首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the influence of elevated CO2 concentration on denitrifier enzyme activity in wheat rhizoplanes by using controlled environments and solution culture techniques. Potential denitrification activity was from 3 to 24 times higher on roots that were grown under an elevated CO2 concentration of 1,000 micromoles of CO2 mol-1 than on roots grown under ambient levels of CO2. Nitrogen loss, as determined by a nitrogen mass balance, increased with elevated CO2 levels in the shoot environment and with a high NO3- concentration in the rooting zone. These results indicated that aerial CO2 concentration can play a role in rhizosphere denitrifier activity.  相似文献   

2.
The effect of CO2 concentration on plant growth and the size of the rhizosphere denitrifier population was investigated for ryegrass grown at 3 different soil pH values (pH 4.3, 5.9 and 7.0). Soil microcosms were planted with ryegrass and maintained under constant growth conditions at either ambient (450ppm) or elevated (720ppm) CO2 concentration. At harvest, the rhizosphere soil was collected and subjected to a potential denitrification assay to provide an estimate of the size of the denitrifier population present. Ryegrass dry matter production varied across the pH range studied and contrary to other studies, elevated CO2 concentration did not consistently increase growth. Plant growth was reduced by ≈ 35% and 23% at pH 4.3 and pH 5.9, respectively, under elevated CO2 concentration. At pH 7.0, however, plant growth was increased by ≈ 45% under elevated CO2. Potential denitrification rates within the rhizosphere followed a similar pattern to plant growth in the different treatments, suggesting that plant growth and the size of denitrifier population within the rhizosphere are coupled. This study investigates the relationship between plant growth and rhizosphere denitrification potential, thereby providing an estimate of the size of the denitrifier population under increased CO2 concentration and soil pH.  相似文献   

3.
The effect of elevated CO2 concentrations on the levels of secondary metabolites was investigated in tobacco plants grown under two nitrogen supply (5 and 8 mM NH4NO3) and CO2 conditions (350 and 1000 p.p.m.) each. High CO2 resulted in a dramatic increase of phenylpropanoids in the leaves, including the major carbon-rich compound chlorogenic acid (CGA) and the coumarins scopolin and scopoletin at both nitrogen fertilizations. This was accompanied by increased PAL activity in leaves and roots, which was even higher at the lower nitrogen supply. Hardly any change was observed for the structural phenolic polymer lignin and the sesquiterpenoid capsidiol. In contrast, elevated CO2 led to clearly decreased levels of the main nitrogen-rich constituent nicotine at the lower N-supply (5 mM NH4NO3) but not when plants were grown at the higher N-supply (8 mM NH4NO3). Inoculation experiments with potato virus Y (PVY) were used to evaluate possible ecological consequences of elevated CO2. The titre of viral coat-protein was markedly reduced in leaves under these conditions at both nitrogen levels. Since PR-gene expression and free salicylic acid (SA) levels remained unchanged at elevated CO2, we suggest that the accumulation of phenylpropanoids, for example, the major compound CGA and the coumarins scopolin and scopoletin may result in an earlier confinement of the virus at high CO2. Based on our results two final conclusions emerge. First, elevated CO2 leads to a shift in secondary metabolite composition that is dependent on the availability of nitrogen. Second, changes in the pool of secondary metabolites have important consequences for plant-pathogen interactions as shown for PVY as a test organism.  相似文献   

4.
Levels of atmospheric CO(2) have been increasing steadily over the last century and are projected to increase even more dramatically in the future. Soybeans (Glycine max L.) grown under elevated levels of CO(2) have larger herbivore populations than soybeans grown under ambient levels of CO(2). Increased abundance could reflect the fact that these herbivores are drawn in by increased amounts of volatiles or changes in the composition of volatiles released by plants grown under elevated CO(2) conditions. To determine impacts of elevated CO(2) on olfactory preferences, Japanese beetles (Popillia japonica Newman) and soybean aphids (Aphis glycines Matsumura) were placed in Y-tube olfactometers with a choice between ambient levels of CO(2) gas versus elevated levels of CO(2) gas or damaged and undamaged leaves and plants grown under ambient levels of CO(2) versus damaged and undamaged plants grown under elevated levels of CO(2). All plants had been grown from seeds under ambient or elevated levels of CO(2). Painted lady butterflies (Vanessa cardui L.) were placed in an oviposition chamber with a choice between plants grown under ambient and elevated levels of CO(2). A. glycines and V. cardui showed no significant preference for plants in either treatment. P. japonica showed no significant preference between ambient levels and elevated levels of CO(2) gas. There was a significant P. japonica preference for damaged plants grown under ambient CO(2) versus undamaged plants but no preference for damaged plants grown under elevated CO(2) versus undamaged plants. P. japonica also preferred damaged plants grown under elevated levels of CO(2) versus damaged plants grown under ambient levels of CO(2). This lack of preference for damaged plants grown under elevated CO(2) versus undamaged plants could be the result of the identical elevated levels of a green leaf volatile (2-hexenal) present in all foliage grown under elevated CO(2) regardless of damage status. Green leaf volatiles are typically released from damaged leaves and are used as kairomones by many herbivorous insects for host plant location. An increase in production of volatiles in soybeans grown under elevated CO(2) conditions may lead to larger herbivore outbreaks in the future.  相似文献   

