首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of futile cycles in the energetics of bacterial growth   总被引:3,自引:0,他引:3  
In this contribution we describe the occurrence of futile cycles in growing bacteria. These cycles are thought to be active when organisms contain two uptake systems for a particular nutrient (one with a high, the other with a low affinity for its substrate). The high-affinity system is responsible for uptake of the nutrient, some of which is subsequently lost to the medium again via leakage through the low-affinity-system. A special futile cycle is caused under some growth conditions by the extremely rapid diffusion of ammonia through bacterial membranes. When the ammonium ion is taken up via active transport, the couple NH3/NH4+ will act as an uncoupler. This is aggravated by the chemical similarity of the potassium and the ammonium ion, which leads to ammonium ion transport via the Kdp potassium transport system when the potassium concentration in the medium is low. Other examples of futile cycles, such as those caused by the production of fatty acids by fermentation, are briefly discussed.  相似文献   

2.
The progress of bioenergetic studies on the role of Na+ in bacteria is reviewed. Experiments performed over the past decade on several bacterial species of quite different taxonomic positions show that Na+ can, under certain conditions, substitute for H+ as the coupling ion. Various primary Na+ pumps ( generators) are described, i.e., Na+-motive decarboxylases, NADH-quinone reductase, terminal oxidase, and ATPase. The formed is shown to be consumed by Na+ driven ATP-synthase, Na+ flagellar motor, numerous Na+, solute symporters, and the methanogenesis-linked reverse electron transfer system. InVibrio alginolyticus, it was found that , generated by NADH-quinone reductase, can be utilized to support all three types of membrane-linked work, i.e., chemical (ATP synthesis), osmotic (Na+, solute symports), and mechanical (rotation of the flagellum). InPropionigenum modestum, circulation of Na+ proved to be the only mechanism of energy coupling. In other species studied, the Na+ cycle seems to coexist with the H+ cycle. For instance, inV. alginolyticus the initial and terminal steps of the respiratory chain are Na+ - and H+-motive, respectively, whereas ATP hydrolysis is competent in the uphill transfer of Na+ as well as of H+. In the alkalo- and halotolerantBacillus FTU, there are H+ - and Na+-motive terminal oxidases. Sometimes, the Na+-translocating enzyme strongly differs from its H+-translocating homolog. So, the Na+-motive and H+-motive NADH-quinone reductases are composed of different subunits and prosthetic groups. The H+-motive and Na+-motive terminal oxidases differ in that the former is ofaa 3-type and sensitive to micromolar cyanide whereas the latter is of another type and sensitive to millimolar cyanide. At the same time, both Na+ and H+ can be translocated by one and the sameP. modestum ATPase which is of the F0F1-type and sensitive to DCCD. The sodium cycle, i.e., a system composed of primary generator(s) and consumer(s), is already described in many species of marine aerobic and anaerobic eubacteria and archaebacteria belonging to the following genera:Vibrio, Bacillus, Alcaligenes, Alteromonas, Salmonella, Klebsiella, Propionigenum, Clostridium, Veilonella, Acidaminococcus, Streptococcus, Peptococcus, Exiguobacterium, Fusobacterium, Methanobacterium, Methanococcus, Methanosarcin, etc. Thus, the sodium world seems to occupy a rather extensive area in the biosphere.  相似文献   

3.
This paper examines the question of why the total fertility rate of the !Kung San hunter-gatherers of the Northern Kalahari desert is as low as 4.69 births. When the intermediate variables involved are examined through the employment of a reproductive equation, it becomes clear that low fecundity is a major issue. Arguments offered previously to explain the low fertility of !Kung women, depending on factors such as nutrition, health status, and lactational practices are insufficient. Drawing upon recent data from sports medicine and endocrinology, I suggest that the pattern of San female energetics in their gathering and subsistence routine has a direct effect upon their fecundity. Such a correlation between activity patterns, endocrine function, and reproductive capacity may also be important for understanding the fertility of other mobile hunter-gatherer groups.  相似文献   

4.
The literature data and experimental results of the author's laboratory on the role of Na+ in bacterial energetics are reviewed. It was shown that certain bacterial species utilize the transmembrane difference of Na+ electrochemical potentials (delta mu Na+) as a convertible membrane-linked form of energy. The membranes of such bacteria were found to contain delta mu Na+ generators (e. g., decarboxylases of some carboxylic acids of NADH-menaquinone reductase). It was shown that delta mu Na+ formed by these generators may support all the three main types of work of the bacterial cell, i. e., chemical (ATP synthesis), osmotic (substrate accumulation) and mechanical (motility).  相似文献   

