首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present study was undertaken to evaluate the role of accessory cell processing of MHC alloantigens in the initiation of primary allospecific CTL responses. To first determine whether antigen processing by accessory cells is involved in the initiation of allospecific CTL responses, accessory cells were retreated with the lysosomotropic drug chloroquine before their addition to culture. It was found that chloroquine pretreatment abrogated their ability to function as accessory cells only when they were of responder haplotype and had no effect when the accessory cells were of stimulator haplotype. Although accessory cells of either responder or stimulator haplotype can initiate allospecific CTL responses, we have previously demonstrated that they do so by activating distinct classes of T helper TH) cells. Indeed, the differential effects of chloroquine on accessory cells of responder or stimulator haplotypes were shown to reflect the fact that chloroquine pretreatment markedly impaired the ability of accessory cells to activate self-Ia-restricted TH cells, but had little effect on the ability of the same accessory cells to activate either allo-class I- or allo-class II-specific TH cells. We next examined the possibility that accessory cells of responder haplotype mediate alloresponses by acquiring and processing shed MHC alloantigens derived from the stimulator cell population. In these experiments, accessory cell-depleted stimulator cells were fixed with paraformaldehyde to inhibit shedding of their surface MHC alloantigens. It was observed that even though mixed stimulator cells were recognized normally by allospecific CTL precursors, they completely failed to stimulate CTL responses mediated by responder haplotype accessory cells, indicating that the function of such accessory cells is dependent upon their acquisition of shed MHC alloantigens. Taken together, the data presented in this report demonstrate that accessory cells of responder haplotype function in allospecific CTL responses by acquiring and processing shed class I MHC alloantigens, and by then presenting the processed alloantigens in association with self-Ia determinants to self-Ia-restricted TH cells. Thus, these data indicate that the self-Ia-restricted TH cells that are involved in allospecific CTL responses recognize processed class I alloantigens in association with self-Ia determinants.  相似文献   

2.
The present study investigates the effect of trinitrophenyl- (TNP) modified H-2Kk (TNP-Kk) antigens on the generation of anti-TNP-Dk restricted cytotoxic T lymphocyte (CTL) responses. C3H.OH mice were primed to TNP-self by skin-painting with trinitrochlorobenzene, and spleen cells from these primed mice were subsequently stimulated in vitro with TNP-self. The effector cells generated exhibited appreciable lysis of TNP-modified C3H.OH blast target cells. Cold target inhibition studies demonstrated the generation of two effector cell populations: one that recognizes TNP in association with unique Dk self determinants, and one that recognizes TNP in association with self determinants shared between TNP-Kk and TNP-Dk. This was in contrast to primed C3H/He spleen cells, which did not generate CTL that recognized TNP in association with unique Dk self determinants. When spleen cells from (C3H/He x C3H.OH)F1 mice primed to TNP were stimulated in vitro with TNP-C3H.OH cells, unique Dk self determinants were recognized in association with TNP. However, in vitro stimulation of the same F1 responding cells with TNP-C3H/He or TNP-F1 cells failed to elicit CTL that utilized these Dk-unique self determinants. The findings of this study demonstrate that unique or shared H-2Dk determinants can be differentially utilized by CTL populations, depending on the H-2 alleles expressed by the stimulator cells.  相似文献   

3.
Cell lines into which cloned H-2 genes had been introduced (i.e., transformants) were used to correlate the genes and their products that are capable of functioning as H-2 restriction elements for hapten-self-(AED and TNP) specific cytotoxic T cells (CTL). These transformants provided a unique system in which major histocompatibility restricted (MHC) T cell recognition could be examined by using cells that express only H-2Ld or only H-2Dd gene products. BALB/c (H-2d) anti AED-self CTL lysed both the H-2Ld and Dd transformants, but not parental, i.e., untransformed, cells. The AED-self lysis of the Ld and Dd transformants was shown to be specifically inhibited by anti-H-2Ld and anti H-2Dd monoclonal antibody, respectively. In contrast to these results, BALB/c anti TNP-self CTL were found to lyse readily the Dd but not Ld transformed lines, supporting reports indicating that H-2Ld-restricted TNP-self CTL could not be detected. The results of this study thus demonstrate that the cell surface products encoded by these transferred MHC class I genes contain self determinants recognized by CTL.  相似文献   

