor. First, intersecting lines in double-reciprocal plots of initial-velocity data at substrate concentrations in the micromolar range suggest a sequential mechanism for the enzyme-catalyzed reaction. The inhibition by D-ribose-5-phosphate is competitive for Ara5P and uncompetitive for phosphoenolpyruvate (P-pyruvate). These inhibition patterns are consistent with the model wherein P-pyruvate binding precedes that of Ara5P binding. Furthermore, this order of substrate binding was supported by the observations that KDO8P is a competitive inhibitor for P-pyruvate binding, supporting the concept that KDO8P and P-pyruvate bind to the same enzyme form, and noncompetitively with respect to Ara5P. In addition, the inhibition by inorganic phosphate is noncompetitive with respect to both P-pyruvate and Ara5P, suggesting an apparent ordered release of products such that Pi first, followed by KDO8P. In conclusion, these data suggest a steady-state kinetic mechanism for KDO8P synthase where P-pyruvate binding precedes that of Ara5P, followed by the ordered release of inorganic phosphate and KDO8P.  相似文献   

4.
Agrawal N  Lesley SA  Kuhn P  Kohen A 《Biochemistry》2004,43(32):10295-10301
The ThyA gene that encodes for thymidylate synthase (TS) is absent in the genomes of a large number of bacteria, including several human pathogens. Many of these bacteria also lack the genes for dihydrofolate reductase (DHFR) and thymidine kinase and are totally dependent on an alternative enzyme for thymidylate synthesis. Thy1 encodes flavin-dependent TS (FDTS, previously denoted as TSCP) and shares no sequence homology with classical TS genes. Mechanistic studies of a FDTS from Thermotoga maritima (TM0449) are presented here. Several isotopic labeling experiments reveal details of the catalyzed reaction, and a chemical mechanism that is consistent with the experimental data is proposed. The reaction proceeds via a ping-pong mechanism where nicotinamide binding and release precedes the oxidative half-reaction. The enzyme is primarily pro-R specific with regard to the nicotinamide (NADPH), the oxidation of which is the rate-limiting step of the whole catalytic cascade. An enzyme-bound flavin is reduced with an isotope effect of 25 (consistent with H-tunneling) and exchanges protons with the solvent prior to the reduction of an intermediate methylene. A quantitative assay was developed, and the kinetic parameters were measured. A significant NADPH substrate inhibition and large K(M) rationalized the slow activity reported for this enzyme in the past. These and other findings are compared with classical TS (ThyA) catalysis in terms of kinetic and molecular mechanisms. The differences between the FDTS proposed mechanism and that of the classical TS are striking and invoke the notion that mechanism-based drugs will selectively inhibit FDTS and will not have much effect on human (and other eukaryotes) TS. Since TS activity is essential to DNA replication, the unique mechanism of FDTS makes it an attractive target for antibiotic drug development.  相似文献   

5.
Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (P Phi B) for photoactivity. In planta, biliverdin IX alpha (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme P Phi B synthase to yield 3Z-P Phi B. Here, we describe the >50,000-fold purification of P Phi B synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, P Phi B synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s(-1), which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat P Phi B synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of P Phi B synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A K(m) for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 microM. P Phi B synthase has a high affinity for its bilin substrate, with a sub-micromolar K(m) for BV.  相似文献   

6.
The reaction mechanism of Azospirillum brasilense glutamate synthase has been investigated by several approaches. 15N nuclear magnetic resonance studies demonstrate that the amide nitrogen of glutamine is reductively transferred to 2-oxoglutarate in an irreversible manner with no release of the transferred ammonia group into the medium. Identical results were obtained using thio-NADPH and acetylpyridine-NADPH, which are shown to be less efficient substrates of the enzyme than NADPH. Similarly, no exchange of the ammonia group being transferred with exogenous ammonium ion was observed during catalysis. The glutamate formed as the product of the iminoglutarate reduction was determined to be in the L configuration. The enzyme was also found to catalyze, under anaerobic conditions, the exchange of the 4proS H of NADPH with solvent both in the absence and in the presence of 2-oxoglutarate and glutamine. The reductive half-reaction is therefore a reversible segment of the overall irreversible amidotransferase reaction. 15N NMR studies also showed that the enzyme does not catalyze glutamate dehydrogenase/oxidase reactions or any observable glutaminase activity under neutral (pH 7.5) conditions. Glutaminase activity was also not observable with the reduced enzyme alone or in the presence of D-glutamate (a competitive inhibitor of glutamate synthase with respect to 2-oxoglutarate, with a Ki of about 11 microM) or with the oxidized enzyme in the presence of 2-oxoglutarate, D-glutamate, or NADP+. These data confirm species-dependent differences of A. brasilense glutamate synthase with respect to the enzyme from other sources.  相似文献   

