首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the endogenous metabolism of Escherichia coli   总被引:13,自引:0,他引:13       下载免费PDF全文
1. The endogenous metabolism of Escherichia coli has been studied by examining changes in cellular composition and of the suspending fluid during starvation of washed suspensions of the organism, in water or in phosphate buffer, at 37° under aerobic and anaerobic conditions. 2. When E. coli is grown in glucose–ammonium salts media the cells contain glycogen, which is utilized rapidly during subsequent starvation of the cells. 3. Ammonia is released by starved cells only after a lag period, which corresponds to the time taken for the cellular glycogen to be almost completely utilized. 4. If cells are grown under conditions that permit incorporation of 14C into protein but not into glycogen and are then starved, release of 14CO2 commences immediately and continues at a linear rate throughout the period of glycogen utilization; it is concluded that the presence of glycogen in the cell prevents the net degradation of nitrogenous materials but does not suppress protein turnover. 5. RNA is degraded by the cells immediately they are starved, ribose is oxidized and ultraviolet-absorbing materials are released to the suspending medium. 6. There is no significant utilization of lipid during the starvation of glucose-grown E. coli. 7. There is no loss of viability during the initial 12hr. period of starvation under either aerobic or anaerobic conditions, but thereafter the cells die more rapidly under conditions of anaerobiosis. 8. These results are discussed in relation to the known patterns of endogenous metabolism and survival of other bacteria.  相似文献   

2.
1. When Tetrahymena were deprived of nutrients 50% of the polysomes disaggregated within 20 min and 20% of the total RNA broke down in 2 h. Ribosomal RNA accounted for 75% of the RNA breakdown. 2. RNA labelled by a long incubation with [14C]uridine was stable in growing cells and in the presence of actinomycin D, but broke down at the same rate as bulk RNA in starved cells. 3. The following substances inhibited the loss of RNA during starvation: cycloheximide (which inhibited both polysome disaggregation and protein synthesis), inhibitors of energy metabolism and puromycin (all of which caused polysome disaggregation and inhibited protein synthesis), and chloroquine and 7-amino-1-chloro-3-L-tosylamidoheptan-2-one ('TLCK') (neither of which affected polysomes or protein synthesis). 4. Starvation appears to activate a ribosome degradation mechanism that may involve lysosomal and non-lysosomal enzymes.  相似文献   

3.
1. When washed suspensions of Sarcina lutea are starved aerobically in phosphate buffer at the growth temperature of 37 degrees , the rate of endogenous oxygen consumption decreases to very low values after 10hr., although many of the cells survive for 40hr. If starvation is prolonged further, the bacteria die at a rate of approximately 1.5% of the initial viable population per hour. 2. Oxidation of intracellular free amino acids accounts for most of the observed endogenous oxygen uptake but RNA is also utilized and a portion of the component bases and pentose is degraded and presumably oxidized. Ammonia appears in the supernatant and some pentose and ultraviolet-absorbing nucleotide are released from the cells. DNA, protein and polysaccharide are not measurably degraded. 3. Survival can be correlated with the ability of aerobically starved bacteria to oxidize exogenous l-glutamate and glucose. When starved under nitrogen for 40hr. cells continue to oxidize their endogenous reserves at undiminished rates when transferred to aerobic conditions; on prolonging anaerobic starvation the rate of oxidation declines during the period of most rapid loss of viability. 4. In the presence of Mg(2+), RNA degradation during aerobic starvation is almost completely suppressed without affecting the period for which the bacteria survive. 5. Cells grown in peptone supplemented with glucose accumulate reserves of polysaccharide which are metabolized in aerobic starvation, together with free amino acids. Ammonia is evolved and RNA is degraded to a greater extent than in peptone-grown suspensions. Bacteria rich in polysaccharide survive less well than those which are deficient in the polymer; the reason for this phenomenon has yet to be established. 6. In peptone medium, endogenous oxygen uptake and the concentration of intracellular free amino acids decline as growth progresses and they continue to decrease when the organism is held in stationary phase. Under the conditions used, the endogenous Q(o2) and free amino acid pool of cells grown in peptone with 2% (w/v) glucose did not decline so markedly and the bacteria contained large amounts of polysaccharide at all stages of growth.  相似文献   

