首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bolus dispersal through the lungs in surfactant replacement therapy   总被引:3,自引:0,他引:3  
A model is presented ofsurfactant replacement therapy. An instilled bolus is pushed into thelungs on the first inspiration, coating the airways with a layer ofsurfactant and depositing some in the alveoli. Layer thickness dependson the capillary number (µU/, where µ, U, and are bolus viscosity, advancing meniscus velocity, and surfacetension, respectively). Larger capillary number leads to thickerlayers, reducing alveolar delivery. Subsequently, surface tensiongradients sweep surfactant into alveoli not receiving surfactant duringthe first inspiration. The effects on spreading of sorption kinetics,bolus viscosity, initial layer thickness, initial penetration ofsurfactant, gravity, and shear stress are examined. Sorption nearlyeliminates surface tension gradients in central airways but produces asharp transition at the leading edge of the exogenous layer. Localthinning of the liquid layer results, trapping 95% of the surfactantin the airways. Gravity and ventilation augment transport somewhat.Transport to the periphery takes 4-170 s for the leading edge butconsiderably longer for the bulk of the surfactant. The modeldemonstrates how the various physical parameters governing surfactantdistribution might alter the response to surfactant replacement therapy.

  相似文献   

2.
Pattle, who provided some of the initial direct evidence for the presence of pulmonary surfactant in the lung, was also the first to show surfactant was susceptible to proteases such as trypsin. Pattle concluded surfactant was a lipoprotein. Our group has investigated the roles of the surfactant proteins (SP-) SP-A, SP-B, and SP-C using a captive bubble tensiometer. These studies show that SP-C>SP-B>SP-A in enhancing surfactant lipid adsorption (film formation) to the equilibrium surface tension of approximately 22-25 mN/m from the 70 mN/m of saline at 37 degrees C. In addition to enhancing adsorption, surfactant proteins can stabilize surfactant films so that lateral compression induced through surface area reduction results in the lowering of surface tension (gamma) from approximately 25 mN/m (equilibrium) to values near 0 mN/m. These low tensions, which are required to stabilize alveoli during expiration, are thought to arise through exclusion of fluid phospholipids from the surface monolayer, resulting in an enrichment in the gel phase component dipalmitoylphosphatidylcholine (DPPC). The results are consistent with DPPC enrichment occurring through two mechanisms, selective DPPC adsorption and preferential squeeze-out of fluid components such as unsaturated phosphatidylcholine (PC) and phosphatidylglycerol (PG) from the monolayer. Evidence for selective DPPC adsorption arises from experiments showing that the surface area reductions required to achieve gamma near 0 mN/m with DPPC/PG samples containing SP-B or SP-A plus SP-B films were less than those predicted for a pure squeeze-out mechanism. Surface activity improves during quasi-static or dynamic compression-expansion cycles, indicating the squeeze-out mechanism also occurs. Although SP-C was not as effective as SP-B in promoting selective DPPC adsorption, this protein is more effective in promoting the reinsertion of lipids forced out of the surface monolayer following overcompression at low gamma values. Addition of SP-A to samples containing SP-B but not SP-C limits the increase in gamma(max) during expansion. It is concluded that the surfactant apoproteins possess distinct overlapping functions. SP-B is effective in selective DPPC insertion during monolayer formation and in PG squeeze-out during monolayer compression. SP-A can promote adsorption during film formation, particularly in the presence of SP-B. SP-C appears to have a superior role to SP-B in formation of the surfactant reservoir and in reinsertion of collapse phase lipids.  相似文献   

3.
Survanta, a clinically used bovine lung surfactant extract, in contact with surfactant in the subphase, shows a coexistence of discrete monolayer islands of solid phase coexisting with continuous multilayer "reservoirs" of fluid phase adjacent to the air-water interface. Exchange between the monolayer, the multilayer reservoir, and the subphase determines surfactant mechanical properties such as the monolayer collapse pressure and surface viscosity by regulating solid-fluid coexistence. Grazing incidence x-ray diffraction shows that the solid phase domains consist of two-dimensional crystals similar to those formed by mixtures of dipalmitoylphosphatidylcholine and palmitic acid. The condensed domains grow as the surface pressure is increased until they coalesce, trapping protrusions of liquid matrix. At approximately 40 mN/m, a plateau exists in the isotherm at which the solid phase fraction increases from approximately 60 to 90%, at which the surface viscosity diverges. The viscosity is driven by the percolation of the solid phase domains, which depends on the solid phase area fraction of the monolayer. The high viscosity may lead to high monolayer collapse pressures, help prevent atelectasis, and minimize the flow of lung surfactant out of the alveoli due to surface tension gradients.  相似文献   

