首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Replication licensing factor (RLF) is a multiprotein complex involved in ensuring that chromosomal DNA replicates only once in a single cell cycle. It comprises two components, termed RLF-M and RLF-B. Purified RLF-M consists of a mixture of complexes containing all six members of the MCM/P1 family of minichromosome maintenance proteins. The precise composition of these different complexes and their contribution to RLF-M activity has been unclear. Here we show that in Xenopus extracts, MCM/P1 proteins mainly form heterohexamers containing each of the six proteins. This heterohexamer is readily split into subcomplexes, whose interactions and subunit composition we characterize in detail. We show for the first time an ordered multistep assembly pathway by which the heterohexamer can be reformed from the subcomplexes. Importantly, this novel pathway is essential for DNA replication, since only the full heterohexamer can bind productively to chromatin and provide RLF-M activity.  相似文献   

2.
Replication licensing factor (RLF) is an essential initiation factor that can prevent re-replication of DNA in a single cell cycle [1] [2]. It is required for the initiation of DNA replication, binds to chromatin early in the cell cycle, is removed from chromatin as DNA replicates and is unable to re-bind replicated chromatin until the following mitosis. Chromatography of RLF from Xenopus extracts has shown that it consists of two components termed RLF-B and RLF-M [3]. The RLF-M component consists of complexes of all six Xenopus minichromosome maintenance (MCM/P1) proteins (XMcm2-7), which bind to chromatin in late mitosis and are removed as replication occurs [3] [4] [5] [6] [7]. The identity of RLF-B is currently unknown. At least two factors must be present on chromatin before licensing can occur: the Xenopus origin recognition complex (XORC) [8] [9] and Xenopus Cdc6 (XCdc6) [10]. XORC saturates Xenopus sperm chromatin at approximately one copy per replication origin whereas XCdc6 binds to chromatin only if XORC is bound first [9] [10] [11]. Although XORC has been shown to be a distinct activity from RLF-B [9], the relationship between XCdc6 and RLF-B is currently unclear. Here, we show that active XCdc6 is loaded onto chromatin in extracts with defective RLF, and that both RLF-M and RLF-B are still required for the licensing of XCdc6-containing chromatin. Furthermore, RLF-B can be separated from XCdc6 by immunoprecipitation and standard chromatography. These experiments demonstrate that RLF-B is both functionally and physically distinct from XCdc6, and that XCdc6 is loaded onto chromatin before RLF-B function is executed.  相似文献   

3.
In eukaryotes, chromosomal DNA is licensed for a single round of replication in each cell cycle. Xenopus MCM3 protein has been implicated in the licensing of replication in egg extract. We have cloned cDNAs encoding five immunologically distinct proteins associated with Xenopus MCM3 as members of the MCM/P1 family. Six Xenopus MCM proteins formed a physical complex in the egg extract, bound to unreplicated chromatin before the formation of nuclei, and apparently displaced from replicated chromatin. The requirement of six XMCM proteins for the replication activity of the egg extract before nuclear formation suggests that their re-association with replicated chromatin at the end of the mitotic cell cycle is a key step for the licensing of replication.  相似文献   

4.
Ying CY  Gautier J 《The EMBO journal》2005,24(24):4334-4344
Eukaryotes have six minichromosome maintenance (MCM) proteins that are essential for DNA replication. The contribution of ATPase activity of MCM complexes to their function in replication is poorly understood. We have established a cell-free system competent for replication in which all MCM proteins are supplied by purified recombinant Xenopus MCM complexes. Recombinant MCM2-7 complex was able to assemble onto chromatin, load Cdc45 onto chromatin, and restore DNA replication in MCM-depleted extracts. Using mutational analysis in the Walker A motif of MCM6 and MCM7 of MCM2-7, we show that ATP binding and/or hydrolysis by MCM proteins is dispensable for chromatin loading and pre-replicative complex (pre-RC) assembly, but is required for origin unwinding during DNA replication. Moreover, this ATPase-deficient mutant complex did not support DNA replication in MCM-depleted extracts. Altogether, these results both demonstrate the ability of recombinant MCM proteins to perform all replication roles of MCM complexes, and further support the model that MCM2-7 is the replicative helicase. These data establish that mutations affecting the ATPase activity of the MCM complex uncouple its role in pre-RC assembly from DNA replication.  相似文献   

