共查询到20条相似文献,搜索用时 0 毫秒
1.
Maiwald C Grau S Krauss I Mauch M Axmann D Horstmann T 《Journal of applied biomechanics》2008,24(1):14-23
The aim of this study was to provide detailed information on rationales, calculations, and results of common methods used to quantify reproducibility in plantar pressure variables. Recreational runners (N=95) performed multiple barefoot running trials in a laboratory setup, and pressure variables were analyzed in nine distinct subareas of the foot. Reproducibility was assessed by calculating intraclass correlation coefficients (ICC) and the root mean square error (RMSE). Intraclass correlation coefficients ranged from 0.58 to 0.99, depending on the respective variable and type of ICC. Root mean square errors ranged between 2.3 and 3.1% for relative force-time integrals, between 0.07 and 0.23 for maximum force (Fmax), and between 107 and 278 kPa for maximum pressure (Pmax), depending on the subarea of the foot. Force-time integral variables demonstrated the best within-subject reproducibility. Rear-foot data suffered from slightly increased measurement error and reduced reproducibility compared with the forefoot. 相似文献
2.
Here we propose a model of energetic costs and the muscle-tendon unit function on running mammals. The main goal is to set a simple theoretical framework which gives an understanding of the biomechanical principles behind the size, speed and anatomical variations of the energetic costs of running mammals. The model is a point-like mass withstood by a two-segment leg with an extensor muscle serially attached to a tendon. We considered withstanding body weight during the stance phase as the main role of the muscle-tendon unit during fast locomotion. The ground reaction force dependence on speed and the time of stance phase as well as other biomechanical characteristics were taken from previous empirical studies of running. At the same time, the morphological variations with body mass were taken from empirically well-established allometric equations for mammals. The metabolic cost was estimated from an empirical equation relating metabolic power with muscular force and speed in shortening and stretching. Our model predicts the pattern of mass specific metabolic rate variations with both speed and body mass. It also gives an explanation of the experimentally reported linear inverse relationship between the rate of energy used for running and the time of application of force by the foot to the ground during each stride. It also suggests an explanation of the unusual energy saving adaptations of large macropodids. It provides some predictions on the relationship, between energy costs and muscle-tendon unit characteristics, testable on further experiments. 相似文献
3.
Greg Liefeldt Timothy D. Noakes Steven C. Dennis 《European journal of applied physiology and occupational physiology》1992,64(6):493-496
Oxygen consumption (VO2), ventilation (VI), respiratory exchange ratio (R), stride frequency and blood lactate concentrations were measured continuously in nine trained athletes during two continuous incremental treadmill runs to exhaustion on gradients of either 0 degree or -3 degrees. Compared to the run at 0 degree gradient, the athletes reached significantly higher maximal treadmill velocities but significantly lower VO2, VI, R and peak blood lactate concentrations (P less than 0.001) during downhill running. These lower VO2 and blood lactate concentrations at exhaustion indicated that factors other than oxygen delivery limited maximal performance during the downhill run. In contrast, stride frequencies were similar at each treadmill velocity; the higher maximal speed during the downhill run was achieved with a significantly longer stride length (P less than 0.001); maximal stride frequency was the same between tests. Equivalent maximal stride frequencies suggested that factors determining the rate of lower limb stride recovery may have limited maximal running speed during downhill running and, possibly, also during horizontal running. 相似文献
4.
1. Locomotor performance can influence individual fitness through several ecological contexts, such as prey capture and predator escape. One means of determining which contexts act as significant selective forces on running speed is to quantify individual speed in each context. The underlying hypothesis is that animals will exhibit their highest speeds in contexts most crucial to fitness.
2. We measured running speeds in three ecological contexts (prey capture, fleeing predators and territory defence) in lab-reared offspring of the funnel-web spider Agelenopsis aperta collected from two arid grassland and two riparian populations. Arid populations experience little predation pressure, are prey limited, and are highly territorial; riparian populations experience high predation, have high prey availability, and are less territorial in nature.
3. The offspring of arid individuals exhibited their highest burst speeds in territory defence, and ran more slowly in response to predator threats. The offspring of riparian populations, however, ran fastest when responding to predatory threats and displayed lower velocities in prey capture and territory defence. Thus, our findings support the hypothesis that A. aperta are selected to exhibit their highest speeds in contexts most important to their fitness.
