首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that pretreatment with endotoxin significantly reduced acute pulmonary O2 toxicity in lambs (J. Appl. Physiol. 65: 1579-1585, 1988). One of endotoxin's many effects is to inhibit cytochrome P-450 mono-oxygenation reactions, which are believed to produce toxic O2 species. Therefore, one possible explanation for endotoxin's beneficial effect is that it inhibited P-450-mediated O2 radical production during hyperoxia. To test this hypothesis, we administered a single dose of cimetidine, a noncompetitive inhibitor of P-450 activity, to nine lambs before continuous exposure to greater than 95% O2. Compared with six control O2-exposed lambs, the cimetidine-treated O2-exposed lambs maintained normal gas exchange for a longer period of time (P less than 0.01), accumulated lung water at a slower rate (P less than 0.01), and had normal microvascular permeability after 72 h of O2 exposure. Postmortem levels of antioxidant enzymes in blood-free lung homogenate were not increased in cimetidine-treated lambs. However, the levels of oxidized glutathione were significantly lower in cimetidine-treated lambs, and the ratio of reduced to oxidized glutathione concentrations (GSH/GSSG ratio) was sevenfold higher than the ratio measured in control O2-exposed lambs (P less than 0.001). In four lambs, pretreatment with ranitidine (a drug chemically related to cimetidine but without P-450 inhibitory activity) had no effect either on the time course of O2 injury or on postmortem antioxidants. Microsomes were isolated from blood-free lung of all study animals and P-450 activity of the form 2 isozyme was measured.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Supraphysiological O2 concentrations, mechanical ventilation, and inflammation significantly contribute to the development of bronchopulmonary dysplasia (BPD).Exposure of newborn mice to hyperoxia causes inflammation and impaired alveolarization similar to that seen in infants with BPD.Previously, we demonstrated that pulmonary cyclooxygenase-2 (COX-2) protein expression is increased in hyperoxia-exposed newborn mice.The present studies were designed to define the role of COX-2 in newborn hyperoxic lung injury.We tested the hypothesis that attenuation of COX-2 activity would reduce hyperoxia-induced inflammation and improve alveolarization.Newborn C3H/HeN micewere injected daily with vehicle, aspirin (nonselective COX-2 inhibitor), or celecoxib (selective COX-2 inhibitor) for the first 7 days of life.Additional studies utilized wild-type (C57Bl/6, COX-2+/+), heterozygous (COX-2+/-), and homozygous (COX-2-/-) transgenic mice.Micewere exposed to room air (21% O2) or hyperoxia (85% O2) for 14 days.Aspirin-injected and COX-2-/- pups had reduced levels of monocyte chemoattractant protein (MCP-1) in bronchoalveolar lavage fluid (BAL).Both aspirin and celecoxib treatment reduced macrophage numbers in the alveolar walls and air spaces.Aspirin and celecoxib treatment attenuated hyperoxia-induced COX activity, including altered levels of prostaglandin (PG)D2 metabolites.Decreased COX activity, however, did not prevent hyperoxia-induced lung developmental deficits.Our data suggest thatincreased COX-2 activity may contribute to proinflammatory responses, including macrophage chemotaxis, during exposure to hyperoxia.Modulation of COX-2 activity may be a useful therapeutic target to limit hyperoxia-induced inflammation in preterm infants at risk of developing BPD.  相似文献   

