首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All-trans-retinoic acid (RA) plays an important physiological role in embryonic development and is teratogenic in large doses in almost all species. p53, a tumor suppressor gene encodes phosphoproteins, which regulate cellular proliferation, differentiation, and apoptosis. Temporal modulation of p53 by retinoic acid was investigated in murine embryonic stem cells during differentiation and apoptosis. Undifferentiated embryonic stem cells express a high level of p53 mRNA and protein followed by a decrease in p53 levels as differentiation proceeds. The addition of retinoic acid during 8–10 days of differentiation increased the levels of p53 mRNA and protein, accompanied by accelerated neural differentiation and apoptosis. Marked increase in apoptosis was observed at 10–20 h after retinoic acid treatment when compared with untreated controls. Retinoic acid-induced morphological differentiation resulted in predominantly neural-type cells. Maximum increase in p53 mRNA in retinoic acid-treated cells occurred on day 17, whereas maximum protein synthesis occurred on days 14–17, which coincided with increased neural differentiation and proliferation. Increased p53 levels did not induce p21 transactivation, interestingly a decrease in p21 was observed on day 17 on exposure to retinoic acid. The level of p53 declined by day 21 of differentiation. The results demonstrated that retinoic acid-mediated apoptosis preceded the changes in p53 expression, suggesting that p53 induction does not initiate retinoic acid-induced apoptosis during development. However, retinoic acid accelerated neural differentiation and increased the expression of p53 in proliferating neural cells, corroborated by decreased p21 levels, indicating the importance of cell type and stage specificity of p53 function. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
3.
The P19 cell line is a widely studied model of neural differentiation. When pluripotent P19 cells are cultured as aggregates in the presence of retinoic acid for 4 days, the cells commit to the neural fate, but have not yet undergone overt differentiation. Two-dimensional polyacrylamide gel electrophoresis was used to analyze cellular protein expression during this induction. Approximately 500 abundant polypeptides were analyzed. Seventeen polypeptides were upregulated during induction; several of these were significantly regulated 48 h after the addition of retinoic acid. No downregulations were observed. Fifteen of the 17 polypeptides continued to be expressed throughout terminal differentiation. The upregulation of 14 of the 17 polypeptides requires both retinoic acid and aggregation, which alone do not induce neural differentiation. Furthermore, these regulated polypeptides are expressed in neural tissue, suggesting they are associated with neural function in vivo. Embryonic stem cells, a totipotent line, also neurally differentiate in response to retinoic acid and aggregation. Comparison of embryonic stem cells to P19 cells shows that the two systems regulate a similar set of polypeptides and are thus likely to utilize a similar pathway. These studies are a step toward determining the full extent of regulation involved in the commitment of pluripotent cells to the neural fate. © 1996 Wiley-Liss, Inc.  相似文献   

4.
In HL-60 human myeloblastic leukemia cells, retinoic acid is known to cause cFMS, RAF, MEK, and ERK2 dependent myeloid cell differentiation and G0 arrest associated with RB tumor suppressor protein hypophosphorylation, implicating receptor tyrosine kinase signal transduction in propelling these retinoic acid-induced cellular effects. Furthermore, ectopic expression of polyoma middle T antigen, which activates similar early signal transduction molecules as PDGF class receptors such as cFMS, accelerates these retinoic acid-induced effects. To determine if this depends on middle T's ability to activate PLCgamma, PI-3 kinase, and src-like kinases, stable transfectants of HL-60 cells expressing either the polyoma middle T dl23 mutant, which is defective for PLCgamma and PI-3 kinase activation, or the Delta205 mutant, which in addition has greatly attenuated src-like kinase activation ability, were created and compared to wild-type middle T-transfected HL-60. The transgenes were under control of the retinoic acid (or 1, 25-dihydroxy vitamin D3) inducible Moloney murine leukemia virus LTRs. Expression of the dl23 or Delta205 mutant accelerated retinoic acid-induced cell differentiation. The effects of the mutants were comparable to those of the wild-type middle T. Likewise, retinoic acid-induced G0 arrest of mutant transfected cells and wild-type middle T transfected cells was similar. The same was true for 1, 25-dihydroxy vitamin D3-induced monocytic differentiation as for retinoic acid-induced myeloid differentiation. The mutants did not cause the same slight shortening of the cell cycle as wild-type middle T. Both the mutants and the wild-type middle T caused a similar increase in the cellular basal level of activated ERK2 MAPK. Since retinoic acid increases ERK2 activation, which is necessary for differentiation, the data suggest that mutant and wild-type middle T enhanced the retinoic acid effects by increasing basal levels of ERK2 activation. Consistent with this, the polyoma-induced foreshortening of the time for differentiation coincided with the time for retinoic acid to significantly increase ERK2 activation. As in wild-type HL-60, retinoic acid induced the early down-regulation of RXRalpha in mutant transfectants similar to wild-type middle T transfectants, consistent with no loss or gain of relevant functions due to the mutations. In contrast, vitamin D3 did not down-regulate RXRalpha in HL-60 or transfectants. Polyoma middle T and these transformation-defective mutants thus enhanced ERK2 activation to have an early effect in promoting retinoic acid-induced differentiation without a strong dependence on activating PLCgamma, PI-3 kinase, or src-like kinase.  相似文献   

