首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
2.
The gamma----beta globin gene switch in humans is normally on a set developmental clock but is delayed in infants of diabetic mothers. We cultured cord blood erythroid progenitors and assayed globin produced in the presence and absence of metabolites that are elevated in such infants. Analogues of butyric acid at supranormal concentrations significantly augmented gamma and inhibited beta globin expression. The uptake of alpha-amino-n-butyric acid into colony-derived erythroblasts was increased in the presence of supranormal insulin. These findings suggest that elevated levels of alpha-amino-n-butyric acid and insulin in the developing fetus delay the globin switch and may offer potential for augmenting gamma globin expression in the beta globin chain diseases.  相似文献   

3.
An enhancer is located immediately 3' to the A gamma globin gene. We have used DNase I footprinting to map the sites of interaction of nuclear proteins with the DNA sequences of this enhancer. Eight footprints were discovered, distributed over 600 base pairs of DNA. Three of these contain a consensus binding site for the erythroid specific factor GATA-I. Each of these GATA-1 sites had an enhancer activity when inserted into a reporter plasmid and tested in human erythroleukemia cells. Other footprints within the enhancer contained consensus binding sequences for the ubiquitous, positive regulatory proteins AP2 and CBP-1. An Sp1-like recognition sequence was also identified. Synthetic oligonucleotides encompassing two of the footprints generated a slowly migrating complex in gel mobility shift assays. The same complex forms on a fragment of the human gamma globin gene promoter extending from -260 to -200. The DNaseI footprint of this protein complex with the enhancer overlapped a sequence, AGGAGGA, found within the binding site for a protein that interacts with the chicken beta globin promoter and enhancer, termed the stage selector element. We propose that this complex of proteins may be involved in the human gamma globin promoter-enhancer interaction.  相似文献   

4.
5.
DNA sequences regulating human beta globin gene expression.   总被引:6,自引:1,他引:6       下载免费PDF全文
K A Kosche  C Dobkin    A Bank 《Nucleic acids research》1985,13(21):7781-7793
Human delta globin is expressed at approximately 1-2% of the level of human beta globin in erythroid cells despite the marked homology between these two globins. To determine the DNA sequences responsible for this effect, delta and beta globin genes and fusion products of these genes constructed in vitro were transfected and expressed in HeLa cells. The results indicate that when the small intervening sequence of the beta gene (beta IVS 1) is replaced by delta IVS 1, expression of the chimeric gene is the same as that of the normal beta globin gene. By contrast, when the large intervening sequence of the beta gene (beta IVS 2) is replaced by delta IVS 2, expression of the chimeric gene is markedly reduced. These results suggest that there are signals within IVS 2 of the delta and beta genes which affect their relative expression.  相似文献   

6.
7.
Hybrid genes containing human gamma or beta globin gene promoters linked to a neomycin resistance (neoR) gene were transfected into erythroid (K562) and nonerythroid (HeLa) cells. The number of clones resistant to G418, a neomycin analogue, was used to assay promoter strength. The results indicate that in K562 cells both promoters are active, and the gamma gene promoter is much stronger than the beta. By contrast, neither gene promoter is active in HeLa cells. These experiments indicate that these globin gene promoters are tissue-specific and sufficient for activity.  相似文献   

8.
We have probed the chromatin conformation of the G gamma-A gamma-delta-beta globin gene locus of K562 cells, a human hematopoietic cell line, with the enzyme pancreatic DNAse I. This enzyme preferentially digests genes in an active configuration. We have found that in K562 cells, which produce embryonic and fetal but not adult hemoglobins, both the active gamma and inactive beta genes are DNAse I sensitive. However, only the active gamma genes have DNAse I hypersensitive regions. The hypersensitive regions have been mapped to an area approximately 100 base pairs 5' to the G gamma and A gamma genes.  相似文献   

9.
The fetal globin genes G gamma and A gamma from one chromosome of a chimpanzee (Pan troglodytes) were sequenced and found to be closely similar to the corresponding genes of man and the gorilla. These genes contain identical promoter and termination signals and have exons 1 and 2 separated by the conserved short intron 1 (122 bp) and exons 2 and 3 separated by the more rapidly evolving, larger intron 2 (893 bp and 887 bp in chimpanzee G gamma and A gamma, respectively). Each intron 2 has a stretch of simple sequence DNA (TG)n serving possibly as a "hot spot" for recombination. The two chimpanzee genes encode polypeptide chains that differ only at position 136 (glycine in G gamma and alanine in A gamma) and that are identical to the corresponding human chains, which have aspartic acid at position 73 and lysine at 104 in contrast to glycine and arginine at these respective positions of the gorilla A gamma chain. Phylogenetic analysis by the parsimony method revealed four silent (synonymous) base substitutions in evolutionary descent of the chimpanzee G gamma and A gamma codons and none in the human and gorilla codons. These Homininae (Pan, Homo, Gorilla) coding sequences evolved at one-tenth the average mammalian rate for nonsynonymous and one-fourth that for synonymous substitutions. Three sequence regions that were affected by gene conversions between chimpanzee G gamma and A gamma loci were identified: one extended 3' of the hot spot with G gamma replaced by the A gamma sequence, another extended 5' of the hot spot with A gamma replaced by G gamma, and the third conversion extended from the 5' flanking to the 5' end of intron 2, with G gamma replaced here by the A gamma sequence. A conversion similar to this third one has occurred independently in the descent of the gorilla genes. The four previously identified conversions, labeled C1-C4 (Scott et al. 1984), were substantiated with the addition of the chimpanzee genes to our analysis (C1 being shared by all three hominines and C2, C3, and C4 being found only in humans). Thus, the fetal genes from all three of these hominine species have been active in gene conversions during the descent of each species.   相似文献   

