首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guyader S  Burch CL 《PloS one》2008,3(4):e1946
We explore the ability of optimal foraging theory to explain the observation among marine bacteriophages that host range appears to be negatively correlated with host abundance in the local marine environment. We modified Charnov's classic diet composition model to describe the ecological dynamics of the related generalist and specialist bacteriophages phiX174 and G4, and confirmed that specialist phages are ecologically favored only at high host densities. Our modified model accurately predicted the ecological dynamics of phage populations in laboratory microcosms, but had only limited success predicting evolutionary dynamics. We monitored evolution of attachment rate, the phenotype that governs diet breadth, in phage populations adapting to both low and high host density microcosms. Although generalist phiX174 populations evolved even broader diets at low host density, they did not show a tendency to evolve the predicted specialist foraging strategy at high host density. Similarly, specialist G4 populations were unable to evolve the predicted generalist foraging strategy at low host density. These results demonstrate that optimal foraging models developed to explain the behaviorally determined diets of predators may have only limited success predicting the genetically determined diets of bacteriophage, and that optimal foraging probably plays a smaller role than genetic constraints in the evolution of host specialization in bacteriophages.  相似文献   

2.
1. We studied chick diet in a known-age, sexed population of a long-lived seabird, the Brünnich's guillemot (Uria lomvia), over 15 years (N = 136; 1993-2007) and attached time-depth-temperature recorders to examine foraging behaviour in multiple years (N = 36; 2004-07). 2. Adults showed specialization in prey fed to offspring, described by multiple indices calculated over 15 years: 27% of diet diversity was attributable to among-individual variation (within-individual component of total niche width = 0.73); average similarity of an individual's diet to the overall diet was 65% (mean proportional similarity between individuals and population = 0.65); diet was significantly more specialized than expected for 70% of individuals (mean likelihood = 0.53). These indices suggest higher specialization than the average for an across-taxa comparison of 49 taxa. 3. Foraging behaviour varied along three axes: flight time, dive depth and dive shape. Individuals showed specialized individual foraging behaviour along each axis. These foraging strategies were reflected in the prey type delivered to their offspring and were maintained over scales of hours to years. 4. Specialization in foraging behaviour and diet was greater over short time spans (hours, days) than over long time spans (years). Regardless of sex or age, the main component of variation in foraging behaviour and chick diet was between individuals. 5. Plasma stable isotope values were similar across years, within a given individual, and variance was low relative to that expected from prey isotope values, suggesting adult diet specialized across years. Stable isotope values were similar among individuals that fed their nestlings similar prey items and there was no difference in trophic level between adults and chicks. We suggest that guillemots specialize on a single foraging strategy regardless of whether chick-provisioning and self-feeding. With little individual difference in body mass and physiology, specialization likely represents learning and memorizing optimal feeding locations and behaviours. 6. There was no difference in survival or reproductive success between specialists and generalists, suggesting these are largely equivalent strategies in terms of evolutionary fitness, presumably because different strategies were advantageous at different levels of prey abundance or predictability. The development of individual specialization may be an important precursor to diversification among seabirds.  相似文献   

3.
Optimal foraging     
《Current biology : CB》2022,32(12):R680-R683
  相似文献   

4.
Individual specialization in resource use is a widespread driver for intra-population trait variation, playing a crucial evolutionary role in free-living animals. We investigated the individual foraging specialization of Black-tailed Godwits (Limosa limosa islandica) during the wintering period. Godwits displayed distinct degrees of individual specialization in diet and microhabitat use, indicating the presence of both generalist and specialist birds. Females were overall more specialist than males, primarily consuming polychaetes. Specialist males consumed mainly bivalves, but some individuals also specialized on gastropods or polychaetes. Sexual dimorphism in bill length is probably important in determining the differences in specialization, as longer-billed individuals have access to deep-buried polychaetes inaccessible to most males. Different levels of specialization within the same sex, unrelated to bill length, were also found, suggesting that mechanisms other traits are involved in explaining individual specialization. Godwits specialized on bivalves achieved higher intake rates than non-specialist birds, supporting the idea that individual foraging choices or skills result in different short-term payoffs within the same population. Understanding whether short-term payoffs are good indicators of long-term fitness and how selection operates to favour the prevalence of specialist or generalist godwits is a major future challenge.  相似文献   