5.
In HL-60 human myeloblastic leukemia cells, retinoic acid is known to cause cFMS, RAF, MEK, and ERK2 dependent myeloid cell differentiation and G0 arrest associated with RB tumor suppressor protein hypophosphorylation, implicating receptor tyrosine kinase signal transduction in propelling these retinoic acid-induced cellular effects. Furthermore, ectopic expression of polyoma middle T antigen, which activates similar early signal transduction molecules as PDGF class receptors such as cFMS, accelerates these retinoic acid-induced effects. To determine if this depends on middle T's ability to activate PLCγ, PI-3 kinase, and src-like kinases, stable transfectants of HL-60 cells expressing either the polyoma middle T dl23 mutant, which is defective for PLCγ and PI-3 kinase activation, or the Δ205 mutant, which in addition has greatly attenuated src-like kinase activation ability, were created and compared to wild-type middle T-transfected HL-60. The transgenes were under control of the retinoic acid (or 1,25-dihydroxy vitamin D3) inducible Moloney murine leukemia virus LTRs. Expression of the dl23 or Δ205 mutant accelerated retinoic acid-induced cell differentiation. The effects of the mutants were comparable to those of the wild-type middle T. Likewise, retinoic acid-induced G0 arrest of mutant transfected cells and wild-type middle T transfected cells was similar. The same was true for 1,25-dihydroxy vitamin D3-induced monocytic differentiation as for retinoic acid-induced myeloid differentiation. The mutants did not cause the same slight shortening of the cell cycle as wild-type middle T. Both the mutants and the wild-type middle T caused a similar increase in the cellular basal level of activated ERK2 MAPK. Since retinoic acid increases ERK2 activation, which is necessary for differentiation, the data suggest that mutant and wild-type middle T enhanced the retinoic acid effects by increasing basal levels of ERK2 activation. Consistent with this, the polyoma-induced foreshortening of the time for differentiation coincided with the time for retinoic acid to significantly increase ERK2 activation. As in wild-type HL-60, retinoic acid induced the early down-regulation of RXRα in mutant transfectants similar to wild-type middle T transfectants, consistent with no loss or gain of relevant functions due to the mutations. In contrast, vitamin D3 did not down-regulate RXRα in HL-60 or transfectants. Polyoma middle T and these transformation-defective mutants thus enhanced ERK2 activation to have an early effect in promoting retinoic acid-induced differentiation without a strong dependence on activating PLCγ, PI-3 kinase, or src-like kinase.  相似文献   

6.
7.
F9 embryonic stem cell-like teratocarcinoma cells are widely used to study early embryonic development and cell differentiation. The cells can be induced by retinoic acid to undergo endodermal differentiation. The retinoic acid-induced differentiation accompanies cell growth suppression, and thus, F9 cells are also often used as a model for analysis of retinoic acid biological activity. We have recently shown that MAPK activation and c-Fos expression are uncoupled in F9 cells upon retinoic acid-induced endodermal differentiation. The expression of the candidate tumor suppressor Disabled-2 is induced and correlates with cell growth suppression in F9 cells. We were not able to establish stable Disabled-2 expression by cDNA transfection in F9 cells without induction of spontaneous cell differentiation. Transient transfection of Dab2 by adenoviral vector nevertheless suppresses Elk-1 phosphorylation, c-Fos expression, and cell growth. In PA-1, another teratocarcinoma cell line of human origin that has no or very low levels of Disabled-2, retinoic acid fails to induce Disabled-2, correlating with a lack of growth suppression, although PA-1 is responsive to retinoic acid in morphological change. Transfection and expression of Disabled-2 in PA-1 cells mimic the effects of retinoic acid on growth suppression; the Disabled-2-expressing cells reach a much lower saturation density, and serum-stimulated c-Fos expression is greatly suppressed and disassociated from MAPK activation. Thus, Dab2 is one of the principal genes induced by retinoic acid involved in cell growth suppression, and expression of Dab2 alone is sufficient for uncoupling of MAPK activation and c-Fos expression. Resistance to retinoic acid regulation in PA-1 cells likely results from defects in retinoic acid up-regulation of Dab2 expression.  相似文献   