4.
Carbon starvation induces the development of a starvation- and stress-resistant cell state in marine Vibrio sp. strain S14 (CCUG 15956). The starved cells remain highly responsive to nutrients during prolonged starvation and exhibit instantaneous severalfold increases in the rates of protein synthesis and RNA synthesis when substrate is added. In order to elucidate the physiological basis for the survival of cells that are starved for a long time, as well as the capacity of these cells for rapid and efficient recovery, we analyzed the ribosome content of carbon-starved Vibrio sp. strain S14 cells. By using direct chemical measurements of the amounts of ribosomal particles in carbon-starved cultures, we demonstrated that ribosomes were lost relatively slowly (half life, 79 h) and that they existed in large excess over the apparent demand for protein synthesis. After 24 h of starvation the total rate of protein synthesis was 2.3% of the rate during growth, and after 3 days this rate was 0.7% of the rate during growth; the relative amounts of ribosomal particles at these times were 81 and 52%, respectively. The ribosome population consisted of 90% 70S monoribosomes, and no polyribosomes were detected in the starved cells. The 70S monoribosomes were responsible for the bulk of the protein synthesis during carbon starvation; some activity was also detected in the polyribosome size region on sucrose density gradients. We suggest that nongrowing carbon-starved Vibrio sp. strain S14 cells possess an excess protein synthesis capacity, which may be essential for their ability to immediately initiate an upshift program when substrate is added.  相似文献   

5.
Some of the reactions of endogenous metabolism ofStaphylococcus aureus were examined and the level of endogenous substrate was found to be related to oxygen consumption. In starved cells, the amount of free amino acids, protein and RNA decreased while that of DNA increased. The cells consumed mainly glutamic and aspartic acids and, to a lesser degree, alanine, glycine and serine, while leucine/isoleucine, methionine, tyrosine and phenylalanine were released into the medium. The degradation of RNA by starved cells was suppressed by Mg2+. Resting cells ofStaphylococcus aureus oxidized adenosine, guanosine, uridine, adenine, guanine and ribose. After 3 h of starvation at 37°C the viability of cells was not affected although 40.6% amino acids, 8.5% protein and 36.5% RNA had been consumed. Presented in part at the XVIIth Meeting of the Polish Society for Microbiology, Warsaw, September 1970.  相似文献   

6.
The effect of long-term phosphate (Pi) starvation of up to 3 weeks on the levels of purine nucleotides and related compounds was examined using suspension-cultured Catharanthus roseus cells. Levels of adenine and guanine nucleotides, especially ATP and GTP, were markedly reduced during Pi-starvation. There was an increase in the activity of RNase, DNase, 5'- and 3'-nucleotidases and acid phosphatase, which may participate in the hydrolysis of nucleic acids and nucleotides. Accumulation of adenosine, adenine, guanosine and guanine was observed during the long-term Pi starvation. Long-term Pi starvation markedly depressed the flux of transport of exogenously supplied [8-(14)C]adenosine and [8-(14)C]adenine, but these labelled compounds which were taken up by the cells were readily converted to adenine nucleotides even in Pi-starved cells, in which RNA synthesis from these precursors was significantly reduced. The activities of adenosine kinase, adenine phosphoribosyltransferase and adenosine nucleosidase were maintained at a high level in long-term Pi starved cells.  相似文献   