4.
Surfactant is present in the alveoli and conductive airways of mammalian lungs. The presence of surface active agents was, moreover, demonstrated for avian tubular lungs and for the stomach and intestine. As the surface characteristics of these organs differ from each other, their surfactants possess distinct biochemical and functional characteristics. In the stomach so-called 'gastric surfactant' forms a hydrophobic barrier to protect the mucosa against acid back-diffusion. For this purpose gastric mucosal cells secrete unsaturated phosphatidylcholines (PC), but no dipalmitoyl-PC (PC16:0/16:0). By contrast, surfactant from conductive airways, lung alveoli and tubular avian lungs contain PC16:0/16:0 as their main component in similar concentrations. Hence, there is no biochemical relation between gastric and pulmonary surfactant. Alveolar surfactant, being designed for preventing alveolar collapse under the highly dynamic conditions of an oscillating alveolus, easily reaches values of <5 mN/m upon cyclic compression. Surfactants from tubular air-exposed structures, however, like the conductive airways of mammalian lungs and the exclusively tubular avian lung, display inferior compressibility as they only reach minimal surface tension values of approximately 20 mN/m. Hence, the highly dynamic properties of alveolar surfactant do not apply for surfactants designed for air-liquid interfaces of tubular lung structures.  相似文献   

5.
Two instruments, the pulsating bubble surfactometer (PBS) and the capillary surfactometer (CS), were constructed for a study of pulmonary surfactant's physical properties. The instruments study spherical surfaces as in alveoli (PBS) and cylindrical surfaces as in terminal conducting airways (CS). Phospholipids, pulmonary surfactant's main components, are amphiphilic and, therefore, spontaneously form a film at air-liquid interfaces. When the film in the PBS is compressed to a reduced area during 'expiration', the molecules come closer together. Thereby, a high surface pressure develops, causing surface tension to be reduced more than bubble radius. If these conditions, observed with the PBS are analogous in lungs, alveolar stability would be promoted. The CS was developed for a study of how surfactant has ability to maintain patency of narrow conducting airways. Provided adsorption is extremely fast, a surfactant film will line the terminal conducting airway as soon as liquid blocking the airway has been extruded. During expiration that film will develop high surface pressure (=low surface tension). This will counteract the tendency for liquid to accumulate in the airway's most narrow section. If surfactant is dysfunctioning, liquid is likely to accumulate and block terminal airways. Airway resistance would then increase, causing FEV(1) to be reduced.  相似文献   

6.
Luminal epithelial projections formed during bronchoconstriction define interstices in which liquid can collect. Liquid in these interstices could amplify the degree of luminal compromise due to muscular contraction in at least two distinct ways. First, the luminal cross-sectional area is reduced by simple filling of the interstices. Second, if the surface tension (gamma) of the air-liquid interface is positive, the pressure drop across the interface produces an additional inward force that can further constrict the airway. We present a theoretical treatment of these two mechanisms together with data which suggest that both may significantly amplify the luminal narrowing due to airway smooth muscle contraction, particularly in small airways when gamma is high. To qualitatively assess the effects of altered gamma, guinea pig lungs with normal and altered airway liquid lining layers were frozen and studied while fully hydrated by low-temperature scanning electron microscopy. Airway gamma was altered in these animals by intratracheal instillation of 0.5 mg lysoplatelet-activating factor (lyso-PAF). The interstices of normal airways were dry, whereas the interstices of airways with altered surface lining layers were liquid filled. In addition, the surfactant inhibitory properties of lyso-PAF, 2-arachidonyl-PAF, and dipalmitoyl phosphatidylcholine (DPPC) were measured with a pulsating bubble surfactometer, using surfactant TA as the model surfactant. Minimal gamma (gamma min) of surfactant TA alone was 4.0 +/- 0.2 dyn/cm; a 5% mixture of lyso-PAF with surfactant TA resulted in a significantly (P less than 0.02) greater gamma min of 8.8 +/- 1.8 dyn/cm. In contrast, 2-arachidonyl-PAF and DPPC had minimal effects on gamma min of surfactant TA.  相似文献   