5.
To understand how the increase in atmospheric CO2 from human activity may affect leaf damage by forest insects, we examined host plant preference and larval performance of a generalist herbivore, Antheraea polyphemus Cram., that consumed foliage developed under ambient or elevated CO2. Larvae were fed leaves from Quercus alba L. and Quercus velutina Lam. grown under ambient or plus 200 microl/liter CO2 using free air carbon dioxide enrichment (FACE). Lower digestibility of foliage, greater protein precipitation capacity in frass, and lower nitrogen concentration of larvae indicate that growth under elevated CO2 reduced the food quality of oak leaves for caterpillars. Consuming leaves of either oak species grown under elevated CO2 slowed the rate of development of A. polyphemus larvae. When given a choice, A. polyphemus larvae preferred Q. velutina leaves grown under ambient CO2; feeding on foliage of this species grown under elevated CO2 led to reduced consumption, slower growth, and greater mortality. Larvae compensated for the lower digestibility of Q. alba leaves grown under elevated CO2 by increasing the efficiency of conversion of ingested food into larval mass. Despite equivalent consumption rates, larvae grew larger when they consumed Q. alba leaves grown under elevated compared with ambient CO2. Reduced consumption, slower growth rates, and increased mortality of insect larvae may explain lower total leaf damage observed previously in plots in this forest exposed to elevated CO2. By subtly altering aspects of leaf chemistry, the ever-increasing concentration of CO2 in the atmosphere will change the trophic dynamics in forest ecosystems.  相似文献   

6.
Atmospheric levels of carbon dioxide (CO(2)) have been increasing steadily over the last century. Plants grown under elevated CO(2) experience physiological changes that influence their suitability as food. Previous studies have found increased insect herbivory on plants grown under elevated CO(2). To determine effects of consuming foliage of soybean (Glycine max) grown under elevated CO(2) on adult survivorship and fecundity, Japanese beetles (Popillia japonica Newman) were fed for the duration of their adult lives leaves grown under elevated CO(2) (550 mumol/mol), under ambient atmosphere (370 mumol/mol), or grown under ambient atmosphere but supplemented with a solution of sugars. To determine effects of a diet of foliage grown under elevated ozone (O(3)), another anthropogenic gaseous pollutant, beetles in the laboratory were fed soybean leaves grown under elevated CO(2), elevated O(3), or a combination of both elevated gases. Leaf tissue was also analyzed for longevity-enhancing antioxidants, because increases in dietary antioxidants can increase lifespan. Lifespan of Japanese beetles was prolonged by 8-25% when fed foliage developed under elevated CO(2), but consuming foliage that had taken up sugars to approximately the same level as foliage grown under elevated CO(2) had no effect on fecundity or longevity. Females consuming elevated CO(2) foliage laid approximately twice as many eggs as females fed foliage grown under ambient conditions. Consuming foliage grown under elevated O(3) had no effect on fecundity. No significant differences in total antioxidant content of foliage from ambient and elevated CO(2) conditions were detected. Although the precise mechanism is unclear, by altering components of leaf chemistry other than sugar content, elevated CO(2) may increase populations of Japanese beetles and their impact on crop productivity.  相似文献   