4.
MHC class I-restricted T cell epitopes lack immunogenicity unless aided by IFA or CFA. In an attempt to circumvent the known inflammatory side effects of IFA and CFA, we analyzed the ability of immunostimulatory CpG-DNA to act as an adjuvant for MHC class I-restricted peptide epitopes. Using the immunodominant CD8 T cell epitopes, SIINFEKL from OVA or KAVYNFATM (gp33) from lymphocytic choriomeningitis virus glycoprotein, we observed that CpG-DNA conveyed immunogenicity to these epitopes leading to primary induction of peptide-specific CTL. Furthermore, vaccination with the lymphocytic choriomeningitis virus gp33 peptide triggered not only CTL but also protective antiviral defense. We also showed that MHC class I-restricted peptides are constitutively presented by immature dendritic cells (DC) within the draining lymph nodes but failed to induce CTL responses. The use of CpG-DNA as an adjuvant, however, initiated peptide presenting immature DC progression to professional licensed APC. Activated DC induced cytolytic CD8 T cells in wild-type mice and also mice deficient of Th cells or CD40 ligand. CpG-DNA thus incites CTL responses toward MHC class I-restricted T cell epitopes in a Th cell-independent manner. Overall, these results provide new insights into CpG-DNA-mediated adjuvanticity and may influence future vaccination strategies for infectious and perhaps tumor diseases.  相似文献   

5.
Most cytolytic T lymphocytes (CTL) recognize class I rather than class II MHC determinants, and relatively little is known about those CTL that do recognize class II MHC determinants. The present study was undertaken to document the specificity, phenotype, and precursor frequency of primary class II allospecific CTL. It was found that class II-allospecific CTL could be consistently generated in vitro from unprimed spleen or thymus populations in the presence of exogenously added helper factors. The class II MHC specificity of both the precursor and CTL effectors activated in primary cultures by Ia-disparate stimulator cells was documented both by blocking experiments with anti-Ia mAb and by the use of L cell transfectants. The mechanism by which primary allospecific CTL effectors lysed their targets appeared to involve direct cell-cell contact, because they failed to lyse bystander target cells. The frequency in unprimed spleen populations of precursor CTL specific for class II alloantigens was examined by limiting dilution analysis and was found to be as high as 1/15,000 splenocytes and approximately 10% of the frequency reported for primary class I allospecific CTL. Finally, the Lyt phenotype of primary class II allospecific CTL precursors and effectors was determined. It was found that anti-class II CTL derive from at least two distinct precursor subpopulations that are either L3T4+Lyt-2- or L3T4-Lyt-2+, and that the Lyt phenotype expressed by the CTL effectors are concordant with that of their precursors. No correlation was found between the I subregion gene products recognized by CTL effectors and the Lyt phenotype they expressed in that both I-A- and I-E-specific CTL were both L3T4+Lyt-2- and L3T4-Lyt-2+.  相似文献   

6.
CD8 T cell populations restricted by H2-M3 MHC class Ib molecules expand rapidly during primary Listeria monocytogenes infection but only minimally upon reinfection. In contrast, CD8 T cells restricted by MHC class Ia molecules undergo more delayed expansion during primary infection but rapid and robust expansion following reinfection. In this study we demonstrate that primary H2-M3-restricted CD8 T cell responses are unaffected by the frequency of naive MHC class Ia-restricted T cells during L. monocytogenes infection. The magnitude of H2-M3-restricted memory responses, in contrast, is down-modulated by increasing frequencies of MHC class Ia-restricted effector T cells following secondary systemic infection. Suppression by MHC class Ia-restricted T cells, however, is not a universal feature of MHC class Ib-restricted memory responses. Primary systemic L. monocytogenes infection followed by secondary tissue infection, for example, results in robust expansion of H2-M3-restricted memory T cells in draining lymph nodes, despite the activation of MHC class Ia-restricted memory T cell responses. Thus, whereas MHC class Ia-restricted memory T cell populations predominate in spleens following systemic reinfection, H2-M3-restricted memory T cell responses remain prominent in lymph nodes draining localized infections. Our studies demonstrate that interactions between CD8 T cell populations can differ, depending on the status of the responding T cells (naive vs memory) and the route of reinfection. These results may have important implications for prime-boost vaccination strategies.  相似文献   