7.
Extracellular nucleotides regulate mucociliary clearance in the airways and surfactant secretion in alveoli. Their release is exquisitely mechanosensitive and may be induced by stretch as well as airflow shear stress acting on lung epithelia. We hypothesized that, in addition, tension forces at the air-liquid interface (ALI) may contribute to mechanosensitive ATP release in the lungs. Local depletion of airway surface liquid, mucins, and surfactants, which normally protect epithelial surfaces, facilitate such release and trigger compensatory mucin and fluid secretion processes. In this study, human bronchial epithelial 16HBE14o(-) and alveolar A549 cells were subjected to tension forces at the ALI by passing an air bubble over the cell monolayer in a flow-through chamber, or by air exposure while tilting the cell culture dish. Such stimulation induced significant ATP release not involving cell lysis, as verified by ethidium bromide staining. Confocal fluorescence microscopy disclosed reversible cell deformation in the monolayer part in contact with the ALI. Fura 2 fluorescence imaging revealed transient intracellular Ca(2+) elevation evoked by the ALI, which did not entail nonspecific Ca(2+) influx from the extracellular space. ATP release was reduced by ~40 to ~90% from cells loaded with the Ca(2+) chelator BAPTA-AM and was completely abolished by N-ethylmalemide (1 mM). These experiments demonstrate that in close proximity to the ALI, surface tension forces are transmitted directly on cells, causing their mechanical deformation and Ca(2+)-dependent exocytotic ATP release. Such a signaling mechanism may contribute to the detection of local deficiency of airway surface liquid and surfactants on the lung surface.  相似文献   

8.
The pulmonary surfactant lines as a complex monolayer of lipids and proteins the alveolar epithelial surface. The monolayer dynamically adapts the surface tension of this interface to the varying surface areas during inhalation and exhalation. Its presence in the alveoli is thus a prerequisite for a proper lung function. The lipid moiety represents about 90% of the surfactant and contains mainly dipalmitoylphosphatidylcholine (DPPC) and phosphatidylglycerol (PG). The surfactant proteins involved in the surface tension adaption are called SP-A, SP-B and SP-C. The aim of the present investigation is to analyse the properties of monolayer films made from pure SP-C and from mixtures of DPPC, DPPG and SP-C in order to mimic the surfactant monolayer with minimal compositional requirement. Pressure-area diagrams were taken. Ellipsometric measurements at the air-water interface of a Langmuir film balance allowed measurement of the changes in monolayer thickness upon compression. Isotherms of pure SP-C monolayers exhibit a plateau between 22 and 25 mN/m. A further plateau is reached at higher compression. Structures of the monolayer formed during compression are reversible during expansion. Together with ellipsometric data which show a stepwise increase in film thickness (coverage) during compression, we conclude that pure SP-C films rearrange reversibly into multilayers of homogenous thickness.

Lipid monolayers collapse locally and irreversibly if films are compressed to approximately 0–4 nm2/molecule. In contrast, mixed DPPG/SP-C monolayers with less than 5 mol% protein collapse in a controlled and reversible way. The pressure-area diagrams exhibit a plateau at 20 mN/m, indicating partial demixing of SP-C and DPPG. The thickness isotherm obtained by ellipsometry indicates a transformation into multilayer structures. In DPPC/DPPG/SP-C mixtures again a reversible collapse was observed but without a drastic increase in surface layer thickness which may be due to the formation of protrusion under the surface. Thus lipid monolayers containing small amounts of SP-C may mimic the lung surfactant.  相似文献   

9.
Inhaled nanoparticles (NPs) are experienced by the first biological barrier inside the alveolus known as lung surfactant (LS), a surface tension reducing agent, consisting of phospholipids and proteins in the form of the monolayer at the air-water interface. The monolayer surface tension is continuously regulated by the alveolus compression and expansion and protects the alveoli from collapsing. Inhaled NPs can reach deep into the lungs and interfere with the biophysical properties of the lung components. The interaction mechanisms of bare gold nanoparticles (AuNPs) with the LS monolayer and the consequences of the interactions on lung function are not well understood. Coarse-grained molecular dynamics simulations were carried out to elucidate the interactions of AuNPs with simplified LS monolayers at the nanoscale. It was observed that the interactions of AuNPs and LS components deform the monolayer structure, change the biophysical properties of LS and create pores in the monolayer, which all interfere with the normal lungs function. The results also indicate that AuNP concentrations >0.1 mol% (of AuNPs/lipids) hinder the lowering of the LS surface tension, a prerequisite of the normal breathing process. Overall, these findings could help to identify the possible consequences of airborne NPs inhalation and their contribution to the potential development of various lung diseases.  相似文献   