7.
Some morphogenetic and metabolic processes were sensitive to a high atmospheric CO(2) concentration during sunflower primary leaf ontogeny. Young leaves of sunflower plants growing under elevated CO(2) concentration exhibited increased growth, as reflected by the high specific leaf mass referred to as dry weight in young leaves (16days). The content of photosynthetic pigments decreased with leaf development, especially in plants grown under elevated CO(2) concentrations, suggesting that high CO(2) accelerates chlorophyll degradation, and also possibly leaf senescence. Elevated CO(2) concentration increased the oxidative stress in sunflower plants by increasing H(2)O(2) levels and decreasing activity of antioxidant enzymes such as catalase and ascorbate peroxidase. The loss of plant defenses probably increases the concentration of reactive oxygen species in the chloroplast, decreasing the photosynthetic pigment content as a result. Elevated CO(2) concentration was found to boost photosynthetic CO(2) fixation, especially in young leaves. High CO(2) also increased the starch and soluble sugar contents (glucose and fructose) and the C/N ratio during sunflower primary leaf development. At the beginning of senescence, we observed a strong increase in the hexoses to sucrose ratio that was especially marked at high CO(2) concentration. These results indicate that elevated CO(2) concentration could promote leaf senescence in sunflower plants by affecting the soluble sugar levels, the C/N ratio and the oxidative status during leaf ontogeny. It is likely that systemic signals produced in plants grown with elevated CO(2), lead to early senescence and a higher oxidation state of the cells of these plant leaves.  相似文献   

8.
大气一氧化碳浓度升高对植物生长的影响   总被引:20,自引:2,他引:18  
大气CO2浓度同对植物生长有促进作用,对C3植物生长的促进作用最大。短期CO2浓度升高时,植物光和速率增加;在长期CO2浓度升高条件下,植物光鸽上降并发生光合适应现象。这可能是植物在长期CO2浓度升高条件下植物源库关系不平衡引起的反馈抑制作用以及营养吸收不能满足光合速率增加的需要所引起Rubiseo活必和含量下降。在CO2浓度升高条件下植物的呼吸也会发生变化,根的分枝和数量增多,根系的分泌量和吸收  相似文献   

9.
Here, we investigate fine-root production, mortality and standing crop of Douglas-fir (Pseudotsuga menziesii) seedlings exposed to elevated atmospheric CO(2) and elevated air temperature. We hypothesized that these treatments would increase fine-root production, but that mortality would be greater under elevated temperature, leading to a smaller increase in standing crop. Seedlings were grown in outdoor, sun-lit controlled-environment chambers containing native soil. They were exposed in a factorial design to two levels of atmospheric CO(2) and two levels of air temperature. Minirhizotron methods were used to measure fine-root length production, mortality and standing crop every 4 wk for 36 months. Neither elevated atmospheric CO(2) nor elevated air temperature affected fine-root production, mortality, or standing crop. Fine roots appeared to root deeper in the soil profile under elevated CO(2) and elevated temperature. Low soil nitrogen (N) levels apparently limited root responses to the treatments. This suggests that forests on nutrient-poor soils may exhibit limited fine-root responses to elevated atmospheric CO(2) and elevated air temperature.  相似文献   

10.
Elevated CO2, rhizosphere processes,and soil organic matter decomposition   总被引:12,自引:0,他引:12  
Cheng  Weixin  Johnson  Dale W. 《Plant and Soil》1998,202(2):167-174
The rhizosphere is one of the key fine-scale components of C cycles. This study was undertaken to improve understanding of the potential effects of atmospheric CO2 increase on rhizosphere processes. Using C isotope techniques, we found that elevated atmospheric CO2 significantly increased wheat plant growth, dry mass accumulation, rhizosphere respiration, and soluble C concentrations in the rhizosphere. When plants were grown under elevated CO2 concentration, soluble C concentration in the rhizosphere increased by approximately 60%. The degree of elevated CO2 enhancement on rhizosphere respiration was much higher than on root biomass. Averaged between the two nitrogen treatments and compared with the ambient CO2 treatment, wheat rhizosphere respiration rate increased 60% and root biomass only increased 26% under the elevated CO2 treatment. These results indicated that elevated atmospheric CO2 in a wheat-soil system significantly increased substrate input to the rhizosphere due to both increased root growth and increased root activities per unit of roots. Nitrogen treatments changed the effect of elevated CO2 on soil organic matter decomposition. Elevated CO2 increased soil organic matter decomposition (22%) in the nitrogen-added treatment but decreased soil organic matter decomposition (18%) without nitrogen addition. Soil nitrogen status was therefore found to be important in determining the directions of the effect of elevated CO2 on soil organic matter decomposition.  相似文献   