5.
6.
MCM proteins are molecular components of the DNA replication licensing system inXenopus.These proteins comprise a conserved family made up of six distinct members which have been found to associate in large protein complexes. We have used a combination of biochemical and cytological methods to study the association of soluble and chromatin-boundXenopusMCM proteins during the cell cycle. In interphase, soluble MCM proteins are found organized in a core salt-resistant subcomplex that includes MCM subunits which are known to have high affinity for histones. The interphasic complex is modified at mitosis and the subunit composition of the resulting mitotic subcomplexes is distinct, indicating that the stability of the MCM complex is under cell cycle control. Moreover, we provide evidence that the binding of MCM proteins to chromatin may occur in sequential steps involving the loading of distinct MCM subunits. Comparative analysis of the chromatin distribution of MCM2, 3, and 4 shows that the binding of MCM4 is distinct from that of MCM2 and 3. Altogether, these data suggest that licensing of chromatin by MCMs occurs in an ordered fashion involving discrete subcomplexes.  相似文献   

7.
In eukaryotes, DNA synthesis is preceded by licensing of replication origins. We examined the subcellular localization of two licensing proteins, ORC2 and MCM7, in the mouse zygotes and two-cell embryos. In somatic cells ORC2 remains bound to DNA replication origins throughout the cell cycle, while MCM7 is one of the last proteins to bind to the licensing complex. We found that MCM7 but not ORC2 was bound to DNA in metaphase II oocytes and remained associated with the DNA until S-phase. Shortly after fertilization, ORC2 was detectable at the metaphase II spindle poles and then between the separating chromosomes. Neither protein was present in the sperm cell at fertilization. As the sperm head decondensed, MCM7 was bound to DNA, but no ORC2 was seen. By 4 h after fertilization, both pronuclei contained DNA bound ORC2 and MCM7. As expected, during S-phase of the first zygotic cell cycle, MCM7 was released from the DNA, but ORC2 remained bound. During zygotic mitosis, ORC2 again localized first to the spindle poles, then to the area between the separating chromosomes. ORC2 then formed a ring around the developing two-cell nuclei before entering the nucleus. Only soluble MCM7 was present in the G2 pronuclei, but by zygotic metaphase it was bound to DNA, again apparently before ORC2. In G1 of the two-cell stage, both nuclei had salt-resistant ORC2 and MCM7. These data suggest that licensing follows a unique pattern in the early zygote that differs from what has been described for other mammalian cells that have been studied.  相似文献   

8.
Studies on the initiation of DNA replication in eukaryotes have progressed recently through different approaches that promise to converge. Proteins interacting with the origin recognition complex form a prereplicative complex early in the cell cycle. The regulation of the binding of MCM/P1 proteins to chromatin plays a key role in the replication licensing system which prevents re-replication in a single cell cycle. Cyclin-dependent kinases provide an overall control of the cell cycle by stimulating S-phase entry and possibly by preventing re-establishment of prereplicative complexes in G2 phase.  相似文献   

9.
Stepwise regulated chromatin assembly of MCM2-7 proteins   总被引:3,自引:0,他引:3  
Acquisition of the competence to replicate requires the assembly of the MCM2-7 (minichromosome maintenance) protein complex onto pre-replicative chromatin, a step of the licensing reaction. This step is thought to occur through binding of a heterohexameric MCM complex containing the six related MCM subunits. Here we show that assembly of the MCM complex onto pre-replicative chromatin occurs through sequential stabilization of specific MCM subunits. Inhibition of licensing with 6-dimethylaminopurine results in chromatin containing specifically bound MCM4 and MCM6. A similar result was obtained by interference of the assembly reaction with an MCM3 antibody. The presence of chromatin-bound MCM intermediates was confirmed by reconstitution experiments in vitro with purified proteins and by the observation of an ordered association of MCM subunits with chromatin. These results indicate that the assembly of the MCM complex onto pre-replicative chromatin is regulated at the level of distinct subunits, suggesting an additional regulatory step in the formation of pre-replication complexes.  相似文献   