3.
Matrix metalloproteinase-9 (MMP-9) is released by neutrophils at the sites of acute inflammation. This enzyme modulates matrix turnover and inflammatory response, and its activity has been found to be increased after ventilator-induced lung injury. To clarify the role of MMP-9, mice lacking this enzyme and their wild-type counterparts were ventilated for 2 h with high- or low-peak inspiratory pressures (25 and 15 cmH2O, respectively). Lung injury was evaluated by gas exchange, respiratory mechanics, wet-to-dry weight ratio, and histological analysis. The activity of MMP-9 and levels of IL-1beta, IL-4, and macrophage inflammatory protein (MIP-2) were measured in lung tissue and bronchoalveolar lavage fluid (BALF). Cell count and myeloperoxidase activity were measured in BALF. There were no differences between wild-type and Mmp9-/- animals after low-pressure ventilation. After high-pressure ventilation, wild-type mice exhibited an increase in MMP-9 in tissue and BALF. Mice lacking MMP-9 developed more severe lung injury than wild-type mice, in terms of impaired oxygenation and lung mechanics, and higher damage in the histological study. These effects correlated with an increase in both cell count and myeloperoxidase activity in the BALF, suggesting an increased neutrophilic influx in response to ventilation. An increase in IL-1beta and IL-4 in the BALF only in knockout mice could be responsible for the differences. There were no differences between genotypes in MMP-2, MMP-8, or tissue inhibitors of metalloproteinases. These results show that MMP-9 protects against ventilator-induced lung injury by decreasing alveolar neutrophilic infiltration, probably by modulation of the cytokine response in the air spaces.  相似文献   

4.
Rat exposure to 60% oxygen (O(2)) for 7 days (hyper-60) or to >95% O(2) for 2 days followed by 24 h in room air (hyper-95R) confers susceptibility or tolerance, respectively, of the otherwise lethal effects of subsequent exposure to 100% O(2). The objective of this study was to determine if lung retention of the radiopharmaceutical agent technetium-labeled-hexamethylpropyleneamine oxime (HMPAO) is differentially altered in hyper-60 and hyper-95R rats. Tissue retention of HMPAO is dependent on intracellular content of the antioxidant GSH and mitochondrial function. HMPAO was injected intravenously in anesthetized rats, and planar images were acquired. We investigated the role of GSH in the lung retention of HMPAO by pretreating rats with the GSH-depleting agent diethyl maleate (DEM) prior to imaging. We also measured GSH content and activities of mitochondrial complexes I and IV in lung homogenate. The lung retention of HMPAO increased by ~50% and ~250% in hyper-60 and hyper-95R rats, respectively, compared with retention in rats exposed to room air (normoxic). DEM decreased retention in normoxic (~26%) and hyper-95R (~56%) rats compared with retention in the absence of DEM. GSH content increased by 19% and 40% in hyper-60 and hyper-95R lung homogenate compared with normoxic lung homogenate. Complex I activity decreased by ~50% in hyper-60 and hyper-95R lung homogenate compared with activity in normoxic lung homogenate. However, complex IV activity was increased by 32% in hyper-95R lung homogenate only. Furthermore, we identified correlations between the GSH content in lung homogenate and the DEM-sensitive fraction of HMPAO retention and between the complex IV/complex I activity ratio and the DEM-insensitive fraction of HMPAO retention. These results suggest that an increase in the GSH-dependent component of the lung retention of HMPAO may be a marker of tolerance to sustained exposure to hyperoxia.  相似文献   

5.
Terbutaline stimulates alveolar fluid resorption in hyperoxic lung injury   总被引:9,自引:0,他引:9  
Lasnier, Joseph M., O. Douglas Wangensteen, Laura S. Schmitz, Cynthia R. Gross, and David H. Ingbar. Terbutalinestimulates alveolar fluid resorption in hyperoxic lung injury.J. Appl. Physiol. 81(4):1723-1729, 1996.Alveolar fluid resorption occurs by active epithelial sodium transport and is accelerated by terbutaline inhealthy lungs. We investigated the effect of terbutaline on the rate ofalveolar fluid resorption from rat lungs injured by hyperoxia. Ratsexposed to >95% O2 for 60 h,sufficient to increase wet-to-dry lung weight and cause alveolar edema,were compared with air-breathing control rats. After anesthesia, theanimals breathed 100% O2 for 10 min through a tracheostomy. Ringer solution was instilled into thealveoli, and the steady-state rate of volume resorbed at 6 cmH2O pressure was measured via apipette attached to the tracheostomy tubing. Ringer solution in someanimals contained terbutaline(103 M), ouabain(103 M), or both. Normoxicanimals resorbed 49 ± 6 µl · kg1 · min1;ouabain reduced this by 39%, whereas terbutaline increased the rate by75%. The effect of terbutaline was blocked by ouabain. Hyperoxicanimals absorbed 78 ± 9 µl · kg1 · min1;ouabain reduced this by 44%. Terbutaline increased the rate by a meanof 39 µl · kg1 · min1,similar to the absolute effect seen in the normoxic group, and this wasblocked by ouabain. Terbutaline accelerates fluid resorption from bothnormal and injured rat lungs via its effects on active sodiumtransport.