10.
The lung is composed of a series of branching conducting airways that terminate in grape-like clusters of delicate gas-exchanging airspaces called pulmonary alveoli. Maintenance of alveolar patency at end expiration requires pulmonary surfactant, a mixture of phospholipids and proteins that coats the epithelial surface and reduces surface tension. The surfactant lining is exposed to the highest ambient oxygen tension of any internal interface and encounters a variety of oxidizing toxicants including ozone and trace metals contained within the 10 kl of air that is respired daily. The pathophysiological consequences of surfactant oxidation in humans and experimental animals include airspace collapse, reduced lung compliance, and impaired gas exchange. We now report that the hydrophilic surfactant proteins A (SP-A) and D (SP-D) directly protect surfactant phospholipids and macrophages from oxidative damage. Both proteins block accumulation of thiobarbituric acid-reactive substances and conjugated dienes during copper-induced oxidation of surfactant lipids or low density lipoprotein particles by a mechanism that does not involve metal chelation or oxidative modification of the proteins. Low density lipoprotein oxidation is instantaneously arrested upon SP-A or SP-D addition, suggesting direct interference with free radical formation or propagation. The antioxidant activity of SP-A maps to the carboxyl-terminal domain of the protein, which, like SP-D, contains a C-type lectin carbohydrate recognition domain. These results indicate that SP-A and SP-D, which are ubiquitous among air breathing organisms, could contribute to the protection of the lung from oxidative stresses due to atmospheric or supplemental oxygen, air pollutants, and lung inflammation.  相似文献   

11.
Inhaled and deposited spherical particles, 1-6 micrometer in diameter and of differing surface chemistry and topography, were studied in hamster intrapulmonary conducting airways and alveoli by electron microscopy. Polystyrene and Teflon particles, as well as puffball spores, were found submersed in the aqueous lining layer and adjacent to epithelial cells. The extent of particle immersion promoted by a surfactant film was assessed in a "floating-drop-surface balance" by light microscopy. Teflon and polystyrene spheres were immersed into the subphase by 50-60% at film surface tensions of 25 and 30 mJ/m(2), respectively, and totally submersed at 15 and 25 mJ/m(2), respectively. Puffball spores were immersed by approximately 50% at 22 mJ/m(2) and totally submersed at film surface tensions of 相似文献   

12.
Surfactant dysfunction plays a major role in respiratory distress syndrome (RDS). This research seeks to determine whether the use of natural surfactant, Curosurf? (Cheisi Farmaceutici, Parma, Italy), accompanied with pressure oscillations at the level of the alveoli can reduce the surface tension in the lung, thereby making it easier for infants with RDS to maintain the required level of functional residual capacity (FRC) without collapse. To simulate the alveolar environment, dynamic surface tension measurements were performed on a modified pulsating bubble surfactometer (PBS) type device and showed that introducing superimposed oscillations about the tidal volume excursion between 10 and 70 Hz in a surfactant bubble lowers interfacial surface tension below values observed using tidal volume excursion alone. The specific mechanisms responsible for this improvement are yet to be established; however it is believed that one mechanism may be the rapid transient changes in the interfacial area increase the number of interfacial binding sites for surfactant molecules, increasing adsorption and diffusion to the interface, thereby decreasing interfacial surface tension. Existing mathematical models in the literature reproduce trends noticed in experiments in the range of breathing frequencies only. Thus, a modification is introduced to an existing model to both incorporate superimposed pressure oscillations and demonstrate that these may improve the dynamic surface tension in the alveoli.  相似文献   