8.
Deregulated cell growth and inhibition of apoptosis are hallmarks of cancer. All-trans retinoic acid induces clinical remission in patients with acute promyelocytic leukemia by inhibiting cell growth and inducing differentiation and apoptosis of the leukemic blasts. An important role of the cell cycle regulatory protein, cyclin A1, in the development of acute myeloid leukemia has previously been demonstrated in a transgenic mouse model. We have recently shown that there was a direct interaction between cyclin A1 and a major all-trans retinoic acid receptor, RAR alpha, following all-trans retinoic acid treatment of leukemic cells. In the present study, we investigated whether cyclin A1 might be involved in all-trans retinoic acid-induced apoptosis in U-937 leukemic cells. We found that all-trans retinoic acid-induced apoptosis was associated with concomitant increase in cyclin A1 expression. However, there was no induction of cyclin A1 mRNA expression following the all-trans retinoic acid-induced apoptosis. Treatment of cells with a caspase inhibitor was not able to prevent all-trans retinoic acid-induced up-regulation of cyclin A1 expression. Interestingly, induced cyclin A1 expression in U-937 cells led to a significant increase in the proportion of apoptotic cells. Further, U-937 cells overexpressing cyclin A1 appeared to be more sensitive to all-trans retinoic acid-induced apoptosis indicating the ability of cyclin A1 to mediate all-trans retinoic acid-induced apoptosis. Induced cyclin E expression was not able to initiate cell death in U-937 cells. Our results indicate that cyclin A1 might have a role in apoptosis by mediating all-trans retinoic acid-induced apoptosis.  相似文献   

9.
Summary Retinoic acid is known to cause the myeloid differentiation and G1/0 cell cycle arrest of HL-60 cells in a process that requires mitogen-activated protein/extracellular signal regulated kinase (MEK)-dependent extracellular signal regulated kinase (ERK)2 activation. It has also been shown that ectopic expression of cFMS, a platelet-derived growth factor (PDGF)-family transmembrane tyrosine kinase receptor, enhances retinoic acid-induced differentiation and G1/0 arrest. The mechanism of how the retinoic acid and cFMS signaling pathways intersect is not known. The present data show that the ectopic expression of cFMS results in the differential loss of sensitivity of retinoic acid-induced differentiation or G1/0 arrest to inhibition of ERK2 activation. PD98059 was used to inhibit MEK and consequently ERK2. In wild-type HL-60 cells, PD98059 blocked retinoic acid-induced differentiation; but in cFMS stable transfectants, PD98059 only attenuated the induced differentiation, with the resulting response resembling that of retinoic acid-treated wild-type HL-60. In wild-type HL-60, PD98059 greatly attenuated the retinoic acid-induced G1/0 arrest allied with retinoblastoma (RB) hypophosphorylation; but in cFMS stable transfectants, PD98059 had no inhibitory effect on RB hypophosphorylation and G1/0 arrest. This differential sensitivity to PD98059 and uncoupling of retinoic acid-induced differentiation and G1/0 arrest in cFMS transfectants is associated with changes in mitogen-activated protein kinase signaling molecules. The cFMS transfectants had more activated ERK2 than did the wild-type cells, which surprisingly was not attributable to enhanced mitogen-activated protein-kinase-kinase-kinase (RAF) phosphorylation. Retinoic acid increased the amount of activated ERK2 and phosphorylated RAF in both cell lines. But PD98059 eliminated detectable ERK2 activation, as well as inhibited RAF phosphorylation, in untreated and retinoic acid-treated wild-type HL-60 and cFMS transfectants, consistent with MEK or ERK feedback-regulation of RAF, in all four cases. Since PD98059 blocks the cFMS-conferred enhancement of the retinoic acid-induced differentiation, but not growth arrest, the data indicate that cFMS-enhanced differentiation acts primarily through MEK and ERK2, but cFMS-enhanced G1/0 arrest allied with RB hypophosphorylation depends on another cFMS signal route, which by itself can effect G1/0 arrest without activated ERK2. Ectopic expression of cFMS and differential sensitivity to ERK2 inhibition thus reveal that retinoic acid-induced HL-60 cell differentiation and G1/0 arrest are differentially dependent on ERK2 and can be uncoupled. A significant unanticipated finding was that retinoic acid caused a MEK-dependent increase in the amount of phosphorylated RAF. This increase may help sustain prolonged ERK2 activation.  相似文献   