11.
应用封闭式生长室系统,研究了CO2浓度升高对红桦(Betula albosinensis)幼苗的根/冠、粗根和细根的干质量、非结构性碳水化合物类含量、碳含量和碳/氮、氮和磷的含量及氮磷吸收量的影响。结果表明:CO2浓度升高使红桦幼苗粗根和细根的干质量增加,同时根/冠值显著升高,表明CO2浓度升高使红桦幼苗生物量向根系的分配增加;与对照相比,粗根的还原糖、蔗糖和总可溶性糖含量显著增加,而在细根中没有显著变化;粗根、细根的淀粉和总的非结构性碳水化合物含量显著增加;CO2浓度升高下粗根和细根的碳含量有升高的趋势但未达到显著水平,同时氮含量降低,碳/氮值升高;氮的吸收量在粗根和细根中均无显著变化。上述结果表明,CO2浓度升高下红桦幼苗根系氮含量下降是由非结构性碳水化合物(主要是淀粉)含量升高和(或)根系生物量增加产生的稀释效应引起的。  相似文献   

12.
Lee SH  Kim SY  Kang H 《Microbial ecology》2012,64(2):485-498
The effects of elevated CO(2) on soil bacterial community with upland vegetation have been widely studied, but limited information is available regarding responses of denitrifier and methanogen communities to elevated CO(2) in wetland ecosystems. Using restriction fragment length polymorphism (RFLP), terminal RFLP analysis, and real-time quantitative PCR, we compared communities of denitrifiers and methanogens in a laboratory-scale wetland system planted with one of three macrophytes, Typha latifolia, Scirpus lacustris, or Juncus effusus, after 110 days of incubation. Our study showed that elevated CO(2) could affect community structures of both denitrifiers and methanogens, each of which had a unique response pattern. In particular, elevated CO(2) shifted nirS-containing community with a unique structure irrespective of vegetation type. mcrA-containing community appeared to shift to community with unique types of hydrogenotrophs under elevated CO(2) conditions. The change of dissolved organic carbon driven by elevated CO(2) appeared to be related with the shift of both denitrifiers and methanogens. Overall, this study indicates that elevated CO(2) could change the community structure of denitrifiers and methanogens temporarily. These results also suggest a presence of stable dominant populations that were not substantially affected by changes in CO(2) concentration.  相似文献   

13.
C3 and C4 plants were grown in open-top chambers in the field at two CO2 concentrations, normal ambient (ambient) and normal ambient + 340 [mu]LL-1 (elevated). Dark oxygen uptake was measured in leaves and stems using a liquid-phase Clark-type oxygen electrode. High CO2 treatment decreased dark oxygen uptake in stems of Scirpus olneyi (C3) and leaves of Lindera benzoin (C3) expressed on either a dry weight or area basis. Respiration of Spartina patens (C4) leaves was unaffected by CO2 treatment. Leaf dry weight per unit area was unchanged by CO2, but respiration per unit of carbon or per unit of nitrogen was decreased in the C3 species grown at high CO2. The component of respiration in stems of S. olneyi and leaves of L. benzoin primarily affected by long-term exposure to the elevated CO2 treatment was the activity of the cytochrome pathway. Elevated CO2 had no effect on activity and capacity of the alternative pathway in S. olneyi. The cytochrome c oxidase activity, assayed in a cell-free extract, was strongly decreased by growth at high CO2 in stems of S. olneyi but it was unaffected in S. patens leaves. The activity of cytochrome c oxidase and complex III extracted from mature leaves of L. benzoin was also decreased after one growing season of plant exposure to elevated CO2 concentration. These results show that in some C3 species respiration will be reduced when plants are grown in elevated atmospheric CO2. The possible physiological causes and implications of these effects are discussed.  相似文献   

14.
研究了700和500 μmol·mol-1高浓度CO2处理的红松幼苗0~10 cm土层土壤蛋白酶、脲酶、淀粉酶、转化酶和磷酸酶活性的变化.结果表明,土壤蛋白酶(除7月)、脲酶、淀粉酶(除7月)和磷酸酶(除9月)活性在高浓度CO2条件下极显著增加,而转化酶(除9月)活性却极显著降低.不同高浓度CO2对酶活性的影响程度不同,500 μmol·mol-1浓度CO2处理对蛋白酶和磷酸酶活性的影响较700 μmol·mol-1处理明显,而700 μmol·mol-1浓度CO2处理对脲酶、淀粉酶和转化酶活性的影响较500 μmol·mol-1显著.  相似文献   