4. Contextual use of running speed can differ among conspecific populations experiencing differing selective forces on locomotion. 相似文献
2. We measured running speeds in three ecological contexts (prey capture, fleeing predators and territory defence) in lab-reared offspring of the funnel-web spider Agelenopsis aperta collected from two arid grassland and two riparian populations. Arid populations experience little predation pressure, are prey limited, and are highly territorial; riparian populations experience high predation, have high prey availability, and are less territorial in nature.
3. The offspring of arid individuals exhibited their highest burst speeds in territory defence, and ran more slowly in response to predator threats. The offspring of riparian populations, however, ran fastest when responding to predatory threats and displayed lower velocities in prey capture and territory defence. Thus, our findings support the hypothesis that A. aperta are selected to exhibit their highest speeds in contexts most important to their fitness.
4. Contextual use of running speed can differ among conspecific populations experiencing differing selective forces on locomotion. 相似文献
5.
Two main types of endurance runners have been identified: aerial runners (AER), who have a larger flight time, and terrestrial runners (TER), who have a longer ground contact time. The purpose of this study was to assess the neuromuscular characteristics of plantar flexors between AER and TER runners. Twenty-four well-trained runners participated in the experiment. They were classified either in a TER or AER group according to the Volodalen® scale. Plantar flexors’ maximal rate of force development (RFD) and maximal voluntary contraction force (MVC) were assessed. Percutaneous electrical stimulation was delivered to the posterior tibial nerve to evoke maximal M-waves and H-reflexes of the triceps surae muscles. These responses, as well as voluntary activation, muscle potentiation, and V-waves, were recorded by superimposing stimulations to MVCs. RFD was significantly higher in AER than in TER, while MVC remained unchanged. This was accompanied by higher myoelectrical activity recorded in the soleus muscle. While M-waves and other parameters remained unchanged, maximal H-reflex was significantly higher in AER than in TER, still in soleus only. The present study raised the possibility of different plantar flexors’ neuromuscular characteristics according to running profile. These differences seemed to be focused on the soleus rather than on the gastrocnemii. 相似文献
6.
Lauren Welte Luke A. Kelly Sarah E. Kessler Daniel E. Lieberman Susan E. D'Andrea Glen A. Lichtwark Michael J. Rainbow 《Proceedings. Biological sciences / The Royal Society》2021,288(1943)
The arch of the human foot is unique among hominins as it is compliant at ground contact but sufficiently stiff to enable push-off. These behaviours are partly facilitated by the ligamentous plantar fascia whose role is central to two mechanisms. The ideal windlass mechanism assumes that the plantar fascia has a nearly constant length to directly couple toe dorsiflexion with a change in arch shape. However, the plantar fascia also stretches and then shortens throughout gait as the arch-spring stores and releases elastic energy. We aimed to understand how the extensible plantar fascia could behave as an ideal windlass when it has been shown to strain throughout gait, potentially compromising the one-to-one coupling between toe arc length and arch length. We measured foot bone motion and plantar fascia elongation using high-speed X-ray during running. We discovered that toe plantarflexion delays plantar fascia stretching at foot strike, which probably modifies the distribution of the load through other arch tissues. Through a pure windlass effect in propulsion, a quasi-isometric plantar fascia''s shortening is delayed to later in stance. The plantar fascia then shortens concurrently to the windlass mechanism, likely enhancing arch recoil at push-off. 相似文献
7.
N. C. C. Sharp 《Journal of Zoology》1997,241(3):493-494
The speed of an adult cheetah was timed at 29ms-1 (mean of three trials over a 201.2 m course, with a running start). This is the highest running speed that has been recorded reliably for any animal. 相似文献
8.