10.
11.
Retinoic acid-induced expression of the CD38 ectoenzyme receptor in HL-60 human myeloblastic leukemia cells is regulated by RARalpha and RXR, and enhanced or prevented cell differentiation depending on the level of expression per cell. RARalpha activation caused CD38 expression, as did RXR activation but not as effectively. Inhibition of MAPK signaling through MEK inhibition diminished the induced expression by both RARs and RXRs. Expression of CD38 enhanced retinoic acid-induced myeloid differentiation and G0 cell cycle arrest, but at higher expression levels, induced differentiation was blocked and retinoic acid induced a loss of cell viability instead. In the case of 1,25-dihydroxyvitamin D3, induced monocytic differentiation was also enhanced by CD38 and not enhanced by higher expression levels, but without induced loss of viability. Expression levels of CD38 thus regulated the cellular response to retinoic acid, either propelling cell differentiation or loss of viability. The cellular effects of CD38 thus depend on its expression level.  相似文献   

12.
We have recently reported that neolacto series gangliosides (NeuAc-nLc) are increased during granulocytic differentiation of human myelogenous leukemia cell line HL-60 cells induced by retinoic acid and that HL-60 cells are differentiated into mature granulocytes when the cells are cultivated with NeuAc-nLc (Nojiri, H., Kitagawa, S., Nakamura, M., Kirito, K., Enomoto, Y., and Saito, M. (1988) J. Biol. Chem. 263, 7443-7446). In contrast to these wild-type-HL-60 cells, HL-60 cells resistant to differentiation induction by retinoic acid showed a markedly decreased content of gangliosides, especially NeuAc-nLc, and did not show any increase in the content of gangliosides when cultivated with retinoic acid. Neutral glycosphingolipids, the precursors of gangliosides, were not accumulated in these resistant cells. When retinoic acid-resistant HL-60 cells were cultivated in the presence of NeuAc-nLc, the cells were found to be differentiated into mature granulocytes on morphological and functional criteria. The differentiation of cells was dependent on the concentration of gangliosides and was accompanied by inhibition of cell growth. Wild-type HL-60 cells differentiated by NeuAc-nLc showed the changes in ganglioside composition, which were similar to those in wild-type HL-60 cells differentiated by retinoic acid; among the gangliosides changed, 2----3 sialylparagloboside and 2----3 sialylnorhexaosylceramide were increased. These findings suggest (a) that the synthesis of particular NeuAc-nLe molecules is an important step for retinoic acid-induced granulocytic differentiation and this step could be bypassed or replaced by exogenous NeuAc-nLc, and (b) that the defective synthesis of particular NeuAc-nLc molecules is responsible for the failure of differentiation induction in retinoic acid-resistant HL-60 cells by retinoic acid.  相似文献   

13.
Many pluripotent embryonal carcinoma (EC) cell lines and all embryonic stem (ES) cell lines have hitherto been maintained in the undifferentiated state only by culture on feeder layers of mitomycin C-treated embryonic fibroblasts. We now demonstrate that medium conditioned by incubation with Buffalo rat liver (BRL) cells prevents the spontaneous differentiation of such cells which occurs when they are plated in the absence of feeders. This effect is not mediated via cell selection but represents a fully reversible inhibitory action ascribed to a differentiation-inhibiting activity (DIA). BRL-conditioned medium can therefore replace feeders in the propagation of homogeneous stem cell populations. Such medium also restricts differentiation in embryoid bodies formed via aggregation of EC cells and partially inhibits retinoic acid-induced differentiation. The PSA4 EC line gives rise only to extraembryonic endoderm-like cells when aggregated or exposed to retinoic acid in BRL-conditioned medium. This suggests that DIA may be lineage-specific. DIA is a dialysable, acid-stable entity of apparent molecular weight 20,000-35,000. Its actions are reproduced neither by insulin-like growth factor-II nor by transforming growth factor-beta. DIA thus appears to be a novel factor exerting a negative control over embryonic stem cell differentiation.  相似文献   