7.
Cells of Arthrobacter crystallopoietes, harvested during growth as spheres and as rods, were starved by shaking at 30 C in phosphate buffer for 30 days, during which time they maintained 100% viability. Changes in cellular components and the activity of specific enzyme pathways were monitored. A glycogen-like polysaccharide comprised 40% of the dry weight of growing spherical cells and 10% of the dry weight of rod cells. This material was utilized at approximately the same rate, on a percentage basis, during starvation of both cell forms. The rods degraded intracellular protein at approximately twice the rate of the spheres. At the end of 30 days, the rods had degraded 40% and the spheres 20% of their initial content of protein. Ribonucleic acid (RNA) was degraded significantly more rapidly in the rods. After 30 days starvation, 85 and 32% of the initial RNA of rods and spheres, respectively, had been depleted. Magnesium ion followed this same general pattern; the rods lost 65% and the spheres 45% of their initial content during 28 days of starvation. Deoxyribonucleic acid increased by 20% during the first few hours of starvation of both cell forms and then remained constant. The ability of glucose-, succinate-, and 2-hydroxypyridine (2-HP)-grown cells to oxidize glucose remained constant during 14 days of starvation. The ability of succinate-grown cells to oxidize succinate decreased rapidly during the first few hours of starvation to a rate which remained constant for 14 days. Cells adapted to growth on 2-HP completely lost their ability to oxidize this substrate after 3 days starvation.  相似文献   

8.
Normal human lymphoblasts starved for each of several essential, but not essential, amino acids had decreased DNA and RNA synthesis but no change in free intracellular purine nucleotides. The rates of purine nucleotide synthesis via the de novo and salvage pathways were measured by incorporating [14C]formate and [14C]hypoxanthine labels, respectively, into lymphoblasts starved for an amino acid or treated with a protein synthesis inhibitor. After 3 h of starvation, purine synthesis via the de novo pathway decreased 90% and via the salvage pathway decreased 60%. Cycloheximide and puromycin each reduced de novo synthesis by 96% and salvage synthesis by 72%. The decrease in purine synthesis de novo after removal of the amino acid was of first order kinetics and was fully and rapidly reversed by reconstitution with the amino acid. The synthesis of alpha-N-formylglycinamide ribonucleotide declined 97% after amino acid starvation; the synthesis of purines from 5-aminoimidazole-4-carboxamide riboside decreased 41%. The synthesis of guanylates decreased more than the synthesis of adenylates during amino acid starvation.  相似文献   

9.
Starvation-Survival Processes of a Marine Vibrio   总被引:23,自引:21,他引:2       下载免费PDF全文
Levels of DNA, RNA, protein, ATP, glutathione, and radioactivity associated with [35S]methionine-labeled cellular protein were estimated at various times during the starvation-survival process of a marine psychrophilic heterotrophic Vibrio sp., Ant-300. Values for the macromolecules were analyzed in terms of total, viable, and respiring cells. Electron micrographs (thin sections) were made on log-phase and 5.5-week-starved cells. On a per-cell basis, the levels of protein and DNA rapidly decreased until a constant level was attained. A second method in which radioactive sulfur was used for monitoring protein demonstrated that the cellular protein level decreased for approximately 2.5 weeks and then remained constant. An initial decrease in the RNA level with starvation was noted, but with time the RNA (orcinol-positive material) level increased to 2.5 times the minimum level. After 6 weeks of starvation, 45 to 60% of the cells remained capable of respiration, as determined by iodonitrotetrazolium violet-formazan granule production. Potential respiration and endogenous respiration levels fell, with an intervening 1-week peak, until at 2 weeks no endogenous respiration could be measured; respiratory potential remained high. The cell glutathione level fell during starvation, but when the cells were starved in the presence of the appropriate amino acids, glutathione was resynthesized to its original level, beginning after 1 week of starvation. The cells used much of their stored products and became ultramicrocells during the 6-week starvation-survival process. Ant-300 underwent many physiological changes in the first week of starvation that relate to the utilization or production of ATP. After that period, a stable pattern for long-term starvation was demonstrated.  相似文献   

10.
The non-transmembrane protein tyrosine phosphatase, PTP-S, is located predominantly in the cell nucleus in association with chromatin. Here we have analysed the expression of PTP-S upon mitogenic stimulation and during cell division cycle. During liver regeneration after partial hepatectomy, PTP-S mRNA levels increased 16-fold after 6 h (G1 phase) and declined thereafter. Upon stimulation of serum starved cells in culture with serum, PTP-S mRNA levels increased reaching a maximum during late G1 phase and declined thereafter. No significant change in PTP-S RNA levels was observed in growing cells during cell cycle. PTP-S protein levels were also found to increase upon mitogenic stimulation. Upon serum starvation for 72 h, PTP-S protein disappears from the nucleus and is seen in the cytoplasm; after 96 h of serum starvation the PTP-S protein disappears from the nucleus as well as cytoplasm. Refeeding of starved cells for 6 h results in reappearance of this protein in the nucleus. Our results suggest a role of this phosphatase during cell proliferation.  相似文献   