7.
The goal of the present study was to evaluate the relationship among function, Lyt phenotype, and MHC recognition specificity in primary allospecific T cell populations. By using Lyt-2+ and L3T4+ T cells obtained from the same responder populations, we assessed the ability of T cells of each phenotype to generate cytotoxic effector cells (CTL) and IL 2-secreting helper T cells in response to either class I or class II MHC allodeterminants. It was found that a discordance between Lyt phenotype and MHC recognition specificity does exist in primary allospecific T cells, but only in one T cell subpopulation with limited functional potential: namely, Lyt-2+ T cells with cytotoxic, but not helper, function that recognize class II MHC alloantigens. Target cell lysis by these Lyt-2+ class II-allospecific CTL was inhibited by anti-Ia monoclonal antibodies (mAb), but not anti-Lyt-2 mAb, indicating that they recognized class II MHC determinants as their "restriction" specificity and not as their "nominal" specificity even though they were Lyt-2+. A second allospecific T cell subset with limited functional potential was also identified but whose Lyt phenotype and MHC restriction specificity were not discordant: namely, an L3T4+ T cell subset with helper, but not cytotoxic, function specific for class I MHC allodeterminants presented in the context of self-Ia. Thus, the present study demonstrates that primary allospecific T cell populations contain phenotypically identical subpopulations of helper and effector cells that express fundamentally different MHC recognition specificities. Because the recognition specificities expressed by mature T cells reflect the selection pressures they encountered during their differentiation into functional competence, these findings suggest that functionally distinct but phenotypically identical T cell subsets may be selected independently of one another during ontogeny. Thus, the existence of Lyt-2+ CTL specific for class II allodeterminants can be explained by the hypothesis that the association of Lyt phenotype with MHC recognition specificity results from the process of thymic selection that these Lyt-2+ effector cells avoid.  相似文献   

8.
Cytolytic T lymphocytes (CTL) specific for 2,4,6-trinitrophenyl (TNP) determinants suppress the effector phase of a secondary anti-TNP antibody responses of murine syngeneic spleen cells in vitro. The cells mediating this suppression are hapten-specific, H-2-restricted, and possess properties typical of CTL. Moreover, the targets of the suppression appear to be antigen-primed B lymphocytes that are recognized by CTL via soluble antigen bound noncovalently to their Ig receptors. The effect of the CTL can be blocked by the addition of monoclonal antibodies directed against I-A molecules but not I-E or H-EK-encoded molecules on the target B cells, even in strain combinations in which the CTL-B cell interaction is restricted only by the H-2K and I regions of the MHC. This result suggests that B lymphocyte-bound antigen tends to associate preferentially with I-A rather than H-2K/D-encoded determinants, and that the suppressive effect of the CTL population is attributable to the minor subset that recognizes hapten-modified Ia antigens. These findings are also discussed in terms of the possible immunoregulatory function of Ia-restricted CTL.  相似文献   

9.
We have analyzed the signals influencing the generation of major histocompatibility complex (MHC) class II allospecific cytolytic T lymphocytes (CTL) and have found that the development of these CTL is actively regulated in primary in vitro cultures by Lyt-2+ T cells triggered in response to MHC class I alloantigens. Class II allospecific CTL can be readily stimulated in primary cultures, but the presence of a simultaneous class I MHC stimulus in these cultures causes a marked reduction of class II-specific CTL activation. This reduction can be prevented by adding to culture a dose of monoclonal anti-Lyt-2 antibody (in the absence of complement) that does not block the generation of class I-specific CTL. The role of MHC class I alloantigens in the regulation of class II allospecific responses illustrates that T cells recognizing class I and class II MHC antigens in mixed leukocyte cultures interact in a complex and nonreciprocal manner to influence the final effector T cell repertoire elicited by this complex immunogenic challenge.  相似文献   

10.
These experiments were designed to determine if separate subpopulations of T cells were involved in the syngeneic and allogeneic mixed lymphocyte reaction. Rat lymph node T cells were separated into W3/25+ and W3/25? subpopulations by panning with the monoclonal antibody W3/25 and tested for their ability to proliferate in both syngeneic (SMLR) and allogeneic (MLR) mixed lymphocyte responses, as well as to develop cytotoxicity against allogeneic, syngeneic, and trinitrophenol (TNP)-modified syngeneic targets. The W3/25+ T cells reacted strongly in the SMLR and the MLR whereas the W3/25? fraction proliferated only in response to allogeneic stimulation and with a kinetic pattern distinct from W3/25+. Furthermore, addition of W3/25 monoclonal antibody directly to the cultures was shown only to inhibit the proliferation of the W3/25+ T-cell fraction. The W3/25? subpopulation contained cytotoxic T cells (CTLs) against both allogeneic determinants and TNP-modified self. However the requirements for the activation of allospecific CTLs were distinct from those for CTLs for TNP-self in that W3/25? allospecific CTLs required no detectable help from W3/25+ T cells but generation of the CTL response against TNP-self required the presence of W3/25+ helper T cells (Th). These data suggest that in the rat, there exist subsets of T cells recognized by their cell surface phenotype that distinguish between self and nonself determinants and the requirements for activation are different for each of these populations.  相似文献   