14.
It has been suggested that cell position regulates endodermal differentiation in mouse embryo inner cell masses and in aggregates of embryonal carcinoma (EC) cells. This hypothesis states that cells at the interface between the cell mass and blastocoel fluid or culture medium differentiate into endoderm, whereas internally located cells follow alternative developmental pathways. To test the cell position hypothesis, pluripotent PSA-1 cells were aggregated with hypoxanthine phosphoribosyltransferase-deficient, parietal-like, endodermal cells. The resulting aggregates consisted of cores of PSA-1 cells surrounded by endodermal cells. Autoradiography was used to distinguish between endodermal cells that were the products of EC cell differentiation and the exogenous endoderm. Alkaline phosphatase staining was used to distinguish EC cells from endodermal cells. As predicted by the cell position hypothesis, the PSA-1 EC cells, all of which were internally located, did not differentiate into endodermal cells. Nonspecific inhibition of differentiation did not account for the lack of PSA-1-derived endoderm since the PSA-1 cells in such aggregates did differentiate into columnar ectodermal-like cells. Similar experiments were also conducted with F9 cells. In this case, aggregation cultures contained retinoic acid to induce F9 cells to differentiate into visceral endoderm. In cultures containing F9 cells surrounded by parietal-like endodermal cells, no F9-derived endoderm was detected either autoradiographically or by assaying for alpha-fetoprotein production, a visceral endoderm marker. Thus, retinoic acid-induced endodermal differentiation was also regulated by cell position. Collectively, the above results provide strong evidence for the hypothesis that cell position regulates endodermal differentiation in aggregates of EC cells.  相似文献   

15.
16.
All-trans-retinoic acid, an endogenous morphogen, induced neuronal differentiation of P19 murine embryonal carcinoma cells. Peak differentiation, as judged by the elaboration of neuronal processes, occurred 8 days after exposure of the cells to 0.5 mM retinoic acid, a concentration known to induce neuronal differentiation. An examination of the expression of the extracellular matrix receptors, integrins, during this retinoic acid-induced differentiation period, demonstrated a specific and strong induction of expression of two polypeptides (130 and 115 kDa) immunoprecipitated with an anti-human vitronectin receptor antiserum. The expression of a 90-kDa polypeptide, also immunoprecipitating with this antiserum was induced as well, but to a much smaller extent. The expression of a 96-kDa polypeptide immunoprecipitated by this antiserum and present in the untreated cells was not induced by retinoic acid. The increase in the expression of these polypeptides paralleled the neuronal differentiation of the P19 embryonal carcinoma cells. The expression of these integrins was not induced in a variant of the P19 cells, P19RAC65, which are resistant to differentiation induction by retinoic acid. Utilizing integrin subunit-specific anti-cytoplasmic peptide antibodies together with immunoprecipitation and Western blot analysis, the 130- and 115-kDa polypeptides were identified as the integrin alpha v and beta 1 subunits, respectively. The 90-kDa polypeptide, also induced by retinoic acid, was identified as beta 3, whereas the identity of the uninduced 96-kDa polypeptide remains unclear as yet. Peptide map analysis of deglycosylated polypeptides demonstrated that the 90- and 96-kDa polypeptides are distinct proteins and that the 115-kDa polypeptides immunoprecipitated with either anti-alpha v or anti-beta 1 antibodies are identical, further establishing that the 115-kDa polypeptide associating with alpha v is beta 1. The retinoic acid-induced expression of beta 1 occurred at the level of mRNA expression which also paralleled neuronal differentiation, but peaked slightly ahead of the cell surface expression of beta 1. The expression of other beta 1-associated alpha subunits was not induced by retinoic acid in these cells. These data demonstrate that retinoic acid strongly induces the expression of the integrin heterodimer alpha v beta 1 and also, to a smaller extent, the expression of alpha v beta 3. The retinoic acid-induced, high level surface expression of the alpha v beta 1 heterodimer is tightly correlated with the induction of neuronal differentiation by retinoic acid. This finding suggests an important role for the alpha v beta 1 heterodimer in the neuronal differentiation process.  相似文献   