13.
Surface tension (gamma) and time resolved fluorescence quenching (TRFQ) measurements have been performed on the binary mixtures of monomeric as well as dimeric alkylammonium bromides with l-alpha-dimyristoylphosphatidycholine (DMPC) and L-alpha-dipalmitoylphosphatidycholine (DPPC). The critical micelle concentration (cmc) has been evaluated from the gamma measurements. The gamma plots show two breaks in the gamma versus [total surfactant] curves in most of the cases. The first break (C1) has been attributed to the mixed vesicle formation process. The break down of the vesicles leads to the mixed micellization between the surfactant and phospholipid monomers at the second break (C2). The amount of surfactant used in the vesicle breakdown process (DeltaC) increases linearly with the increase in the amount of phospholipid and depends significantly on the hydrophobicities of the cationic components. The surface area per molecule (a) evaluated from the gamma plots indicates compact monolayer formation in the case of monomeric surfactants with lower hydrophobicities and reverse is observed for dimeric surfactants. The pyrene life time (tau) of the solubilized pyrene in the hydrophobic environment of mixed micelles, fully supports the conclusion that derived from a.  相似文献   

14.
It is generally believed that lung alveoli contain an extracellular aqueous layer of surfactant material, which is allegedly required to prevent alveolar collapse at small lung volume; the surfactant's major constituent is a fully saturated phospholipid, referred to as dipalmitoyl lecithin or DPL. I herein demonstrate that the surfactant hypothesis of alveolar stability is fundamentally wrong. Although DPL is synthesized inside type II epithelial cells and stored in the typical inclusion bodies therein and lowers surface tension to zero in the surface balance, there is no evidence to the effect that type II cells secrete the DPL surfactant into the aqueous intra-alveolar layer which is shown by electron microscopy in support of the surfactant theory. To the contrary, all the evidence indicates that, when seen, such an extracellular layer is an artifact. This is probably upon the damage glutaraldehyde inflicts onto alveolar structures during fixation of air-inflated lung tissue. Furthermore, several cogent arguments invalidate the belief that an extracellular layer of DPL and serum proteins is present in the alveoli of normal lung. In light of these arguments, a surface tension role of DPL in alveolar stability is excluded. Three hypotheses for an alternative role of DPL in respiration mechanics are proposed. They are: (a) alveolar clearance by viscolytic and surfactant action (bubble or foam formation) on the aqueous systems which are present in lung alveoli during edema and in prenatal life and which would otherwise be impervious to air; (b) homeostasis of blood palmitate in normal lung; (c) modulation of the elasticity of terminal lung tissue by the intact inclusion bodies and parts thereof inside type II cells in normal lung.  相似文献   

15.
The surface monolayer theory of Clements was tested on open surface films of calf lung surfactant extract in a leak-free vertical film surface balance in which alveolar area (A) changes in each lung zone were simulated in accordance with the theory. We found that: 1) physiologically necessary low surface tension (gamma), < 4 dyn/cm, was sustained only by continuous film compression ("expiration"); 2) compression from A equivalent to total lung capacity to functional residual capacity produced fleeting gamma reduction in all zones and quick reversal to high gamma with A changes that simulated tidal volume (VT) breathing at both 14 (adult) and 40 (neonatal) cpm; 3) phase differences between gamma and A axes of VT loops that indicate mixed surface film composition may be attributable to film inertia and viscoelasticity; 4) estimated alveolar retraction pressure due to gamma (P gamma) exceeds "net" transpulmonary pressure, i.e., favors alveolar collapse, under virtually all conditions of the theory in all zones; 5) return to transient, fleeting low gamma in successive VT cycles was determined by the inherent difference in compression and decompression rates, which results in exhaustion of available A in very few cycles; 6) the "sigh", which restores stable low gamma according to the theory, actually produced unstable high gamma during virtually all phases of the maneuver. In contrast, closed bubble films of the surfactant were structurally stable and produce stable near 0 gamma and P gamma.  相似文献   

16.
Pulmonary surfactant spreads on the thin ( approximately 0.1 microm) liquid layer that lines the alveoli, forming a film that reduces surface tension and allows normal respiration. Pulmonary surfactant deposited in vitro on liquid layers that are several orders of magnitude thicker, however, does not reach the low surface tensions ( approximately 0.001 N/m) achieved in the lungs during exhalation when the surfactant film compresses. This is due to collapse, a surface phase transition during which the surfactant film, rather than decreasing surface tension by increasing its surface density, becomes thicker at constant surface tension ( approximately 0.024 N/m). Formation of the collapse phase requires transport of surfactant to collapse sites, and this transport can be hindered in thinner liquid layers by viscous resistance to motion. Our objective is to determine the effect of the liquid-layer thickness on surfactant transport, which might affect surfactant collapse. To this end, we developed a mathematical model that accounts for the effect of the liquid-layer thickness on surfactant transport, and focused on surfactant spreading and collapse. Model simulations showed a marked decrease in collapse rates for thinner liquid layers, but this decrease was not enough to completely explain differences in surfactant film behavior between in vitro and in situ experiments.  相似文献   