Stephen P. Yanoviak Cheryl Silveri Alyssa Y. Stark John T. Van Stan II Delphis F. Levia Jr. 《Biotropica》2017,49(1):92-100
Cursorial central‐place foragers like ants are expected to minimize travel costs by choosing the least resistive pathways to food resources. Tropical arboreal and semi‐arboreal ants locomote over a variety of plant surfaces, and their choice of pathways is selective. We measured the roughness of tree trunk and liana stem surfaces using laser scanning technology, and explored its consequences for running speed in various ant taxa. The average amplitude of tree trunk surface roughness differed interspecifically, and ranged from 1.4–2.2 mm among three common tree species (Anacardium excelsum, Alseis blackiana, and Dipteryx panamensis). The roughness of liana stems also varied interspecifically (among Tontelea ovalifolia, Bauhinia sp. and Paullinia sp.) and was an order of magnitude lower than tree surface roughness (mean amplitude ranged 0.09–0.19 mm). Field observations of various ant species foraging on tree trunks and liana stems, and on dowels covered with sandpaper, showed that their running speed declined with increasing amplitude of roughness. The effect of roughness on running speed was strongest for mid‐sized ants (Azteca trigona and Dolichoderus bispinosus). The accumulation rate of ants at baits did not vary with tree surface roughness, but was significantly lower on moss‐covered versus moss‐free bark. Collectively, these results indicate that the quality of plant substrates can influence the foraging patterns of arboreal ants, but likely is more important for resource discovery than for dominance on bare tree surfaces. 相似文献
9.
David Lee Greene 《American journal of physical anthropology》1982,58(1):75-79
During the 1963–1964 field season, the University of Colorado's Nubian Expedition excavated a series of Meroitic, X-Group, and Christian cemeteries from Wadi Halfa Sudan. Recently a joint expedition sponsored by the Universities of Colorado and Kentucky excavated two additional Christian cemeteries from Kulubnarti, some 80 miles south of Wadi Halfa. Earlier analysis of discrete dental variations demonstrated that the Wadi Halfa populations did not differ significantly from one another. Application of the Smith-Grewal multivariate measure of biological divergence, as modified by Sjøvold, and Green and Suchey, corroborates the original conclusion of biological stability and continuity for the Wadi Halfa populations, as well as demonstrating that the Kulubnarti populations are part of that pattern. None of the populations are significantly different from one another. 相似文献
10.
Recent discussion of the selective pressures leading to the evolution of modern human postcranial morphology, seen as early as Homo erectus, has focused on the relative importance of walking versus running. Specifically, these conversations have centered on which gait may have been used by early Homo to acquire prey. An element of the debate is the widespread belief that quadrupeds are constrained to run at optimally efficient speeds within each gait, whereas humans are equally efficient at all running speeds. The belief in the lack of optimal running speeds in humans is based, however, on a number of early studies with experimental designs inadequate for the purpose of evaluating optimality. Here we measured the energetic cost of human running (n = 9) at six different speeds for five minutes at each speed, with careful replicates and controls. We then compared the fit of linear versus curvilinear models to the data within each subject. We found that individual humans do, in fact, have speeds at which running is significantly less costly than at other speeds (i.e., an optimal running speed). In addition, we demonstrate that the use of persistence hunting methods to gain access to prey at any running speed, even the optimum, would be extremely costly energetically, more so than a persistence hunt at optimal walking speed. We argue that neither extinct nor extant hominin populations are as flexible in the chosen speeds of persistence hunting pursuits as other researchers have suggested. Variations in the efficiency of human locomotion appear to be similar to those of terrestrial quadrupeds. 相似文献
11.
Veronique L Billat Etienne Mouisel Natacha Roblot Judith Melki 《Journal of applied physiology》2005,98(4):1258-1263
With the generation of mouse models of human cardiovascular or neuromuscular disorders, the development of noninvasive methods to evaluate the physiological responses to exercise presents an important challenge. The possibility for determining critical speed (CS) in the mouse model was examined according to strain (CD1, C57BL/6J, FVB/N) and sex. Sixty mice performed four exhaustive runs on a treadmill to determine their CS. Twenty-one performed an incremental test to determine the velocity at the lactate threshold. CS was significantly different between the strains (P < 0.0001) but not between sexes. Two measures of heritability showed that CS was partially heritable. CS was not significantly different from lactate threshold velocity. We conclude that CS, which reflects the aerobic capacity, can be determined in mice, as in humans and horses. Considering the intrastrain variability, CS could represent a valuable means for designing an optimal and individualized physical training in mice. 相似文献
12.