7.
8.
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose and trehalose and has been shown recently to function primarily in the mobilization of trehalose as a glycogen precursor. Consequently, the mechanism of this intriguing isomerase is of both academic and potential pharmacological interest. TreS catalyzes the hydrolytic cleavage of α-aryl glucosides as well as α-glucosyl fluoride, thereby allowing facile, continuous assays. Reaction of TreS with 5-fluoroglycosyl fluorides results in the trapping of a covalent glycosyl-enzyme intermediate consistent with TreS being a member of the retaining glycoside hydrolase family 13 enzyme family, thus likely following a two-step, double displacement mechanism. This trapped intermediate was subjected to protease digestion followed by LC-MS/MS analysis, and Asp(230) was thereby identified as the catalytic nucleophile. The isomerization reaction was shown to be an intramolecular process by demonstration of the inability of TreS to incorporate isotope-labeled exogenous glucose into maltose or trehalose consistent with previous studies on other TreS enzymes. The absence of a secondary deuterium kinetic isotope effect and the general independence of k(cat) upon leaving group ability both point to a rate-determining conformational change, likely the opening and closing of the enzyme active site.  相似文献   

9.
The targeted (or directed) tagging is a strategy aimed to mobilize a tranposon into a specific gene (target). Only a very few Arabidopsis genes have been tagged by this way, thus the efficiency of the strategy, as well as the diversity of the alleles obtained are not well documented. We have used a maize Ds element in a directed tagging of HY2. The starting Ds element, located 22kb proximal to HY2, has been remobilized in a cross with an Ac transposase source line. From the F2 progeny of 4800 F1 we phenotypically isolated seven hy2 mutants. Molecular analysis of these alleles revealed that two contained a Ds element in HY2 and were instable, three have a large deletion that partially or completely removed HY2, one has a footprint in a HY2 exon and one leaky allele consisted of a 22 kb inversion upstream the HY2 coding sequence. Thus, the transposon-based directed tagging strategy generates a wide diversity of tagged and non-tagged alleles that can be used to generate allelic series or deletion of clustered genes.  相似文献   

10.
Anthocyanidin synthase (ANS), flavonol synthase (FLS), and flavanone 3beta-hydroxylase (FHT) are involved in the biosynthesis of flavonoids in plants and are all members of the family of 2-oxoglutarate- and ferrous iron-dependent oxygenases. ANS, FLS, and FHT are closely related by sequence and catalyze oxidation of the flavonoid "C ring"; they have been shown to have overlapping substrate and product selectivities. In the initial steps of catalysis, 2-oxoglutarate and dioxygen are thought to react at the ferrous iron center producing succinate, carbon dioxide, and a reactive ferryl intermediate, the latter of which can then affect oxidation of the flavonoid substrate. Here we describe work on ANS, FLS, and FHT utilizing several different substrates carried out in 18O2/16OH2, 16O2/18OH2, and 18O2/18OH2 atmospheres. In the 18O2/16OH2 atmosphere close to complete incorporation of a single 18O label was observed in the dihydroflavonol products (e.g. (2R,3R)-trans-dihydrokaempferol) from incubations of flavanones (e.g. (2S)naringenin) with FHT, ANS, and FLS. This and other evidence supports the intermediacy of a reactive oxidizing species, the oxygen of which does not exchange with that of water. In the case of products formed by oxidation of flavonoid substrates with a C-3 hydroxyl group (e.g. (2R,3R)-trans-dihydroquercetin), the results imply that oxygen exchange can occur at a stage subsequent to initial oxidation of the C-ring, probably via an enzyme-bound C-3 ketone/3,3-gem-diol intermediate.  相似文献   