17.
We investigated the possible role of SP-B proteins in the function of lung surfactant. To this end, lipid monolayers at the air/water interface, bilayers in water, and transformations between them in the presence of SP-B were simulated. The proteins attached bilayers to monolayers, providing close proximity of the reservoirs with the interface. In the attached aggregates, SP-B mediated establishment of the lipid-lined connection similar to the hemifusion stalk. Via this connection, a lipid flow was initiated between the monolayer at the interface and the bilayer in water in a surface-tension-dependent manner. On interface expansion, the flow of lipids to the monolayer restored the surface tension to the equilibrium spreading value. SP-B induced formation of bilayer folds from the monolayer at positive surface tensions below the equilibrium. In the absence of proteins, lipid monolayers were stable at these conditions. Fold nucleation was initiated by SP-B from the liquid-expanded monolayer phase by local bending, and the proteins lined the curved perimeter of the growing fold. No effect on the liquid-condensed phase was observed. Covalently linked dimers resulted in faster kinetics for monolayer folding. The simulation results are in line with existing hypotheses on SP-B activity in lung surfactant and explain its molecular mechanism.  相似文献   

18.
Langmuir isotherms and fluorescence and atomic force microscopy images of synthetic model lung surfactants were used to determine the influence of palmitic acid and synthetic peptides based on the surfactant-specific proteins SP-B and SP-C on the morphology and function of surfactant monolayers. Lung surfactant-specific protein SP-C and peptides based on SP-C eliminate the loss to the subphase of unsaturated lipids necessary for good adsorption and respreading by inducing a transition between monolayers and multilayers within the fluid phase domains of the monolayer. The morphology and thickness of the multilayer phase depends on the lipid composition of the monolayer and the concentration of SP-C or SP-C peptide. Lung surfactant protein SP-B and peptides based on SP-B induce a reversible folding transition at monolayer collapse that allows all components of surfactant to be retained at the interface during respreading. Supplementing Survanta, a clinically used replacement lung surfactant, with a peptide based on the first 25 amino acids of SP-B also induces a similar folding transition at monolayer collapse. Palmitic acid makes the monolayer rigid at low surface tension and fluid at high surface tension and modifies SP-C function. Identifying the function of lung surfactant proteins and lipids is essential to the rational design of replacement surfactants for treatment of respiratory distress syndrome.  相似文献   

19.
Pulmonary surfactant is a complex lipid-protein mixture whose main function is to reduce the surface tension at the air-liquid interface of alveoli to minimize the work of breathing. The exact mechanism by which surfactant monolayers and multilayers are formed and how they lower surface tension to very low values during lateral compression remains uncertain. We used time-of-flight secondary ion mass spectrometry to study the lateral organization of lipids and peptide in surfactant preparations ranging in complexity. We show that we can successfully determine the location of phospholipids, cholesterol and a peptide in surfactant Langmuir-Blodgett films and we can determine the effect of cholesterol and peptide addition. A thorough understanding of the lateral organization of PS interfacial films will aid in our understanding of the role of each component as well as different lipid-lipid and lipid-protein interactions. This may further our understanding of pulmonary surfactant function.  相似文献   

20.
The respiratory epithelium has evolved to produce a complicated network of extracellular membranes that are essential for breathing and, ultimately, survival. Surfactant membranes form a stable monolayer at the air-liquid interface with bilayer structures attached to it. By reducing the surface tension at the air-liquid interface, surfactant stabilizes the lung against collapse and facilitates inflation. The special composition of surfactant membranes results in the coexistence of two distinct micrometer-sized ordered/disordered phases maintained up to physiological temperatures. Phase coexistence might facilitate monolayer folding to form three-dimensional structures during exhalation and hence allow the film to attain minimal surface tension. These folded structures may act as a membrane reserve and attenuate the increase in membrane tension during inspiration. The present review summarizes what is known of ordered/disordered lipid phase coexistence in lung surfactant, paying attention to the possible role played by domain boundaries in the monolayer-to-multilayer transition, and the correlations of biophysical inactivation of pulmonary surfactant with alterations in phase coexistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号