11.
When islets from mice were incubated with 16.7 mM-glucose, previous starvation for 48 h decreased the rate of insulin release by approx. 50% and glucose utilization was decreased by approx. 35%. The maximally extractable activity of glucose 6-phosphate dehydrogenase was diminished by 28% after starvation. The formation of 14CO2 from both [1-14C]glucose was, however, higher than the rate of oxidation of [6-14C]-glucose in islets from both fed and starved mice. The fraction of glucose utilized that was oxidized (specific 14CO2 yield) ranged from one-fifth to one-third and was higher in islets from starved mice with both [1-14C]glucose and [6-14C]glucose as substrate. The contribution of pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose cycle and the turnover of NADPH in this pathway were identical in islets from fed and starved animals. After incubation at 16.7 mM-glucose for 30 min the contents of glucose (6-phosphate and 6-phosphogluconate were both unchanged by starvation. It is concluded that there is no correlation between the decreased sensitivity of the insulin secretory mechanism during starvation and the metabolism of glucose via the pentose cycle, the islet content of glucose 6-phosphate or 6-phosphogluconate.  相似文献   

12.
Reactivation of UV-C-inactivated Pseudomonas aeruginosa bacteriophages D3C3, F116, G101, and UNL-1 was quantified in host cells infected during the exponential phase, during the stationary phase, and after starvation (1 day, 1 and 5 weeks) under conditions designed to detect dark repair and photoreactivation. Our experiments revealed that while the photoreactivation capacity of stationary-phase or starved cells remained about the same as that of exponential-phase cells, in some cases their capacity to support dark repair of UV-inactivated bacteriophages increased over 10-fold. This enhanced reactivation capacity was correlated with the ca. 30-fold-greater UV-C resistance of P. aeruginosa host cells that were in the stationary phase or exposed to starvation conditions prior to irradiation. The dark repair capacity of P. aeruginosa cells that were infected while they were starved for prolonged periods depended on the bacteriophage examined. For bacteriophage D3C3 this dark repair capacity declined with prolonged starvation, while for bacteriophage G101 the dark repair capacity continued to increase when cells were starved for 24 h or 1 week prior to infection. For G101, the reactivation potentials were 16-, 18-, 10-, and 3-fold at starvation intervals of 1 day, 1 week, 5 weeks, and 1. 5 years, respectively. Exclusive use of exponential-phase cells to quantify bacteriophage reactivation should detect only a fraction of the true phage reactivation potential.  相似文献   

13.
The effects of carbon deprivation on survival of methanotrophic bacteria were compared in cultures incubated in the presence and absence of oxygen in the starvation medium. Survival and recovery of the examined methanotrophs were generally highest for cultures starved under anoxic conditions as indicated by poststarvation measurements of methane oxidation, tetrazolium salt reduction, plate counts, and protein synthesis. Methylosinus trichosporium OB3b survived up to 6 weeks of carbon deprivation under anoxic conditions while maintaining a physiological state that allowed relatively rapid (hours) methane oxidation after substrate addition. A small fraction of cells starved under oxic and anoxic conditions (4 and 10%, respectively) survived more than 10 weeks but required several days for recovery on plates and in liquid medium. A non-spore-forming methanotroph, strain WP 12, displayed 36 to 118% of its initial methane oxidation capacity after 5 days of carbon deprivation. Oxidation rates varied with growth history prior to the experiments as well as with starvation conditions. Strain WP 12 starved under anoxic conditions showed up to 90% higher methane oxidation activity and 46% higher protein production after starvation than did cultures starved under oxic conditions. Only minor changes in biomass and morphology were seen for methanotrophic bacteria starved under anoxic conditions. In contrast, starvation under oxic conditions resulted in morphology changes and an initial 28 to 35% loss of cell protein. These data suggest that methanotrophic bacteria can survive carbon deprivation under anoxic conditions by using maintenance energy derived solely from an anaerobic endogenous metabolism. This capability could partly explain a significant potential for methane oxidation in environments not continuously supporting aerobic methanotrophic growth.  相似文献   