5.
K. Holder  G. A. Polis 《Oecologia》1987,72(3):440-448
Summary Certain predictions of optimal- and central place-foraging theory were tested on the desert harvester ant, Pogonomyrmex californicus. Colonies were offered three different sizes of oat seed and found to maximize net energy intake (ei) over time (t i ) by harvesting the seed sizes with the highest e i /t i rank. Two aspects of t i were measured that were assumed constant in previous studies. The handling components of t i (time required to manipulate the seed and travel time back to the colony with the food) were measured and found to be positively correlated with seed size. The manipulation success rate (the percentage of handled seeds successfully picked up) decreased with increased seed size. These results point out how important it is to measure all parameters of e i /t i rather than to assume constancy with both prey type and foraging distance. The relative abundance of less preferred food types was important in determining the proportion of preferred types in the diet. The food supply of eight colonies was manipulated experimentally over a 25-day period. Four deprived colonies were constrained within aluminum enclosures to prevented foraging. The remaining four satiated colonies were given food ad libitum. The niche breadths of the treated colonies were then compared to controls, but found not to differ significantly. Seed baits were offered at three distances from the colony to test whether selectivity increased with disance. Contrary to theoretical predictions, all colonies harcested about the same proportion of each seed size at each distance.  相似文献   

6.
We show that the paradox of enrichment can be theoretically resolved in a flexible predator–prey system in which the predator practices imperfect optimal foraging. A previous study showed that perfect optimal foraging can mitigate increases in the amplitude of population oscillations associated with enrichment, but it did not show a stabilization pattern. Our results show that imperfect optimal foraging can stabilize the system and resolve the paradox of enrichment under nonequilibrium dynamics. Furthermore, the degree of stabilization with enrichment was stronger when the imperfection of optimal foraging was larger.  相似文献   

7.
In this paper we consider one-predator-two-prey population dynamics described by a control system. We study and compare conditions for permanence of the system for three types of predator feeding behaviors: (i) specialized feeding on the more profitable prey type, (ii) generalized feeding on both prey types, and (iii) optimal foraging behavior. We show that the region of parameter space leading to permanence for optimal foraging behavior is smaller than that for specialized behavior, but larger than that for generalized behavior. This suggests that optimal foraging behavior of predators may promote coexistence in predator-prey systems. We also study the effects of the above three feeding behaviors on apparent competition between the two prey types.  相似文献   

8.
9.
10.
Optimal foraging, the marginal value theorem.   总被引:47,自引:0,他引:47  
  相似文献   

11.
12.
 Individual foraging specializations are an important source of intraspecific variability in feeding strategies, but little is known about what ecological factors affect their intensity or development. We evaluated stomach contents in marked individual largemouth bass (Micropterus salmoides) and tested the hypothesis that diet specialization is most pronounced during periods with high conspecific densities. We collected diet data over 10 years from an unexploited population of largemouth bass that displayed a greater than threefold variation in density. Although diet composition of the aggregate bass population did not change during the study, bass body condition was inversely correlated with population size. Individual marked bass exhibited high diet consistency (diet overlap between successive captures) during years with high population densities. Diet overlap between randomly assigned pairs of bass was not correlated with population size. We did not detect the expected positive relationship between diet breadth and population size. Our analyses demonstrate that population responses to density changes may represent the sum of many unique individual foraging responses and would be obscured by pooled sampling programs. Behavioral flexibility of individuals may contribute to the ability of largemouth bass to function as a keystone predator in many aquatic communities. Received: 29 March 1996 / Accepted: 8 January 1997  相似文献   

13.
Optimal foraging models are examined that assume animals forage for discrete point resources on a plane and attempt to minimize their travel distance between resources. This problem is similar to the well-known traveling salesman problem: A salesman must choose the shortest path from his home office to all cities on his itinerary and back to his home office again. The traveling salesman problem is in a class of enigmatic problems, called NP-complete, which can be so difficult to solve that animals might be incapable of finding the best solution. Two major results of this analysis are: (1) The simple foraging strategy of always moving to the closest resource site does surprisingly well. More sophisticated strategies of “looking ahead” a small number of steps, choosing the shortest path, then taking a step, do worse if all the resource sites are visited, but do slightly better (less than 10%) if not all the resource sites are visited. (2) Short cyclical foraging routes resulted when resources were allowed to renew. This is suggested as an alternative explanation for “trap-lining” in animals that forage for discrete, widely separated resources.  相似文献   