5.
The energetics of mammalian cell growth   总被引:2,自引:0,他引:2  
  相似文献   

6.
The values of gross metabolic flows in cells are essentially interconnected due to conservation laws of chemical elements and interrelations of biochemical coupling. Therefore, the overall stoichiometry of cellular metabolism, such as the biomass quantum yield, the ratio between linear and circular flows via the electron transport chain, etc., can be calculated using balances of metabolic flows in the network branching points and coupling ratios related to ATP formation and expenditures. This work has studied the energetic stoichiometry of photosynthetic cells by considering the transfer of reductivity in the course of biochemical reactions. This approach yielded rigorous mathematical expressions for biomass quantum yield and other integral bioenergetic indices of cellular growth as functions of ATP balance parameters. The effect of cellular substance turnover has been taken into account. The obtained theoretical estimation of biomass quantum yield is rather close to experimental data which confirms the predictive capacity of this approach.  相似文献   

7.
The influence of Brownian motion on marine bacteria was examined. Due to their small size, marine bacteria rotate up to 1,400 degrees in one second. This rapid rotation makes directional swimming difficult or impossible, as a bacterium may point in a particular direction for only a few tens of milliseconds on average. Some directional movement, however, was found to be possible if swimming speed is sufficiently great, over approximately 100 μm sec−1. This led to the testable hypothesis that marine bacteria with radiii less than about 0.75 μm should exceed this speed. The result of the increased speed is that marine bacteria may spend in excess of 10% of their total energy budget on movement. This expenditure is 100 times greater than values for enteric bacteria, and indicates that marine bacteria are likely to be immotile below critical size-specific nutrient concentrations.  相似文献   

8.
9.
The energetics of coprophagy: a theoretical analysis   总被引:2,自引:0,他引:2  
Lagomorphs, many rodents and some other small mammals eat their faeces during the part of the day when they are not foraging for fresh food. One of the possible benefits of this habit of coprophagy is that it may enable them to extract more energy from their food. A computer model is used to assess the likely benefits and explore their relationships to food, feeding rate and gut morphology. The predicted benefits are much larger for hindgut fermenters than for foregut fermenters, and especially large for hindgut fermenters with relatively small fermentation chambers. They are larger for poor foods (with lower proportions of cell contents) than for richer ones. At low feeding rates the energetic advantage of coprophagy may disappear if the faeces from food eaten during one feeding period emerge largely during the next, but this can be avoided by adjusting the rate of passage of gut contents during the intervening rest period.  相似文献   

10.
Paracoccus denitrificans suspended in media containing 20-300 mM NaCl swelled progressively as the salt concentration was decreased. The increase in intracellular water volume was accompanied by an enhancement of respiration and a stimulation of the rates of net potassium and alpha-aminoisobutyric acid accumulation. It is postulated that influx of water and consequent lowering of intracellular solute concentration trigger transport mechanisms which are destined to restore the original ion and metabolite balance. Since a number of transport reactions operate against the electrochemical gradient of their substrates, energy utilization increases. The increased ATP usage and lowering of [ATP] stimulates the activity of the respiratory chain and increases oxygen uptake and energy production.  相似文献   

11.
12.
In continuous cultures at slow growth rates (less than about 10% maximum) bacterial growth yields from the carbon and energy source are higher than those expected. To account for this deviation it is proposed that dormant or non-viable cells with zero maintenance energy are generated at slow growth rates. From the growth yield variation, it is shown, the dormant fraction of the culture can be calculated. The few quantitative data available on the viability of bacteria in chemostat steady states at very slow growth rates are in agreement with the hypothesis. It is suggested that enzymic, chemical and morphological characters also may be used to distinguish between the growing and dormant fractions of a culture.The model provides a unifying theory for studies of microbial function at slow growth rates, which is a field of great practical importance.  相似文献   

13.
Using the binding of a nucleotide inhibitor (guanosine-3'-monophosphate) to a ribonuclease (ribonuclease Sa) as a model system, we show that the salt-dependence of the interaction arises due to specific ion binding at the site of nucleotide binding. The presence of specific ion-protein binding is concluded from a combination of differential scanning calorimetry and NMR data. Isothermal titration calorimetry data are then fit to determine the energetic profile (enthalpy, entropy, and heat capacity) for both the ion-protein and nucleotide-protein interactions. The results provide insight into the energetics of charge-charge interactions, and have implications for the interpretation of an observed salt-dependence. Further, the presence of specific ion-binding leads to a system behavior as a function of temperature that is drastically different from that predicted from Poisson-Boltzmann calculations.  相似文献   