17.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G(1)/G(0) growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1alpha,25-dihydroxyvitamin D(3) and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G(1)/G(0) growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

18.
A murine embryonal carcinoma cell line (F9) was used to examine the effect of a pulsed electromagnetic field on the growth and differentiation of malignant cells. The cells can be induced to differentiate into parietal endodermal cells by treatment with retinoic acid. The pulsed electromagnetic field (1 Gauss and 10 Gauss) promoted the growth of embryonal carcinoma cells in both the presence and absence of retinoic acid. The pulsed electromagnetic field was also found to inhibit retinoic acid-induced differentiation, when the degree of differentiation was based on morphological criteria or on the production of plasminogen activator.  相似文献   

19.
Changes in expression of the proto-oncogene Bcl-2 are well known in the developing brain, with a high expression level in young post-mitotic neurons that are beginning the outgrowth of processes. The physiological significance of the Bcl-2 up-regulation in these neurons is not fully understood. We used a differentiation model for human CNS neurons to study the expression and function of Bcl-2. NT2/D1 human neuronal precursor cells differentiated into a neuronal phenotype in the presence of 10 microM retinoic acid for 3-5 weeks. This concentration of retinoic acid was not toxic to undifferentiated NT2/D1 cells but was sufficient to up-regulate the BCL-2 protein in 6 days. The BCL-2 levels increased further after 3 weeks, i.e. when the cells started to show neuronal morphology. Inhibition of the accumulation of endogenous BCL-2 with vectors expressing the antisense mRNA of Bcl-2 caused extensive apoptosis after 3 weeks of the retinoic acid treatment. The loss of neuron-like cells from differentiating cultures indicated that the dead cells were those committed to neuronal differentiation. Death was related to the presence of retinoic acid since withdrawal of retinoic acid after 16 days of treatment dramatically increased cell surviving. The ability of BCL-2 to prevent retinoic acid-induced cell death was also confirmed in undifferentiated NT2/D1 cells that were transfected with a vector containing Bcl-2 cDNA in sense orientation and exposed to toxic doses (40-80 microM) of retinoic acid. Furthermore, down-regulation of BCL-2 levels by an antisense oligonucleotide in neuronally differentiated NT2/D1 cells increased their susceptibility to retinoic acid-induced apoptosis. These results indicate that one function of the up-regulation of endogenous BCL-2 during neuronal differentiation is to regulate the sensitivity of young post-mitotic neurons to retinoic acid-mediated apoptosis.  相似文献   

20.
The ATM protein kinase is mutated in ataxia telangiectasia, a genetic disease characterized by defective DNA repair, neurodegeneration, and growth factor signaling defects. The activity of ATM kinase is activated by DNA damage, and this activation is required for cells to survive genotoxic events. In addition to this well characterized role in DNA repair, we now demonstrate a novel role for ATM in the retinoic acid (RA)-induced differentiation of SH-SY5Y neuroblastoma cells into post-mitotic, neuronal-like cells. RA rapidly activates the activity of ATM kinase, leading to the ATM-dependent phosphorylation of the CREB protein, extrusion of neuritic processes, and differentiation of SH-SY5Y cells into neuronal-like cells. When ATM protein expression was suppressed by short hairpin RNA, the ATM-dependent phosphorylation of CREB was blocked. Furthermore, ATM-negative cells failed to differentiate into neuronal-like cells when exposed to retinoic acid; instead, they underwent cell death. Expression of a constitutively active CREBVP16 construct, or exposure to forskolin to induce CREB phosphorylation, rescued ATM negative cells and restored differentiation. Furthermore, when dominant negative CREB proteins with mutations in either the CREB phosphorylation site (CREBS133A) or the DNA binding domain (KCREB) were introduced into SH-SY5Y cells, retinoic acid-induced differentiation was blocked and the cells underwent cell death. The results demonstrate that ATM is required for the retinoic acid-induced differentiation of SH-SY5Y cells through the ATM dependent-phosphorylation of serine 133 of CREB. These results therefore define a novel mechanism for activation of the activity of ATM kinase by RA, and implicate ATM in the regulation of CREB function during RA-induced differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号