Postactivation potentiation effects after heavy resistance exercise on running speed 总被引:1,自引:0,他引:1
Chatzopoulos DE Michailidis CJ Giannakos AK Alexiou KC Patikas DA Antonopoulos CB Kotzamanidis CM 《Journal of strength and conditioning research / National Strength & Conditioning Association》2007,21(4):1278-1281
The purpose of this study was to investigate the postactivation potentiation effect after a heavy resistance stimulus (HRS) on running speed (RS). Fifteen amateur team game players (basketball, volleyball, handball, and soccer players), ages 18-23 years running the 30-m dash and the intermediate phase of 0-10 and 0-30 m sprints, were used to evaluate RS. Resistance training consisted of 10 single repetitions at 90% of 1 repetition maximum. The running tests were performed 3 times--(a) 3 minutes prior the HRS, (b) 3 minutes after the HRS, and (c) 5 minutes after the HRS--in separated training sessions. Results showed that RS was not affected 3 minutes after the resistance training, but it increased for both selected running phases (0-10 and 0-30 m) 5 minutes after the HRS (p < 0.05). These findings indicate that heavy resistance exercise improves 10- and 30-m sprint performance when performed 5 minutes after the exercise bout. 相似文献
13.
《Journal of biomechanics》2014,47(16):3799-3806
Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2±157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3±124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0±272.6 kPa) but smaller peak braking shear stress (184.8±181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. 相似文献
14.
Supersonic shear imaging (SSI) is an ultrasound imaging modality that can provide insight into tissue mechanics by measuring shear wave propagation speed, a property that depends on tissue elasticity. SSI has previously been used to characterize the increase in Achilles tendon shear wave speed that occurs with loading, an effect attributable to the strain-stiffening behavior of the tissue. However, little is known about how shear wave speed varies spatially, which is important, given the anatomical variation that occurs between the calcaneus insertion and the gastrocnemius musculotendon junction. The purpose of this study was to investigate spatial variations in shear wave speed along medial and lateral paths of the Achilles tendon for three different ankle postures: resting ankle angle (R, i.e. neutral), plantarflexed (P; R – 15°), and dorsiflexed (D; R+15°). We observed significant spatial and posture variations in tendon shear wave speed in ten healthy young adults. Shear wave speeds in the Achilles free tendon averaged 12±1.2 m/s in a resting position, but decreased to 7.2±1.8 m/s with passive plantarflexion. Distal tendon shear wave speeds often reached the maximum tracking limit (16.3 m/s) of the system when the ankle was in the passively dorsiflexed posture (+15° from R). At a fixed posture, shear wave speeds decreased significantly from the free tendon to the gastrocnemius musculotendon junction, with slightly higher speeds measured on the medial side than on the lateral side. Shear wave speeds were only weakly correlated with the thickness and depth of the tendon, suggesting that the distal-to-proximal variations may reflect greater compliance in the aponeurosis relative to the free tendon. The results highlight the importance of considering both limb posture and transducer positioning when using SSI for biomechanical and clinical assessments of the Achilles tendon. 相似文献
15.
Lopez RM Casa DJ Jensen KA DeMartini JK Pagnotta KD Ruiz RC Roti MW Stearns RL Armstrong LE Maresh CM 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(11):2944-2954
The purpose of this study was to determine the effects of dehydration at a controlled relative intensity on physiological responses and trail running speed. Using a randomized, controlled crossover design in a field setting, 14 male and female competitive, endurance runners aged 30 ± 10.4 years completed 2 (hydrated [HY] and dehydrated [DHY]) submaximal trail runs in a warm environment. For each trial, the subjects ran 3 laps (4 km per lap) on trails with 4-minute rests between laps. The DHY were fluid restricted 22 hours before the trial and during the run. The HY arrived euhydrated and were given water during rest breaks. The subjects ran at a moderate pace matched between trials by providing pacing feedback via heart rate (HR) throughout the second trial. Gastrointestinal temperature (T(GI)), HR, running time, and ratings of perceived exertion (RPE) were monitored. Percent body mass (BM) losses were significantly greater for DHY pretrial (-1.65 ± 1.34%) than for HY (-0.03 ± 1.28%; p < 0.001). Posttrial, DHY BM losses (-3.64 ± 1.33%) were higher than those for HY (-1.38 ± 1.43%; p < 0.001). A significant main effect of T(GI) (p = 0.009) was found with DHY having higher T(GI) postrun (DHY: 39.09 ± 0.45°C, HY: 38.71 ± 0.45°C; p = 0.030), 10 minutes post (DHY: 38.85 ± 0.48°C, HY: 38.46 ± 0.46°C; p = 0.009) and 30 minutes post (DHY: 38.18 ± 0.41°C, HY: 37.60 ± 0.25°C; p = 0.000). The DHY had slower run times after lap 2 (p = 0.019) and lap 3 (p = 0.025). The DHY subjects completed the 12-km run 99 seconds slower than the HY (p = 0.027) subjects did. The RPE in DHY was slightly higher than that in HY immediately postrun (p = 0.055). Controlling relative intensity in hypohydrated runners resulted in slower run times, greater perceived effort, and elevated T(GI), which is clinically meaningful for athletes using HR as a gauge for exercise effort and performance. 相似文献
16.