11.
Lipoxygenases react with hydroperoxy fatty acids and catalyze dioxygenase or dehydrase (leukotriene A4 (LTA4) synthase) types of reactions. In the present investigation we studied the mechanism of reaction of the purified porcine leukocyte 12S-lipoxygenase with 15S-hydroperoxyeicosatetraenoic acid (15S-HPETE). Oxygen-18 labeling experiments with GC-MS analysis were used to distinguish dioxygenase and leukotriene synthase activities of the enzyme; 8S,15S-DiHPETE and 14R,15S-DiHPETE were formed by oxygenation, and a series of 8,15- and 14,15-diols were formed via enzymatic synthesis of 14,15-LTA4 and nonenzymatic hydrolysis of the epoxide. 10D-3H- and 10L-3H-labeled substrates were used to study the stereospecificity of the C-10 hydrogen abstraction in the synthesis of these products. Formation of 14,15-DiHPETE and 14,15-LTA4 was associated with stereoselective abstraction of hydrogen from the 10L position of 15S-HPETE. The same type of measurements on the 8S,15S-DiHPETE product indicated a variable (50-250%) retention of the 10L-3H label, and a consistent 90% retention of the 10D-3H. In contrast, the synthesis of 8S,15S-DiHPETE by the soybean lipoxygenase was associated with the expected stereoselective abstraction of the 10D hydrogen. It appears that the porcine leukocyte 12S-lipoxygenase synthesizes 8S,15S-DiHPETE by a different mechanism.  相似文献   

12.
A series of potent and selective inducible nitric-oxide synthase (iNOS) inhibitors was shown to prevent iNOS dimerization in cells and inhibit iNOS in vivo. These inhibitors are now shown to block dimerization of purified human iNOS monomers. A 3H-labeled inhibitor bound to full-length human iNOS monomer with apparent Kd approximately 1.8 nm and had a slow off rate, 1.2 x 10(-4) x s(-1). Inhibitors also bound with high affinity to both murine full-length and murine oxygenase domain iNOS monomers. Spectroscopy and competition binding with imidazole confirmed an inhibitor-heme interaction. Inhibitor affinity in the binding assay (apparent Kd values from 330 pm to 27 nm) correlated with potency in a cell-based iNOS assay (IC50 values from 290 pm to 270 nm). Inhibitor potency in cells was not prevented by medium supplementation with l-arginine or sepiapterin, but inhibition decreased with time of addition after cytokine stimulation. The results are consistent with a mechanism whereby inhibitors bind to a heme-containing iNOS monomer species to form an inactive iNOS monomer-heme-inhibitor complex in a pterin- and l-arginine-independent manner. The selectivity for inhibiting dimerization of iNOS versus endothelial and neuronal NOS suggests that the energetics and kinetics of monomer-dimer equilibria are substantially different for the mammalian NOS isoforms. These inhibitors provide new research tools to explore these processes.  相似文献   

13.
Considerable progress has been made in recent years in our understanding of the structural basis of glycosyl transfer. Yet the nature and relevance of the conformational changes associated with substrate recognition and catalysis remain poorly understood. We have focused on the glucosyl-3-phosphoglycerate synthase (GpgS), a "retaining" enzyme, that initiates the biosynthetic pathway of methylglucose lipopolysaccharides in mycobacteria. Evidence is provided that GpgS displays an unusually broad metal ion specificity for a GT-A enzyme, with Mg(2+), Mn(2+), Ca(2+), Co(2+), and Fe(2+) assisting catalysis. In the crystal structure of the apo-form of GpgS, we have observed that a flexible loop adopts a double conformation L(A) and L(I) in the active site of both monomers of the protein dimer. Notably, the L(A) loop geometry corresponds to an active conformation and is conserved in two other relevant states of the enzyme, namely the GpgS·metal·nucleotide sugar donor and the GpgS·metal·nucleotide·acceptor-bound complexes, indicating that GpgS is intrinsically in a catalytically active conformation. The crystal structure of GpgS in the presence of Mn(2+)·UDP·phosphoglyceric acid revealed an alternate conformation for the nucleotide sugar β-phosphate, which likely occurs upon sugar transfer. Structural, biochemical, and biophysical data point to a crucial role of the β-phosphate in donor and acceptor substrate binding and catalysis. Altogether, our experimental data suggest a model wherein the catalytic site is essentially preformed, with a few conformational changes of lateral chain residues as the protein proceeds along the catalytic cycle. This model of action may be applicable to a broad range of GT-A glycosyltransferases.  相似文献   