11.
H2-M3-restricted T cells respond more rapidly to primary Listeria monocytogenes infection than conventional MHC class Ia-restricted T cells. Reinfection with L. monocytogenes, while inducing explosive proliferation of H2-K(d)-restricted T cells, does not stimulate significant expansion of H2-M3-restricted CTL. These disparate responses to reinfection are apparent within 5 days of primary L. monocytogenes infection. However, H2-M3-restricted memory T cells are generated, and are indistinguishable from classically restricted T cells in terms of cell surface memory markers and longevity. Early responses of H2-M3- and H2-K(d)-restricted memory T cells to reinfection are similar, with increases in size and expression of activation markers. Interestingly, priming of H2-M3-restricted T cells with an L. monocytogenes-derived N-formyl peptide plus anti-CD40 generates memory T cells that expand upon re-exposure to Ag during L. monocytogenes infection. Our data indicate that disparate H2-M3- and MHC class Ia-restricted memory T cell responses reflect intrinsic differences between these T cell populations. Although distinct proliferative programs appear to be hardwired in these populations during primary L. monocytogenes infection, under different inflammatory circumstances M3-restricted T cell populations can maintain the ability to expand upon re-exposure to Ag.  相似文献   

12.
Murine cytotoxic responses to TNP-modified syngeneic cells (TNP-self) have been shown to exhibit preferential recognition of K or D end self products encoded by the H-2 complex. In the present study, a number of B10 congenic and recombinant mouse strains were investigated to determine the H-2K and H-2D-restricted FTC-self CTL response patterns, and these were compared with the CTL response patterns obtained for TNP-self. The results indicate that for strains possessing the H-2k,d,h2,h4 haplotypes, respectively, preferential CTL responses were observed against FTC recognized in association with Kk over Dk, Dd over Kd, and Kk over Db. These patterns of preferential CTL responses were the same as those reported for TNP-self as well as several anti-viral CTL responses. In contrast to the results obtained in the B10.A strain, in which Kk preference was observed over Dd for TNP-self CTL, no preferential CTL response was observed when FTC was recognized in association with Kk and with Dd. In this context, it was observed that the CTL response to FTC recognized in association with Dd was particularly strong. This strong D end-associated response was shown to involve D locus products, and no evidence was obtained indicating that L locus self products were involved. These studies are discussed with respect to the possibility that different haptens can be recognized by CTL in association with different self determinants encoded by the same H-2 gene products.  相似文献   

13.
The present studies were undertaken to characterize the antigen-processing requirements involved in the responses to T cells to soluble antigen (antigen specific), to allogeneic cell surface MHC determinants (alloreactive), and to syngeneic MHC determinants (autoreactive). T cell clones were used that have dual cross-reactive specificities either 1) for self MHC plus soluble antigen and for allogeneic MHC products or 2) for syngeneic MHC and for allogeneic MHC, in order to permit comparison of the processing requirements for responses of the same T cell to distinct antigenic stimuli. The proliferative responses of antigen-specific, Ia-restricted T cell clones to soluble antigens were sensitive to treatment of antigen-presenting cells (APC) with 125 to 250 microM chloroquine, a lysosomotropic agent previously shown to inhibit the processing of soluble antigens. In contrast, the same T cell clones were only minimally affected in their ability to respond to similarly chloroquine-treated APC expressing allogeneic MHC products. The responses of autoreactive T cell clones to syngeneic stimulating cells and their cross-reactive responses to allogeneic cells were both resistant to chloroquine treatment of stimulating cells. The failure of chloroquine to inhibit antigen presentation to autoreactive T cell clones suggests that these clones are specific for self Ia not associated with in vitro processed foreign antigen. Thus, chloroquine sensitivity distinguishes the in vitro antigen-processing requirements for presentation of the soluble antigens tested from the requirements for presentation of syngeneic or allogeneic cell surface MHC determinants to the same T cells.  相似文献   