  相似文献   

6.
Because carbon monoxide (CO) has been proposed to have anti-inflammatory properties, we sought protective effects of CO in pulmonary O(2) toxicity, which leads rapidly to lung inflammation and respiratory failure. Based on published studies, we hypothesized that CO protects the lung against O(2) by selectively increasing expression of antioxidant enzymes, thereby decreasing oxidative injury and inflammation. Rats exposed to O(2) with or without CO [50-500 parts/million (ppm)] for 60 h were compared for lung wet-to-dry weight ratio (W/D), pleural fluid volume, myeloperoxidase (MPO) activity, histology, expression of heme oxygenase-1 (HO-1), and manganese superoxide dismutase (Mn SOD) proteins. The brains were evaluated for histological evidence of damage from CO. In O(2)-exposed animals, lung W/D increased from 4.8 in normal rats to 6.3; however, only CO at 200 and 500 ppm decreased W/D significantly (to 5.9) during O(2) exposure. Large volumes of pleural fluid accumulated in all rats, with no significant CO treatment effect. Lung MPO values increased after O(2) and were not attenuated by CO treatment. CO did not enhance lung expression of oxidant-responsive proteins Mn SOD and HO-1. Animals receiving O(2) and CO at 200 or 500 ppm showed significant apoptotic cell death in the cortex and hippocampus by immunochemical staining. Thus significant protection by CO against O(2)-induced lung injury could not be confirmed in rats, even at CO concentrations associated with apoptosis in the brain.  相似文献   

7.
Parathyroid hormone-related protein (PTHrP) is a growth inhibitor for alveolar type II cells. Type II cell proliferation after lung injury from 85% oxygen is regulated, in part, by a fall in lung PTHrP. In this study, we investigated lung PTHrP after injury induced by >95% oxygen in rats and rabbits. In adult rats, lung PTHrP rose 10-fold over controls to 6,356 +/- 710 pg/ml (mean +/- SE) at 48 h of hyperoxia. Levels fell to 299 +/- 78 pg/ml, and staining for PTHrP mRNA was greatly reduced at 60 h (P < 0.05), the point of most severe injury and greatest pneumocyte proliferation. In adult rabbits, lung PTHrP peaked at 3,289 +/- 230 pg/ml after 64 h of hyperoxia with 24 h of normoxic recovery and then dropped to 1,629 +/- 153 pg/ml at 48 h of recovery (P < 0.05). Type II cell proliferation peaked shortly after the fall in PTHrP. In newborn rabbits, lavage PTHrP increased by 50% during the first 8 days of hyperoxia, whereas type II cell growth decreased. PTHrP declined at the LD(50), concurrent with increased type II cell division. In summary, lung PTHrP initially rises after injury with >95% hyperoxia and then falls near the peak of injury. Changes in PTHrP are temporally related to type II cell proliferation and may regulate repair of lung injury.  相似文献   

8.

Background

Chronic neutrophilic inflammation is a poorly understood feature in a variety of diseases with notable worldwide morbidity and mortality. We have recently characterized N-acetyl Pro-Gly-Pro (Ac-PGP) as an important neutrophil (PMN) chemoattractant in chronic inflammation generated from the breakdown of collagen by the actions of MMP-9. MMP-9 is present in the granules of PMNs and is differentially released during inflammation but whether Ac-PGP contributes to this ongoing proteolytic activity in chronic neutrophilic inflammation is currently unknown.