14.
Reddick JJ  Nicewonger R  Begley TP 《Biochemistry》2001,40(34):10095-10102
Thiamin phosphate synthase catalyzes the coupling of 4-methyl-5-(beta-hydroxyethyl)thiazole phosphate (Thz-P) and 4-amino-5-(hydroxymethyl)-2-methylpyrimidine pyrophosphate (HMP-PP) to give thiamin phosphate. In this paper, we demonstrate that 4-amino-5-(hydroxymethyl)-2-(trifluoromethyl)pyrimidine pyrophosphate (CF(3)-HMP-PP) is a very poor substrate [k(cat)(CH(3)) > 7800k(cat)(CF(3))] and that 4-amino-5-(hydroxymethyl)-2-methoxypyrimidine pyrophosphate (CH(3)O-HMP-PP) is a good substrate [k(cat)(OCH(3)) > 2.8k(cat)(CH(3))] for the enzyme. We also demonstrate that the enzyme catalyzes positional isotope exchange. These observations are consistent with a dissociative mechanism (S(N)1 like) for thiamin phosphate synthase in which the pyrimidine pyrophosphate dissociates to give a reactive pyrimidine intermediate which is then trapped by the thiazole moiety.  相似文献   

15.
Threonine synthase (TS) is a PLP-dependent enzyme that catalyzes the last reaction in the synthesis of threonine from aspartate. In plants, the methionine pathway shares the same substrate, O-phospho-L-homoserine (OPH), and TS is activated by S-adenosyl-methionine (SAM), a downstream product of methionine synthesis. This positive allosteric effect triggered by the product of another pathway is specific to plants. The crystal structure of Arabidopsis thaliana apo threonine synthase was solved at 2.25 A resolution from triclinic crystals using MAD data from the selenomethionated protein. The structure reveals a four-domain dimer with a two-stranded beta-sheet arm protruding from one monomer onto the other. This domain swap could form a lever through which the allosteric effect is transmitted. The N-terminal domain (domain 1) has a unique fold and is partially disordered, whereas the structural core (domains 2 and 3) shares the functional domain of PLP enzymes of the same family. It also has similarities with SAM-dependent methyltransferases. Structure comparisons allowed us to propose potential sites for pyridoxal-phosphate and SAM binding on TS; they are close to regions that are disordered in the absence of these molecules.  相似文献   

16.
Porphobilinogen synthase (PBG synthase) gene from Pyrobaculum calidifontis was cloned and expressed in E. coli. The recombinant enzyme was purified as an octamer and was found by mass spectrometry to have a subunit Mr of 37676.59 (calculated, 37676.3). The enzyme showed high thermal stability and retained almost all of its activity after incubation at 70 °C for 16 h in the presence of β-mercaptoethanol (β-ME) and zinc chloride. However, in the absence of the latter the enzyme was inactivated after 16 h although it regained full activity in the presence of β-ME and zinc chloride. The protein contained 4 mol of tightly bound zinc per octamer. Further, 4 mol of low affinity zinc could be incorporated following incubation with exogenous zinc salts. The enzyme was inactivated by incubation with levulinic acid followed by treatment with sodium borohydride. Tryptic digest of the modified enzyme and mass spectrometric analysis showed that Lys257 was the site of modification, which has previously been shown to be the site for the binding of 5-aminolevulinic acid giving rise to the propionate-half of porphobilinogen. P. calidifontis PBG synthase was inactivated by 5-chlorolevulinic acid and the residue modified was shown to be the central cysteine (Cys127) of the zinc-binding cysteine-triad, comprising Cys125, 127, 135. The present results in conjunction with earlier findings on zinc containing PBG synthases, are discussed which advocate that the catalytic role of zinc in the activation of the 5-aminolevulinic acid molecule forming the acetate-half of PBG is possible.  相似文献   

17.
Biosynthesis of the molybdenum cofactor, a chelate of molybdenum or tungsten with a novel pterin, occurs in virtually all organisms including humans. In the cofactor, the metal is complexed to the unique cis-dithiolene moiety located on the pyran ring of molybdopterin. Escherichia coli molybdopterin synthase, the protein responsible for adding the dithiolene to a desulfo precursor termed precursor Z, is a dimer of dimers containing the MoaD and MoaE proteins. The sulfur used for dithiolene formation is carried in the form of a thiocarboxylate at the MoaD C terminus. Using an intein expression system for preparation of thiocarboxylated MoaD, the mechanism of the molybdopterin synthase reaction was examined. A stoichiometry of 2 molecules of thiocarboxylated MoaD per conversion of a single precursor Z molecule to molybdopterin was observed. Examination of several synthase variants bearing mutations in the MoaE subunit identified Lys-119 as a residue essential for activity and Arg-39 and Lys-126 as other residues critical for the reaction. An intermediate of the synthase reaction was identified and characterized. This intermediate remains tightly associated with the protein and is the predominant product formed by synthase containing the K126A variant of MoaE. Mass spectral data obtained from protein-bound intermediate are consistent with a monosulfurated structure that contains a terminal phosphate group similar to that present in molybdopterin.  相似文献   