14.
The localization of MHC-encoded determinants recognized by hapten- and allo-specific cytotoxic T cells was analyzed with the use of cell lines expressing recombinant H-2Dd and H-2Ld MHC products. Bulk cultures of CTL against TNP-self, FITC-self, and AED-self recognized self determinants associated with the N/C1 domains of both Dd and Ld products. A number of allo- and hapten-specific CTL clones were also tested for recognition of the recombinant MHC products. The allo clones specific for Ld or Dd antigens recognized the respective N/C1-associated determinants. In addition, all clones generated against H-2q and known to cross-react with H-2Dd antigens recognized determinants associated with the N/C1-associated Dd determinants. Thus, some of the results obtained with CTL parallel, whereas others contrast with, those findings obtained with monoclonal anti-H-2 antibodies. Similar to the observations made with the monoclonal antibodies, no determinant as defined by T cells has been found to be lost as a result of the interaction between the N/C1 and C2/M domains of the Ld and Dd proteins. Nor did our studies detect the presence of new antigens resulting from the interaction of these gene products. However, the present T cell findings continue to contrast previous results demonstrating that antibody interaction with class I products includes recognition of C2/M-associated epitopes.  相似文献   

15.
Under optimal Ag stimulation, CTL become functional effector and memory T cells. Professional APCs (pAPC) are considered essential for the activation of CTL, due to their unique capacity to provide costimulation and present exogenous Ags through MHC class I molecules. In this study, we report a novel means by which Th lymphocytes acquire and present MHC class I determinants to naive CTL. Although previous studies have looked at T cell Ag presentation to activated T cells, this study presents the first example of Ag presentation by Th cells to naive CTL. We report that activated Th cells can function as effective pAPC for CTL. Our results show that: 1) In addition to acquisition of cell surface molecules, including MHC class I/peptide complexes, from pAPC, Th cells can acquire and present MHC class I-binding peptides through TCR-MHC class II interactions with pAPC; 2) the acquired Ag can be functionally presented to CTL; and 3) Ag presentation by Th cells induces naive CTL to proliferate and preferentially differentiate into cells that phenotypically and functionally resemble central memory T cells. These findings suggest a novel role of Th cells as pAPC for the development of memory immune responses.  相似文献   

16.
I have compared the requirements for T helper (Th) cell function during the generation of virus-specific and alloreactive cytotoxic thymus (T)-derived lymphocyte (CTL) responses. Restimulation of vesicular stomatitis virus (VSV)-immune T cells (VSV memory CTLs) with VSV-infected stimulators resulted in the generation of class I-restricted, VSV-specific CTLs. Progression of VSV memory CTLs (Lyt-1-2+) into VSV-specific CTLs required inductive signals derived from VSV-induced, Lyt-1+2- Th cells because: (i) cultures depleted by negative selection of Lyt-1+ T cells failed to generate CTLs; (ii) titration of VSV memory CTLs into a limiting dilution (LD) microculture system depleted of Th cells generated curves which were not consistent with a single limiting cell type; (iii) LD analysis of VSV memory CTLs did produce single-hit curves in the presence of Lyt-1+2- T cells sensitized against VSV; and (iv) monoclonal anti-L3T4 antibody completely abrogated CTL generation against VSV. Similar results were also obtained with Sendai virus (SV), a member of the paramyxovirus family. The notion that a class II-restricted, L3T4+ Th cell plays an obligatory role in the generation of CTLs against these viruses is also supported by the observation that purified T cell lymphoblasts (class II antigen negative) failed to function as antigen-presenting cells for CTL responses against VSV and SV. T cell lymphoblasts were efficiently lysed by class I-restricted, anti-VSV and -SV CTLs, indicating that activated T cells expressed the appropriate viral peptides for CTL recognition. Furthermore, heterogeneity in the VSV-induced Th cell population was detected by LD analysis, suggesting that at least two types of Th cells were required for the generation of an anti-VSV CTL response. VSV-induced Th cell function could not simply be replaced by exogenous IL-2 because this lymphokine induced cytotoxic cells that had the characteristics of lymphokine-activated killer (LAK) cells and not anti-viral CTLs. In contrast, CTL responses against allogeneic determinants could not be completely blocked with antibodies against L3T4 and depletion of L3T4+ cells did not prevent the generation of alloreactive CTLs in cultures stimulated with allogeneic spleen cells or activated T cell lymphoblasts. Thus, these studies demonstrate an obligatory requirement for an L3T4-dependent Th cell pathway for CTL responses against viruses such as VSV and SV; whereas, CTL responses against allogeneic determinants can utilize an L3T4-independent pathway.  相似文献   