10.
The replication licensing factor (RLF) is an essential initiation factor that is involved in preventing re-replication of chromosomal DNA in a single cell cycle. In Xenopus egg extracts, it can be separated into two components: RLF-M, a complex of MCM/P1 polypeptides, and RLF-B, which is currently unpurified. In this paper we investigate variations in RLF activity throughout the cell cycle. Total RLF activity is low in metaphase, due to a lack of RLF-B activity and the presence of an RLF inhibitor. RLF-B is rapidly activated on exit from metaphase, and then declines during interphase. The RLF inhibitor present in metaphase extracts is dependent on the activity of cyclin-dependent kinases (Cdks). Affinity depletion of Cdks from metaphase extracts removed the RLF inhibitor, while Cdc2/cyclin B directly inhibited RLF activity. In metaphase extracts treated with the protein kinase inhibitor 6-dimethylaminopurine (6-DMAP), both cyclin B and the RLF inhibitor were stabilized although the extracts morphologically entered interphase. These results are consistent with studies in other organisms that invoke a key role for Cdks in preventing re-replication of DNA in a single cell cycle.  相似文献   

11.
The MCM2-7 complex is believed to function as the eukaryotic replicative DNA helicase. It is recruited to chromatin by the origin recognition complex (ORC), Cdc6, and Cdt1, and it is activated at the G(1)/S transition by Cdc45 and the protein kinases Cdc7 and Cdk2. Paradoxically, the number of chromatin-bound MCM complexes greatly exceeds the number of bound ORC complexes. To understand how the high MCM2-7:ORC ratio comes about, we examined the binding of these proteins to immobilized linear DNA fragments in Xenopus egg extracts. The minimum length of DNA required to recruit ORC and MCM2-7 was approximately 80 bp, and the MCM2-7:ORC ratio on this fragment was approximately 1:1. With longer DNA fragments, the MCM2-7:ORC ratio increased dramatically, indicating that MCM complexes normally become distributed over a large region of DNA surrounding ORC. Only a small subset of the chromatin-bound MCM2-7 complexes recruited Cdc45 at the onset of DNA replication, and unlike Cdc45, MCM2-7 was not limiting for DNA replication. However, all the chromatin-bound MCM complexes may be functional, because they were phosphorylated in a Cdc7-dependent fashion, and because they could be induced to support Cdk2-dependent Cdc45 loading. The data suggest that in Xenopus egg extracts, origins of replication contain multiple, distributed, initiation-competent MCM2-7 complexes.  相似文献   

12.
13.
A yeast two-hybrid screen was employed to identify human proteins that specifically bind the amino-terminal 400 amino acids of the retinoblastoma (Rb) protein. Two independent cDNAs resulting from this screen were found to encode the carboxy-terminal 137 amino acids of MCM7, a member of a family of proteins that comprise replication licensing factor. Full-length Rb and MCM7 form protein complexes in vitro, and the amino termini of two Rb-related proteins, p107 and p130, also bind MCM7. Protein complexes between Rb and MCM7 were also detected in anti-Rb immunoprecipitates prepared from human cells. The amino-termini of Rb and p130 strongly inhibited DNA replication in an MCM7-dependent fashion in a Xenopus in vitro DNA replication assay system. These data provide the first evidence that Rb and Rb-related proteins can directly regulate DNA replication and that components of licensing factor are targets of the products of tumor suppressor genes.  相似文献   