14.
The chemotactic responses by starved cells of marine Vibrio sp. strain S14 differed from those elicited by cells that were not nutrient limited. The rate of chemotaxis at different concentrations of several attractants varied for starved and growing cells. Vibrio sp. strain S14 showed positive chemotaxis to leucine, valine, arginine, and glucose at the onset of energy and nutrient deprivation. A continued, though decreased, positive response was demonstrated fro leucine, arginine, and glucose at 10 h of starvation. Cells starved for 3 h displayed a stronger response to glucose than those starved for shorter or longer times. However, cells starved for 5 and 10 h responded more strongly to a lower concentration of glucose than did cells starved for 0 and 3 h. Starvation for 24 h elicited no measurable chemotaxis to leucine, arginine, or glucose. The motility decreased by over 95% in the cell population after 24 h of starvation, which resulted in a low sensitivity in the chemotaxis assay. A switch in the response to valine was observed by 3 h of starvation. The addition of nutrients of 22-h-starved cells elicited a temporary positive chemotactic response to leucine by 2 and 4 h of nutrient recovery, while cells at 1 and 6 h of recovery showed no response. At 2 h of recovery, the greatest response was recorded to 10−4 M leucine, whereas at 4 h it was to 10−2 M leucine. Ten to fifty percent of the 22-h-starved cell population regained their motility after 4 h of nutrient-aided recovery. It is possible that two types of chemosensory systems exist in marine bacteria. Starved and growing cells responded to different concentrations of the attractant, and growing cells displayed a saturated chemotactic system with leucine as the attractant, unlike the response during starvation.  相似文献   

15.
Luzzati, Denise (Institut de Biologie Physico-Chimique, Paris, France). Effect of thymine starvation on messenger ribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 92:1435-1446. 1966.-During the course of thymine starvation, the rate of synthesis of messenger ribonucleic acid (mRNA, the rapidly labeled fraction of the RNA which decays in the presence of dinitrophenol or which hybridizes with deoxyribonucleic acid) decreases exponentially, in parallel with the viability of the thymine-starved bacteria. The ability of cell-free extracts of starved bacteria to incorporate ribonucleoside triphosphates into RNA was determined; it was found to be inferior to that of extracts from control cells. The analysis of the properties of cell-free extracts of starved cells shows that their decreased RNA polymerase activity is the consequence of a modification of their deoxyribonucleic acid, the ability of which to serve as a template for RNA polymerase decreases during starvation.  相似文献   

16.
Fingerprint protein patterns were produced by two-dimensional polyacrylamide electrophoresis on lysed cells of a Vibrio sp., Ant-300, which were prepared from growing and starved cultures. The cells were labeled with [S]methionine during growth and subsequently starved for up to 30 days. Samples were taken at selected time points representing stages in the starvation-survival process. Unlabeled starved cells were allowed to recover in the presence of [S]methionine to determine protein changes associated with the recovery from starvation. All growth conditions produced similar protein fingerprints; however, some protein spots disappeared, whereas others were seen only during starvation.  相似文献   

17.
Depending on the moment of cellobiose starvation, Clostridium cellulolyticum cells behave in different ways. Cells starved during the exponential phase of growth sporulate at 30%, whereas exhaustion of the carbon substrate at the beginning of growth does not provoke cell sporulation. Growth in the presence of excess cellobiose generates 3% spores. The response of C. cellulolyticum to carbon starvation involves changes in proteolytic activities; higher activities (20% protein degradation) corresponded to a higher level of sporulation; lower proteolysis (5%) was observed in cells starved during the beginning of exponential growth, when sporulation was not observed; with an excess of cellobiose, an intermediate value (10%), accompanied by a low level of sporulation, was observed in cells taken at the end of the exponential growth phase. The basal percentage of the protein breakdown in nonstarved culture was 4%. Cells lacking proteolytic activities failed to induce sporulation. High concentrations of cellobiose repressed proteolytic activities and sporulation. The onset of carbon starvation during the growth phase affected the survival response of C. cellulolyticum via the sporulation process and also via cell-cellulose interaction. Cells from the exponential growth phase were more adhesive to filter paper than cells from the stationary growth phase but less than cells from the late stationary growth phase.  相似文献   