Methodology/Principal Findings

Utilizing isolated primary blood PMNs from human donors, we found that Ac-PGP induces significant release of MMP-9 and concurrently activates the ERK1/2 MAPK pathway. This MMP-9 release is attenuated by an inhibitor of ERK1/2 MAPK and upstream blockade of CXCR1 and CXCR2 receptors with repertaxin leads to decreased MMP-9 release and ERK 1/2 MAPK activation. Supernatants obtained from PMNs stimulated by Ac-PGP generate more Ac-PGP when incubated with intact collagen ex vivo; this effect is inhibited by an ERK1/2 pathway inhibitor. Finally, clinical samples from individuals with CF demonstrate a notable correlation between Ac-PGP (as measured by liquid chromatography-tandem mass spectrometry) and MMP-9 levels even when accounting for total PMN burden.

Conclusions/Significance

These data indicate that ECM-derived Ac-PGP could result in a feed-forward cycle by releasing MMP-9 from activated PMNs through the ligation of CXCR1 and CXCR2 and subsequent activation of the ERK1/2 MAPK, highlighting for the first time a matrix-derived chemokine (matrikine) augmenting its generation through a discrete receptor/intracellular signaling pathway. These findings have notable implications to the development unrelenting chronic PMN inflammation in human disease.  相似文献   

9.
Neutrophils are considered to play a central role in ventilator-induced lung injury (VILI). However, the pulmonary consequences of neutrophil accumulation have not been fully elucidated. Matrix metalloproteinase-9 (MMP-9) had been postulated to participate in neutrophil transmigration. The purpose of this study was to investigate the role of MMP-9 in the neutrophilic inflammation of VILI. Male Sprague-Dawley rats were divided into three groups: 1) low tidal volume (LVT), 7 ml/kg of tidal volume (VT); 2) high tidal volume (HVT), 30 ml/kg of VT; and 3) HVT with MMP inhibitor (HVT+MMPI). As a MMPI, CMT-3 was administered daily from 3 days before mechanical ventilation. Degree of VILI was assessed by wet-to-dry weight ratio and acute lung injury (ALI) scores. Neutrophilic inflammation was determined from the neutrophil count in the lung tissue and myeloperoxidase (MPO) activity in the bronchoalveolar lavage fluid (BALF). MMP-9 expression and activity were examined by immunohistochemical staining and gelatinase zymography, respectively. The wet-to-dry weight ratio, ALI score, neutrophil infiltration, and MPO activity were increased significantly in the HVT group. However, in the HVT+MMPI group, pretreatment with MMPI decreased significantly the degree of VILI, as well as neutrophil infiltration and MPO activity. These changes correlated significantly with MMP-9 immunoreactivity and MMP-9 activity. Most outcomes were significantly worse in the HVT+MMPI group compared with the LVT group. In conclusion, VILI mediated by neutrophilic inflammation is closely related to MMP-9 expression and activity. The inhibition of MMP-9 protects against the development of VILI through the downregulation of neutrophil-mediated inflammation.  相似文献   

10.
11.
Hyperoxia and infused granulocytes act synergistically in producing a nonhydrostatic high-permeability lung edema in the isolated perfused rabbit lung within 4 h, which is substantially greater than that seen with hyperoxia alone. We hypothesized that the interaction between hyperoxia and granulocytes was principally due to a direct effect of hyperoxia on the lung itself. Isolated perfused rabbit lungs that were preexposed to 2 h of hyperoxia (95% O2-5% CO2) prior to the infusion of unstimulated granulocytes (under normoxic conditions) developed significant nonhydrostatic lung edema (P = 0.008) within 2 h when compared with lungs that were preexposed to normoxia (15% O2-5% CO2) prior to granulocyte perfusion. The edema in the hyperoxic-preexposed lungs was accompanied by significant increases in bronchoalveolar lavage (BAL) protein, BAL granulocytes, BAL thromboxane and prostacyclin levels, perfusate chemotactic activity, and lung lipid peroxidation. These findings suggest that the synergistic interaction between hyperoxia and granulocytes in producing acute lung injury involves a primary effect of hyperoxia on the lung itself.  相似文献   