14.
The domains of slow bacterial growth   总被引:6,自引:0,他引:6  
  相似文献   

15.
The metabolism of Desulfovibrio vulgaris Hildenborough grown on medium containing lactate or pyruvate plus a high concentration of sulfate (36 mM) was studied. Molecular growth yields were 6.7 +/- 1.3 and 10.1 +/- 1.7 g/mol for lactate and pyruvate, respectively. Under conditions in which the energy source was the sole growth-limiting factor, we observed the formation of 0.5 mol of hydrogen per mol of lactate and 0.1 mol of hydrogen per mol of pyruvate. The determination of metabolic end products revealed that D. vulgaris produced, in addition to normal end products (acetic acid, carbon dioxide, hydrogen sulfide) and molecular hydrogen, 2 and 5% of ethanol per mol of lactate and pyruvate, respectively. Power-time curves of growth of D. vulgaris on lactate and pyruvate were obtained, by the microcalorimetric Tian-Calvet apparatus. The enthalpies (delta Hmet) associated with the oxidation of these substrates and calculated from growth thermograms were -36.36 +/- 5 and -70.22 +/- 3 kJ/mol of lactate and pyruvate, respectively. These experimental values were in agreement with the homologous values assessed from the theoretical equations of D. vulgaris metabolism of both lactate and pyruvate. The hydrogen production by this sulfate reducer constitutes an efficient regulatory system of electrons, from energy source through the pathway of sulfate reduction. This hydrogen value may thus facilitate interactions between this strain and other environmental microflora, especially metagenic bacteria.  相似文献   

16.
Summary Questions concerning the significance of previous work on the formose reaction have led us to reexamine the question of the prebiotic synthesis of sugars. The results of new experiments lead to the following conclusions: The formose reaction is a geochemically plausible reaction which depends on neither basic conditions nor on the presence of trace amounts of carbohydrate impurities. However, this process is not a plausible source of ribose nor of any other individual sugar. In contrast to the nonspecific formation of complex mixtures of sugars via the formose reaction, the reduced sugar pentaerythritol is formed with great selectivity by the ultraviolet irradiation of 0.1 M formaldehyde. This compound may have played an important role in chemical evolution.Offprint requests to: A.W. Schwartz  相似文献   

17.
Meissner T  Krause E  Lödige I  Vinkemeier U 《Cell》2004,119(5):587-9; discussion 589-590
  相似文献   

18.
Cladistic analyses are presented of matK sequence data as well as a nonmolecular database for an identical set of exemplar species chosen to represent the core genera or groups of genera in Myrtaceae. Eleven robust clades are recognized on the molecular data. Polyphyly of the previously recognized Metrosideros and Leptospermum alliances is confirmed, and several smaller informal taxonomic groupings are recognized from among the members of the former alliance, i.e., the Tristania, Tristaniopsis, Metrosideros, and Lophostemon groups. The nonmolecular analysis provides only limited resolution of relationships. A degree of congruence exists between the two analyses in that two separate fleshy-fruited clades, the Acmena and Myrtoid groups, are identified, as are the Eucalypt and Tristania groups, and Psiloxylon and Heteropyxis are the first lineages to diverge in both analyses. A combined analysis recognized all 11 clades that received strong support from the molecular data. A high level of homoplasy is revealed in many of the nonmolecular characters when they are examined against the combined estimate of phylogeny.  相似文献   

19.
The nonessential amino acids are involved in a large number of functions that are not directly associated with protein synthesis. Recent studies using a combination of transorgan balance and stable isotopic tracers have demonstrated that a substantial portion of the extra‐splanchnic flux of glutamate, glutamine, glycine and cysteine derives from tissue synthesis. A key amino acid in this respect is glutamic acid. Little glutamic acid of dietary origin escapes metabolism in the small intestinal mucosa. Furthermore, because glutamic acid is the only amino acid that can be synthesized by mammals by reductive amination of a ketoacid, it is the ultimate nitrogen donor for the synthesis of other nonessential amino acids. Because the synthesis of glutamic acid and its product glutamine involve the expenditure of adenosine triphosphate (ATP), it seems possible that nonessential amino acid synthesis might have a significant bearing on the energetics of protein synthesis and, hence, of protein deposition. This paper discusses the topic of the energy cost of protein deposition, considers the metabolic physiology of amino acid oxidation and nonessential amino acid synthesis, and attempts to combine the information to speculate on the overall impact of amino acid metabolism on the energy exchanges of animals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号