18.
Luk LY  Bunn S  Liscombe DK  Facchini PJ  Tanner ME 《Biochemistry》2007,46(35):10153-10161
Norcoclaurine synthase catalyzes an asymmetric Pictet-Spengler condensation of dopamine and 4-hydroxyphenylacetaldehyde to give (S)-norcoclaurine. This is the first committed step in the biosynthesis of the benzylisoquinoline alkaloids that include morphine and codeine. In this work, the gene encoding for the Thalictrum flavum norcoclaurine synthase is highly overexpressed in Escherichia coli and the resulting His-tagged recombinant enzyme is purified for the first time. A continuous assay based on circular dichroism spectroscopy is developed and used to monitor the kinetics of the enzymatic reaction. Dopamine analogues bearing a methoxy or hydrogen substituent in place of the C-1 phenolic group were readily accepted by the enzyme whereas those bearing the same substituents at C-2 were not. This supports a mechanism involving a two-step cyclization of the putative iminium ion intermediate that does not proceed via a spirocyclic intermediate. The reaction of [3,5,6-2H]dopamine was found to be slowed by a kinetic isotope effect of 1.7 +/- 0.1 on the value of kcat/KM. This is interpreted as showing that the deprotonation step causing rearomatization is partially rate determining in the overall reaction.  相似文献   

19.
Haem oxygenase-1 (HO-1) and hydrogen peroxide (H2O2) are two key downstream signals of auxin, a well-known phytohormone regulating plant growth and development. However, the inter-relationship between HO-1 and H2O2 in auxin-mediated lateral root (LR) formation is poorly understood. Herein, we revealed that exogenous auxin, 1-naphthylacetic acid (NAA), could simultaneously stimulate Arabidopsis HO-1 (HY1) gene expression and H2O2 generation. Subsequently, LR formation was induced. NAA-induced HY1 expression is dependent on H2O2. This conclusion was supported by analyzing the removal of H2O2 with ascorbic acid (AsA) and dimethylthiourea (DMTU), both of which could block NAA-induced HY1 expression and LR formation. H2O2-induced LR formation was inhibited by an HO-1 inhibitor zinc protoporphyrin IX (Znpp) in wild-type and severely impaired in HY1 mutant hy1-100. Simultaneously, HY1 is required for NAA-mediated H2O2 generation, since Znpp inhibition of HY1 blocked the NAA-induced H2O2 production and LR formation. Genetic data demonstrated that hy1-100 was significantly impaired in H2O2 production and LR formation in response to NAA, compared with wild-type plants. The addition of carbon monoxide-releasing molecule-2 (CORM-2), the carbon monoxide (CO) donor, induced H2O2 production and LR formation, both of which were decreased by DMTU. Moreover, H2O2 and CORM-2 mimicked the NAA responses in the regulation of cell cycle genes expression, all of which were blocked by Znpp or DMTU, respectively, confirming that both H2O2 and CO were important in the early LR initiation. In summary, our pharmacological, genetic and molecular evidence demonstrated a close inter-relationship between HY1 and H2O2 existing in auxin-induced LR formation in Arabidopsis.  相似文献   

20.
Integration of light signaling and diverse abiotic stress responses contribute to plant survival in a changing environment. Some reports have indicated that light signals contribute a plant's ability to deal with heat, cold, and stress. However, the molecular link between light signaling and the salt-response pathways remains unclear. We demonstrate here that increasing light intensity elevates the salt stress tolerance of plants. Depletion of HY5, a key component of light signaling, causes Arabidopsis thaliana to become salinity sensitive. Interestingly, the small heat shock protein (sHsp) family genes are upregulated in hy5-215 mutant plants, and HsfA2 is commonly involved in the regulation of these sHsps. We found that HY5 directly binds to the G-box motifs in the HsfA2 promoter, with the cooperation of HISTONE DEACETYLASE 9 (HDA9), to repress its expression. Furthermore, the accumulation of HDA9 and the interaction between HY5 and HDA9 are significantly enhanced by salt stress. On the contrary, high temperature triggers HY5 and HDA9 degradation, which leads to dissociation of HY5-HDA9 from the HsfA2 promoter, thereby reducing salt tolerance. Under salt and heat stress conditions, fine tuning of protein accumulation and an interaction between HY5 and HDA9 regulate HsfA2 expression. This implies that HY5, HDA9, and HsfA2 play important roles in the integration of light signaling with salt stress and heat shock response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号