18.
The actomyosin protein complex of Physarum polycephalum was prepared from vegetative and starved plasmodia. The yield of actomyosin per unit wet wt. was the same from both types of plasmodia. Myosin was resolved from the complex by gel filtration and purified by ion-exchange chromatography. The Ca(2+)-stimulated adenosine triphosphatase activities of myosin preparations from vegetative and starved plasmodia were not appreciably different. Synthesis of myosin de novo was shown to occur during the starvation phase of the life-cycle by the isolation of labelled myosin preparations from plasmodia starved in the presence of [2-(14)C]glycine. Fractionation of polyacrylamide gels after gel filtration of labelled myosin confirmed the presence of label in the adenosine triphosphatase-active myosin band. It is concluded that during starvation myosin synthesis continues although there is a net loss of approx. 50% of the total protein. Sodium dodecyl sulphate-polyacrylamide-gel electrophoresis of Physarum myosin showed the presence of low-molecular-weight components of the molecule, similar to those of muscle myosins. The content and composition of the free amino acid pool of Physarum was measured at various time-intervals during the vegetative and starvation phases of the life-cycle.  相似文献   

19.
  1. Washed cell suspensions of Bdellovibrio bacteriovorus harvested shortly after lysis of their substrate organisms and shaken in buffer have a constant and high endogenous respiration rate for a bout 6 h which then declines sharply to a rate approximately 10% of the original. Viability of cell suspensions shows little change over the first 4–6 h and then decreases by some 50% in 10 h.
  2. Over the first 5–6 h of starvation there is a loss of about 50% of total cell carbon. This loss is distributed about equally between CO2 and small molecules released into the suspending buffer. The protein and nucleic acid contents of the cells decrease concomitantly from time zero during starvation while DNA content remains constant. Ribosomal profiles show a rapid degradation of ribosomes.
  3. In the presence of glutamate or glutamate plus a balanced amino acid mixture, loss of cell material and loss of viability is partially or completely prevented. There is extensive protein turnover when glutamate and an amino acid mixture are available to the bdellovibrio.
  4. The pattern of changes observed in B. bacteriovorus during starvation is compared to reported changes in other species of bacteria, and the significances of its high endogenous respiration and sensitivity to starvation are discussed.
  相似文献   

20.
Cells of Arthrobacter atrocyaneus and A. crystallopoietes, harvested during their exponential phase, were starved in 0.03 M phosphate buffer (pH 7.0) for 28 days. During this time, the cells maintained 90 to 100% viability. Experimental results were similar for both organisms. Total cellular deoxyribonucleic acid was maintained. Measurable degradation rates for deoxyribonucleic acid as determined by radioisotope techniques were not observed, and only during the initial hours of starvation could a synthetic rate be determined. Total ribonucleic acid levels remained stable for the first 24 h of starvation, after which slow, continuous loss of orcinol-reactive material occurred. Synthetic and degradative rates of ribonucleic acid, as determined by radioisotope techniques, dropped quickly at the onset of starvation. Constant basal rates were attained after 24 h. In A. atrocyaneus, total cell protein was degraded continuously from the onset of starvation. In A. crystallopoietes, total cell protein remained stable for the first 24 h, after which slow continuous loss occurred. After 28 days, the total protein per cell was similar for both organisms. In the first week, amino acid pools stabilized at about 50% of the values characteristic of growth. Rates of degradation of protein decreased rapidly for the first 24 h for both organisms, but leveled to a constant basal rate thereafter. Rates of new protein synthesis dropped during the first 24 h and by 48 h achieved a constant basal rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号