14.
This article explores effects of adaptive intraguild predation on species coexistence and community structure in three species' food webs. Two Lotka-Volterra models that assume a trade-off between competition and predation strength are considered in detail. The first model does not explicitly model resource dynamics and is considered with both nonadaptive and adaptive intraguild predation; in the latter case predators choose their diet in order to maximize their instantaneous population growth rate. The second model includes resource population dynamics. Effects of adaptive intraguild predation on the community structure along a gradient in environment productivity are analyzed and compared with some experimental results of protist food webs. Conditions under which intraguild predation is adaptive are discussed for both models. It is proved that if intraguild predators are perfect optimizers then intraguild predation should decrease with increasing environmental productivity and adaptive intraguild predation is a stabilizing factor provided environmental productivity is high enough.  相似文献   

15.
The solution to the cytological paradox of isomorphy   总被引:3,自引:0,他引:3       下载免费PDF全文
Cells with polyploid nuclei are generally larger than cells of the same organism or species with nonpolyploid nuclei. However, no such change of cell size with ploidy level is observed in those red algae which alternate isomorphic haploid with diploid generations. The results of this investigation reveal the explanation. Nuclear DNA content and other parameters were measured in cells of the filamentous red alga Griffithsia pacifica. Nuclei of the diploid generation contain twice the DNA content of those of the haploid generation. However, all cells except newly formed reproductive cells are multinucleate. The nuclei are arranged in a nearly perfect hexagonal array just beneath the cell surface. When homologous cells of the two generations are compared, although the cell size is nearly identical, each nucleus of the diploid cell is surrounded by a region of cytoplasm (a "domain") nearly twice that surrounding a haploid nucleus. Cytoplasmic domains associated with a diploid nucleus contain twice the number of plastids, and consequently twice the amount of plastid DNA, than is associated with the domain of a haploid nucleus. Thus, doubling of ploidy is reflected in doubling of the size and organelle content of the domain associated with each nucleus. However, cell size does not differ between homologous cells of the two generations, because total nuclear DNA (sum of the DNA in all nuclei in a cell) per cell does not differ. This is the solution to the cytological paradox of isomorphy.  相似文献   

16.
17.
18.
Summary The stochastic, discrete analogue of the marginal value theorem predicts that as the cost of moving between plants increases, bees should increase the percentage of the available flowers which they visit per plant. This prediction was tested using two populations of Polemonium foliosissimum and their primary pollinators Bombus flavifrons and B. bifarius. The results of these tests were equivocal. Bees did not perform exactly as the marginal value theorem predicted they should to maximize their rate of net energy intake. Instead of visiting more flowers per plant as movement costs increased bees were observed to alter their behavior in other ways in an attempt to maximize their rate of net energy intake. They were demonstrated to be flying randomly with respect to direction, flying short flight distances relative to the plant spacing distances encountered, flying predominately between nearest neighbor plants, and to be visiting flowers of other plant species while enroute from one P. foliosissimum flower to another P. foliosissimum flower. Such behavioral flexibility strongly implies that optimal foraging models which predict a shift in any particular behavior in response to environmental conditions are too simplistic to accurately predict foraging behavior.  相似文献   

19.
20.
Food selection was studied in free living green iguanas (Iguana iguana) throughout the year in a semiarid environment, Curaçao (Netherlands Antilles). Food intake was determined by direct observations and converted into biomass intake. Comparison between intake and biomass availability of the various food items revealed that the lizards were selective, and that changes in seasonal food availability led to periodic switching of food plants. The extent to which nutrient constraints determine iguana feeding ecology was investigated. Potential constraints were the requirements for water, digestible crude protein, and metabolizable energy. By using a linear programming model that incorporates characteristics of the food (chemical composition, energy content, item size) and requirements and constraints of the green iguanas (nutrient and energy requirements digestive tract capacity, feeding rate) it was possible to identify which factors determine food choice over the year. During the dry period, when the iguanas had no access to drinking water they consumed flowers to increase water intake, though the amount of flowers consumed was too low to cover maintenance requirements for either energy or protein. After the young leaf flush, following the early rains in May, the biomass increased, free surface water was available during showers, and the linear programming solutions indicate that food selection conformed to the protein maximization criterion. Reproduction in green iguanas shows an annual cycle, in which oviposition takes place at the end of the dry season, when intake is below maintenance levels. Females show a 8–10 month gap between acquisition of most of the protein required for egg synthesis and the act of laying. Thus, as in avian and mammalian herbivores, food availability during a period prior to the energy and protein demanding reproductive season of iguanas determines reproductive success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号