14.
Once-per-cell cycle replication is regulated through the assembly onto chromatin of multisubunit protein complexes that license DNA for a further round of replication. Licensing consists of the loading of the hexameric MCM2–7 complex onto chromatin during G1 phase and is dependent on the licensing factor Cdt1. In vitro experiments have suggested a two-step binding mode for minichromosome maintenance (MCM) proteins, with transient initial interactions converted to stable chromatin loading. Here, we assess MCM loading in live human cells using an in vivo licensing assay on the basis of fluorescence recovery after photobleaching of GFP-tagged MCM protein subunits through the cell cycle. We show that, in telophase, MCM2 and MCM4 maintain transient interactions with chromatin, exhibiting kinetics similar to Cdt1. These are converted to stable interactions from early G1 phase. The immobile fraction of MCM2 and MCM4 increases during G1 phase, suggestive of reiterative licensing. In late G1 phase, a large fraction of MCM proteins are loaded onto chromatin, with maximal licensing observed just prior to S phase onset. Fluorescence loss in photobleaching experiments show subnuclear concentrations of MCM-chromatin interactions that differ as G1 phase progresses and do not colocalize with sites of DNA synthesis in S phase.  相似文献   

15.
Most eukaryotic cell types can withdraw from proliferative cell cycles and remain quiescent for extended periods. Intact nuclei isolated from quiescent murine NIH3T3 cells fail to replicate in vitro when incubated in Xenopus egg extracts, although intact nuclei from proliferating cells replicate well. Permeabilization of the nuclear envelope rescues the ability of quiescent nuclei to replicate in the extract. We show that origin replication complex (ORC), minichromosome maintenance (MCM), and Cdc6 proteins are all present in early quiescent cells. Immunodepletion of Cdc6 or the MCM complex from Xenopus egg extract inhibits replication of permeable, quiescent, but not proliferating, NIH3T3 nuclei. Immunoblotting results demonstrate that mouse homologues of Mcm2, Mcm5, and Cdc6 are displaced from chromatin in quiescent cells. However, this absence of chromatin-bound Cdc6 and MCM proteins from quiescent cells appears not to be due to the absence of ORC subunits as murine homologues of Orc1 and Orc2 remain chromatin-bound in quiescent cells. Surprisingly, intact quiescent nuclei fail to bind exogenously added XCdc6 or to replicate in Xenopus egg extracts immunodepleted of ORC, even though G1- or S-phase nuclei still replicate in these extracts. Our results identify Cdc6 and the MCM complex as essential replication components absent from quiescent chromatin due to nonfunctional chromatin-bound ORC proteins. These results can explain why quiescent mammalian nuclei are unable to replicate in vivo and in Xenopus egg extracts.  相似文献   

16.
A prereplicative complex (pre-RC) of proteins is assembled at budding yeast origins of DNA replication during the G1-phase of the cell cycle, as shown by genomic footprinting. The proteins responsible for this prereplicative footprint have yet to be identified but are likely to be involved in the earliest stages of the initiation step of chromosome replication. Here we show that MCM2-7 proteins are essential for both the formation and maintenance of the pre-RC footprint at the origin ARS305. It is likely that pre-RCs contain heteromeric complexes of MCM2-7 proteins, since degradation of Mcm2, 3, 6, or 7 during G1-phase, after pre-RC formation, causes loss of Mcm4 from the nucleus. It has been suggested that pre-RCs on unreplicated chromatin may generate a checkpoint signal that inhibits premature mitosis during S-phase. We show that, although mitosis does indeed occur in the absence of replication if MCM proteins are degraded during G1-phase, anaphase is prevented if MCMs are degraded during S-phase. Our data indicate that pre-RCs do not play a direct role in checkpoint control during chromosome replication.  相似文献   