12.
Type II pneumocyte changes during hyperoxic lung injury and recovery   总被引:2,自引:0,他引:2  
Adult rabbits exposed to 100% O2 for 64 h and then returned to room air for up to 200 h, develop a lung injury characterized by decreased levels of alveolar surfactant followed by a rebound recovery. In the present study we isolated alveolar type II cells from rabbits at various times during hyperoxic exposure and recovery and measured rates of phosphatidylcholine (PC) synthesis, cellular lipid content, and the specific activity of glycerol 3-phosphate (G-3-P) acyltransferase, an enzyme that catalyzes one of the early reactions in phosphoglyceride biosynthesis. These biochemical parameters were compared with measurements of cell size and cell cycle phase by laser flow cytometry. Results showed that alterations in alveolar phospholipid levels in vivo correlated consistently with cellular lipid metabolic changes measured in isolated type II pneumocytes. In particular, alveolar pneumocytes isolated from lungs of rabbits exposed to 100% O2 for 64 h exhibited a 60% decrease in PC synthesis, cell lipid content, and G-3-P acyltransferase activity. All variables then followed a pattern of recovery to normal and ultimately supranormal levels beginning at approximately 3 days postexposure, at which point there was also a measured increase in the number of type II cells in S phase. These findings suggest that O2-induced changes in type II cell surfactant biosynthesis may account, at least in part, for observed changes in lung phospholipid levels in vivo.  相似文献   

13.
Neonatal exposure to hyperoxia alters lung development in mice. We tested if retinoic acid (RA) treatment is capable to affect lung development after hyperoxic injury and to maintain structural integrity of lung. The gene of vascular endothelial growth factor A (VEGF-A) is one of the RA-responsive genes. Newborn BALB/c mice were exposed to room air, 40 % or 80 % hyperoxia for 7 days. One half of animals in each group received 500 mg/kg retinoic acid from day 3 to day 7 of the experiment. At the end of experiment we assessed body weight (BW), lung wet weight (LW), the wet-to-dry lung weight ratio (W/D) and the expression of mRNA for VEGF-A and G3PDH genes. On day 7 the hyperoxia-exposed sham-treated mice (group 80) weighed 20 % less than the room air-exposed group, whereas the 80 % hyperoxic group treated with RA weighed only 13 % less than the normoxic group. W/D values in 80 and 80A groups did not differ, although they both differed from the control group and from 40 groups. There was a significant difference between 40 and 40A groups, but the control group was different from 40 group but not from 40A groups. The 80 and 80A groups had mRNA VEGF-A expression lowered to 64 % and 41 % of the control group. RA treatment of normoxic and mild hyperoxic groups increased mRNA VEGF-A expression by about 50 %. We conclude that the retinoic acid treatment of newborn BALB/c mice exposed for 7 days to 80 % hyperoxia reduced the growth retardation in the 80 % hyperoxic group, reduced the W/D ratio in the 40 % but not in the 80 % hyperoxic group. Higher VEGF-A mRNA expression in the 80 % hyperoxic group treated with RA was not significant compared to the 80 % hyperoxic group.  相似文献   

14.
We studied the changes in subcellular ultrastructure associated with the hypertrophy of capillary endothelial cells during repair of hyperoxic (100% O2) lung injury in rats. We used stereologic-morphometric measurements at different magnifications to determine the absolute volume of each subcellular compartment per average capillary endothelial cell. The increases in this value during the first 3 days of postexposure repair were 118% for cytoplasm, 786% for polyribosomes, 310% for rough endoplasmic reticulum, and 79% for mitochondria; the volume of pinocytotic vesicles did not change. By day 7 of repair, only the polyribosomes and rough endoplasmic reticulum were still increased; by day 14 all values were normal. We conclude that the capillary endothelial cell hypertrophy that develops during repair of hyperoxic lung injury is associated with large and heterogeneous increases in subcellular organelles and is not merely due to increases in the cytosol or to cellular edema. These increases seem to be an integral part of the repair process and may be important in the development of tolerance to subsequent oxygen exposure.  相似文献   