15.
16.
The hypothesis that elevated [CO(2)] alleviates ureide inhibition of N(2)-fixation was tested. Short-term responses of the acetylene reduction assay (ARA), ureide accumulation and total non-structural carbohydrate (TNC) levels were measured following addition of ureide to the nutrient solution of hydroponically grown soybean. The plants were exposed to ambient (360 micromol mol(-1)) or elevated (700 micromol mol(-1)) [CO(2)]. Addition of 5 and 10 mM ureide to the nutrient solution inhibited N(2)-fixation activity under both ambient and elevated [CO(2)] conditions. However, the percentage inhibition following ureide treatment was significantly greater under ambient [CO(2)] as compared with that under elevated [CO(2)]. Under ambient [CO(2)] conditions, ARA was less than that under elevated [CO(2)] 1 d after ureide treatment. Under ambient [CO(2)], the application of ureide resulted in a significant accumulation of ureide in all plant tissues, with the highest concentration increases in the leaves. However, application of exogenous ureide to plants subjected to elevated [CO(2)] did not result in increased ureide concentration in any tissues. TNC concentrations were consistently higher under elevated [CO(2)] compared with those under ambient [CO(2)]. For both [CO(2)] treatments, the application of ureide induced a significant decrease of TNC concentrations in the leaves and nodules. For both leaves and nodules, a negative correlation was observed between TNC and ureide levels. Results indicate that product(s) of ureide catabolism rather than tissue ureide concentration itself are critical in the regulation of N(2)-fixation.  相似文献   

17.
高CO2浓度对长白山阔叶红松林主要树种的影响   总被引:16,自引:6,他引:10  
组成长白山阔叶红松林的主要树种红松、云杉、落叶松、大青杨、白桦、椴树、水曲柳和色木的幼树,盆栽于模拟自然光照和人工调节CO2浓度为700μl·L -1、400μl·L-1 的气室内两个生长季,以生长在400μl·L-1下的幼树为对照组 ,在各自生长条件下测定,高CO2浓度下生长的红松、云杉、落叶松、大青杨、白桦、椴树、水曲柳和色木的高生长比对照组的幼树提高10%~40%.高CO2浓度的幼树与对照CO2 下的幼树相比各树种蒸腾速率升降不一,但水分利用效率均有不同程度的提高,不同树种的可溶性糖和叶绿素含量对高CO2浓度反应不一,反映出幼树对高CO2浓度适应的复杂性.长期高CO2浓度环境下生长的阔叶树对CO2变化反应较针叶树敏感,供试树种均发生光合驯化现象.  相似文献   

18.
Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2].  相似文献   

19.
An attempt to reduce the production cost on tissue cultured plants, photoautotrophic culture of a high value orchid Dendrobium was established under CO2-enriched conditions. The shoot length and the number of leaves were almost equal in plantlets grown on medium with 2 % sucrose or without sucrose and under normal or enhanced (40 g m-3) CO2 concentration, whereas the fresh and dry masses were higher in cultures grown in sucrose containing media or under CO2 enrichment. Development of roots was observed only on media without sucrose, but CO2 enrichment did not have significant effects on in vitro rootings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Carbon allocation and N acquisition by plants following defoliation may be linked through plant-microbe interactions in the rhizosphere. Plant C allocation patterns and rhizosphere interactions can also be affected by rising atmospheric CO(2) concentrations, which in turn could influence plant and microbial responses to defoliation. We studied two widespread perennial grasses native to rangelands of western North America to test whether (1) defoliation-induced enhancement of rhizodeposition would stimulate rhizosphere N availability and plant N uptake, and (2) defoliation-induced enhancement of rhizodeposition, and associated effects on soil N availability, would increase under elevated CO(2). Both species were grown at ambient (400 μL L(-1)) and elevated (780 μL L(-1)) atmospheric [CO(2)] under water-limiting conditions. Plant, soil and microbial responses were measured 1 and 8 days after a defoliation treatment. Contrary to our hypotheses, we found that defoliation and elevated CO(2) both reduced carbon inputs to the rhizosphere of Bouteloua gracilis (C(4)) and Pascopyrum smithii (C(3)). However, both species also increased N allocation to shoots of defoliated versus non-defoliated plants 8 days after treatment. This response was greatest for P. smithii, and was associated with negative defoliation effects on root biomass and N content and reduced allocation of post-defoliation assimilate to roots. In contrast, B. gracilis increased allocation of post-defoliation assimilate to roots, and did not exhibit defoliation-induced reductions in root biomass or N content. Our findings highlight key differences between these species in how post-defoliation C allocation to roots versus shoots is linked to shoot N yield, but indicate that defoliation-induced enhancement of shoot N concentration and N yield is not mediated by increased C allocation to the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号