17.
Eukaryotic chromosomal DNA is licensed for replication precisely once in each cell cycle. The mini-chromosome maintenance (MCM) complex plays a role in this replication licensing. We have determined the structure of a fragment of MCM from Methanobacterium thermoautotrophicum (mtMCM), a model system for eukaryotic MCM. The structure reveals a novel dodecameric architecture with a remarkably long central channel. The channel surface has an unusually high positive charge and binds DNA. We also show that the structure of the N-terminal fragment is conserved for all MCMs proteins despite highly divergent sequences, suggesting a common architecture for a similar task: gripping/remodeling DNA and regulating MCM activity. An mtMCM mutant protein equivalent to a yeast MCM5 (CDC46) protein with the bob1 mutation at its N terminus has only subtle structural changes, suggesting a Cdc7-bypass mechanism by Bob1 in yeast. Yeast bypass experiments using MCM5 mutant proteins support the hypothesis for the bypass mechanism.  相似文献   

18.
The MCM proteins are a group of six proteins whose action is vital for DNA replication in eukaryotes. It has been suggested that they constitute the replicative helicase, with a subset of the proteins forming the catalytic helicase (MCM4,6,7) while the others have a loading or control function. In this paper we show that all six MCM proteins are present in equivalent amounts in soluble extracts and on chromatin. We have also analysed soluble and chromatin-associated MCM protein complexes under different conditions. This suggests that all six MCM proteins are always found in a complex with each other, although the interaction between the individual MCM proteins is not equivalent as stringent salt conditions are able to break the intact complex into a number of stable subcomplexes. These data contribute to the ongoing debate about the nature of MCM complexes, supporting the hypothesis that they act as a heterohexamer rather than as a number of different subcomplexes. Finally, using protein–protein cross-linking we have shown that MCM2 interacts directly with MCM5 and MCM6; MCM5 with MCM3 and MCM2; and MCM6 with MCM2 and MCM4. This provides the first direct information about specific subunit contacts in the MCM complex.  相似文献   

19.
Prereplication complexes (pre-RCs) define potential origins of DNA replication and allow the recruitment of the replicative DNA helicase MCM2-7. Here, we characterize MCM9, a member of the MCM2-8 family. We demonstrate that MCM9 binds to chromatin in an ORC-dependent manner and is required for the recruitment of the MCM2-7 helicase onto chromatin. Its depletion leads to a block in pre-RC assembly, as well as DNA replication inhibition. We show that MCM9 forms a stable complex with the licensing factor Cdt1, preventing an excess of geminin on chromatin during the licensing reaction. Our data suggest that MCM9 is an essential activating linker between Cdt1 and the MCM2-7 complex, required for loading the MCM2-7 helicase onto DNA replication origins. Thus, Cdt1, with its two opposing regulatory binding factors MCM9 and geminin, appears to be a major platform on the pre-RC to integrate cell-cycle signals.  相似文献   

20.
The MCM2-7 complex, a hexamer containing six distinct and essential subunits, is postulated to be the eukaryotic replicative DNA helicase. Although all six subunits function at the replication fork, only a specific subcomplex consisting of the MCM4, 6, and 7 subunits (MCM467) and not the MCM2-7 complex exhibits DNA helicase activity in vitro. To understand why MCM2-7 lacks helicase activity and to address the possible function of the MCM2, 3, and 5 subunits, we have compared the biochemical properties of the Saccharomyces cerevisiae MCM2-7 and MCM467 complexes. We demonstrate that both complexes are toroidal and possess a similar ATP-dependent single-stranded DNA (ssDNA) binding activity, indicating that the lack of helicase activity by MCM2-7 is not due to ineffective ssDNA binding. We identify two important differences between them. MCM467 binds dsDNA better than MCM2-7. In addition, we find that the rate of MCM2-7/ssDNA association is slow compared with MCM467; the association rate can be dramatically increased either by preincubation with ATP or by inclusion of mutations that ablate the MCM2/5 active site. We propose that the DNA binding differences between MCM2-7 and MCM467 correspond to a conformational change at the MCM2/5 active site with putative regulatory significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号