15.
BackgroundHyperoxic exposures are often found in clinical settings of respiratory insufficient patients, although oxygen therapy (>50% O2) can result in the development of acute hyperoxic lung injury within a few days. Upon hyperoxic exposure, the inducible nitric oxide synthase (iNOS) is activated by a variety of proinflammatory cytokines both in vitro and in vivo. In the present study, we used a murine hyperoxic model to evaluate the effects of iNOS deficiency on the inflammatory response.MethodsWild-type and iNOS-deficient mice were exposed to normoxia, 60% O2 or >95% O2 for 72 h.ResultsExposure to >95% O2 resulted in an increased iNOS mRNA and protein expression in the lungs from wild-type mice. No significant effects of iNOS deficiency on cell differential in bronchoalveolar lavage fluid were observed. However, hyperoxia induced a significant increase in total cell count, protein concentration, LDH activity, lipid peroxidation, and TNF-α concentration in the bronchoalveolar lavage fluid compared to iNOS knockout mice. Moreover, binding activity of NF-κB and AP-1 appeared to be higher in wild-type than in iNOS-deficient mice.ConclusionTaken together, our results provide evidence to suggest that iNOS plays a proinflammatory role in acute hyperoxic lung injury.  相似文献   

16.
17.
In a retinal ischemic ex vivo model, we have reported protective effects of somatostatin (SRIF) receptor 2 (sst(2) ). As an ischemic condition not only causes cell death but also induces a vascular response, we asked whether vascular endothelial growth factor (VEGF) is altered in this model and whether its expression, release or localization are affected by sst(2) activation. Ex vivo retinas of wild-type (WT) and sst(1) KO mice (which over-express sst(2) ) were incubated in ischemic conditions with SRIF, octreotide (OCT) or a VEGF trap. Ischemia in WT retinas caused increase of VEGF release and decrease of VEGF mRNA. Both effects were counteracted by SRIF or OCT. VEGF immunoreactivity was in retinal neurons and scarcely in vessels. Ischemia caused a significant shift of VEGF immunoreactivity from neurons to vessels. The increase of vascular VEGF was reduced in sst(1) KO retinas and in WT retinas treated with SRIF or OCT. VEGF trap also limited this increase, demonstrating that vascular VEGF was of extracellular origin. Together, the data show a VEGF response to ischemia, in which VEGF released by damaged neurons reaches the retinal capillaries. The activation of sst(2) protects neurons from ischemic damage, thereby limiting VEGF release and the VEGF response.  相似文献   

18.
Substrate-like difluoroketones have been prepared as potential inhibitors of MMP-13. Weak inhibition was seen with the key target 2. This and the more potent activity of intermediate 7b illustrates that hydrated ketones can be used to inhibit MMP-13 and perhaps other members of this class of enzymes.  相似文献   

19.
Acute lung injury is a side effect of therapy with a high concentration of inspired oxygen in patients. The molecular mechanism underlining this effect is poorly understood. In this study, we report that overexpression of Stat3C, a constitutive active form of STAT3, in respiratory epithelial cells of a doxycycline-controlled double-transgenic mouse system protects lung from inflammation and injury caused by hyperoxia. In this mouse line, >50% of transgenic mice survived exposure to 95% oxygen at day 7, compared with 0% survival of wild-type mice. Overexpression of STAT3C delays acute capillary leakage and neutrophil infiltration into the alveolar region. This protection is mediated at least partially through inhibition of hyperoxia-induced synthesis and release of matrix metalloproteinase (MMP)-9 and MMP-12 by neutrophils and alveolar resident cells. In some MMP-9(-/-) mice, prolonged survival was observed under hyperoxic condition. The finding supports a concept that activation of the Stat3 pathway plays a role to prevent hyperoxia-induced inflammation and injury in the lung.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号