10.
An enhancer element lies 3'' to the human A gamma globin gene.   总被引:28,自引:1,他引:28       下载免费PDF全文
D M Bodine  T J Ley 《The EMBO journal》1987,6(10):2997-3004
  相似文献   

11.
12.
13.
Point mutations in G gamma and A gamma globin gene promoters are associated with increased production of G gamma and A gamma globin, respectively. To determine whether an upstream promoter mutation could account for elevated A gamma in a Black adolescent with A gamma-beta+-HPFH and sickle cell trait, we cloned the 13 kb BglII fragment containing both gamma genes into phage lambda vector EMBL3. For one clone, the A gamma upstream promoter showed no hybridization to a 19 bp oligonucleotide whose sequence centered at -117. A gamma promoter sequence data for this mutant clone revealed a 13 bp deletion which eliminated the A gamma distal CCAAT box. Amplified A gamma genomic DNA of this and a similar case showed hybridization to both deletion-mutant and normal oligonucleotide probes. We propose that this 13 bp deletion removes part of the binding site for a repressor protein which is abundant in adult erythroid cells.  相似文献   

14.
15.
The nucleotide sequence of the entire beta-like globin gene cluster of rabbits has been determined. This sequence of a continuous stretch of 44.5 x 10(3) base-pairs (bp) starts about 6 x 10(3) bp upstream from epsilon (the 5'-most gene) and ends about 12 x 10(3) bp downstream from beta (the 3'-most gene). Analysis of the sequence reveals that: (1) the sequence is relatively A + T rich (about 60%); (2) regions with high G + C content are associated with OcC repeats, a short interspersed repeated DNA in rabbits; (3) the distribution of polypurines, polypyrimidines and alternating purine/pyrimidine tracts is not random within the cluster; (4) most open reading frames are associated with known globin coding regions, OcC repeats or long interspersed repeats (L1 repeats); (5) the most prominent open reading frames are found in the L1 repeats; (6) different strand asymmetries in base composition are associated with embyronic and adult genes as well as the tandem L1 repeats at the 3' end of the cluster; and (7) essentially all the repeats appear to have been inserted by a transposon mechanism. A comparison of the sequence with itself by a dot-plot analysis has revealed nine new members of the OcC family of repeats in addition to the six previously reported. The OcC repeats tend to be clustered, particularly in the epsilon-gamma and gamma-psi delta intergenic regions. Dot-plot comparisons between the rabbit and the human clusters have revealed extensive sequence matches. Homology starts about 6 x 10(3) bp 5' to epsilon or as far upstream as the rabbit sequence is available. It continues throughout the entire cluster and stops about 0.7 x 10(3) bp 3' to beta, at which point several repeats have inserted in both rabbits and humans. Throughout the gene cluster, the homology is interrupted mainly by insertions or deletions in either the rabbit or the human genome. Almost all of the insertions are of known short or long repeated DNAs. The positions of the insertions are different in the two gene clusters, which indicates that both short and long repeats have been transposing throughout the genome for the time since the mammalian radiation. An alignment of rabbit and human sequences allows the calculation of the substitution rate around epsilon. Sequences far removed from the gene are evolving at a rate equivalent to the pseudogene rate, although some short regions show an apparently higher rate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Summary In vitro synthesized duplex DNA complementary to human foetal globin messenger RNA was integrated into bacterial plasmids and amplified by transformation of Escherichia coli. Recombinants carrying globin DNA were identified by hybridization of foetal globin messenger RNA to bacterial DNA in situ and by liquid hybridization of purified plasmids to specific globin complementary DNA probes. Heteroduplex mapping revealed either a simple insertion loop at the position of the EcoRI site of the parental plasmid or substitution loops due to insertion of globin DNA sequences combined with deletions of the parental plasmid DNA. We provide evidence to suggest that these deletions are the result of a site-specific nicking activity of the EcoRI preparations used in the formation of recombinant plasmids.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号