17.
A mechanical model for the determination of maximum speed in terrestrial tetrapods, designed for application to extinct species, is proposed. Only external bone measures and average body mass estimations are used as input data, and the hypothesis is made that leg bones are strong enough to endure the stress of running at maximum speed at a certain universal safety factor. The model is applied to a broad sample of living mammalian species to test its predictive power, and it is found to provide very good estimates of maximum running speed. 相似文献
18.
Here we study maximum running speed (MRS) limitations on a previously proposed model of energetic and muscle-tendon unit functions on running mammals. In the present work the MRS and some anatomical or physiological limitations are estimated for mammals with body mass between 1.5 and 300 kg. The MRS variations with body mass are discussed and compared with results of previous experimental and observational studies. The tendon strength seems to be the most relevant limitation, but leg extensor muscle mass and metabolic costs could be relevant also. The physiological maximum muscle speed seems to be less important in the body mass range studied here. 相似文献
19.
Hunter JR O'Brien BJ Mooney MG Berry J Young WB Down N 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(5):1318-1325
The aim of this study was to compare the effect of 2 repeated sprint training interventions on an intermittent peak running speed (IPRS) test designed for Australian Rules football. The test required participants to perform 10 × 10-m maximal efforts on an 80-m course every 25 seconds, for each of which the mean peak speed (kilometers per hour) was recorded to determine IPRS. The training interventions were performed twice weekly for 4 weeks immediately before regular football training. In the constant volume intervention (CVol), sprint repetition number remained at 10 (n = 9), and in the linear increase in volume (LIVol) intervention, repetition number increased linearly each week by 2 repetitions (n = 12). Intermittent peak running speed, 300-m shuttle test performance, and peak running speed were assessed before and upon completion of training. All measures were compared to a control group (CON; n = 8) in which players completed regular football training exclusively. Intermittent peak running speed performance in CVol and LIVol improved significantly (p < 0.01) by 5.2 and 3.8%, respectively, with no change in IPRS for CON. There were no differences in IPRS changes between CVol and LIVol. Additionally, peak running speed improved significantly (p < 0.01) by 5.1% for CVol, whereas 300-m shuttle performance improved significantly (p < 0.01) by 2.6% for LIVol only. Intermittent peak running speed, 300-m shuttle performance and peak running speed were improved after 4 weeks of training; however, progressively increasing sprint repetition number had no greater advantage on IPRS adaptation. Additionally, exclusive regular football training over a 4-week period is unlikely to improve IPRS, peak running speed, or 300-m shuttle performance. 相似文献
20.
Based on the limited ability of the human being to voluntarily control submaximal eccentric exertions, previous studies have indicated that isokinetic testing with a combined concentric–eccentric exercise protocol could effectively identify submaximal (feigned) effort in various muscle groups by showing an abnormally high eccentric to concentric ratio (ECR). The objective of this study was to determine the validity and accuracy of an ECR-based isokinetic test in identifying feigned ankle weakness. Thirty-eight normal subjects performed maximal and feigned efforts in an isokinetic concentric and eccentric ankle plantar- and dorsiflexion protocol with two different velocities, 30 and 120° s−1. The isokinetic parameters ECR and the derivatives DEC (difference between ECR at high speed of motion and ECR at low speed of motion) and SEC (sum of ECR at high speed of motion plus the ratio between eccentric peak torque at high speed and concentric peak torque at low speed) were calculated. The ECR, DEC and SEC scores were significantly greater in feigned conditions for ankle plantarflexion, but not for dorsiflexion. Using optimal cutoff scores based on 99% tolerance intervals, it was disclosed that the most efficient parameter was the SEC, identifying 92% of the feigned efforts with 99% confidence, indicating that the ankle plantarflexors are less controllable in fast eccentric conditions than that in concentric conditions. The ECR-based parameters are valid for effectively identifying feigned plantarflexion effort with high accuracy, but do not allow the detection of feigned dorsiflexion weakness. 相似文献