17.
The present study investigated the possibility that protein Ag fragments in the form of peptides could serve as the priming Ag in the generation of a MHC class I-restricted immune response. Trypsin-digested chicken ovalbumin (OVA-TD) fragments were used as the model Ag. The results demonstrate the peptides within OVA-TD, when injected into C57BL/6 mice, could prime T cells which lysed H-2b Ia-EL4 target cells in an OVA-TD-specific manner. In contrast to priming with OVA-TD, immunization of mice with intact OVA did not lead to generation of CTL against OVA-TD or OVA. Furthermore, target cells sensitized with intact OVA failed to be recognized by OVA-peptide-specific CTL indicating that the target cells serving as APC were unable to generate the relevant peptide determinants recognized by the T cells. These results support the idea that the processing pathway within APC for class I-restricted T cells may differ from that used for class II-restricted T cells. Using OVA-TD-specific CTL clones (phenotypically Thy 1+, CD8+, CD4-, Pgp-1+) isolated from primed animals to screen OVA-TD fractions separated by HPLC, two T cell peptide determinants were identified corresponding to OVA sequences 111-122 and 370-381. Both determinants were recognized by CTL clones in the context of the H-2Db molecule.  相似文献   

18.
Helper T cells specific for N-iodoacetyl-N'-(5-sulfonic 1-naphthyl) ethylene diamine (I-AED) were generated in (C56BL/6 X C3H/He)F1 mice by immunization with I-AED-modified syngeneic cells (AED-self). The requirements for activation of hapten-induced helper cells were investigated. The results demonstrated that activation of AED and trinitrophenyl- (TNP) helper cells was strictly hapten specific. In addition, F1 AEd-helpers could be activated efficiently by either I-AED-modified H-2b or H-2k self components to enhance the anti-AED self-CTL responses. This contrasts with the previous findings demonstrating the failure of TNP-H-2b self to activate F1 TNP-helper cells. After AED-helpers were activated, they were capable of augmenting sensitization of cytotoxic T cells (CTL) against TNP-self. These results indicate that although the activation of hapten-reactive helper cells is antigen (hapten)-specific, the subsequent helper activity, as determined by augmentation of CTL responses against another hapten, is antigen nonspecific. Since helper function was antigen nonspecific, F1 AED-helper cells activated by AED-H-2b or AED-H-2k self were tested for their ability to augment the F1 and anti-TNP-H-2b CTL response. The results indicate that the Ir gene defect in the ability of F1 spleen cells to respond to TNP-H-2b self could not be corrected by these helper cells. These results are discussed in the light of Ir gene controlled differences in the activation of AED and TNP-helper cells and possible models for augmenting CTL responses against various antigens in strains that generate marginal helper activity to TNP-self.  相似文献   

19.
Dendritic cells (DC) have been successfully used in clinical pilot studies to induce tumor-specific immunity as well as clinical response in selected patients. However, DC-based immunotherapy remains a challenge and several parameters need to be examined in order to optimize the induction of anti-tumor immune responses. This study focuses on DC vaccination for leukemia and evaluates the in vitro efficacy of three different strategies for generating antigen-loaded DC-based vaccines for the induction of major histocompatibility complex (MHC) class I-restricted anti-leukemia cytotoxic T lymphocyte (CTL) responses. These included direct fusion of DC with leukemia cells to generate DC-leukemia cell hybrids, and DC pulsed with either apoptotic leukemia cell fragments or whole tumor cell lysates. Using either the U937 cell line or primary human acute myeloid leukemia blasts (AML), DC-leukemia cell hybrids were found to be the most potent in vitro inducers of CTL activity. DC pulsed with apoptotic tumor cell fragments were less efficient, but induced a more potent CTL response compared to tumor lysate-pulsed DC. The CTL responses were both MHC class I-restricted and antigen-specific, as shown by the inability of the CTL to lyse other control targets. The data presented here suggest that the method of antigen loading onto DC may be critical in the design of tumor vaccines.  相似文献   

20.
CD4+ T cells that are activated by a MHC class II/peptide encounter can induce maturation of APCs and promote cytotoxic CD8+ T cell responses. Unfortunately, the number of well-defined tumor-specific CD4+ T cell epitopes that can be exploited for adoptive immunotherapy is limited. To determine whether Th cell responses can be generated by redirecting CD4+ T cells to MHC class I ligands, we have introduced MHC class I-restricted TCRs into postthymic murine CD4+ T cells and examined CD4+ T cell activation and helper function in vitro and in vivo. These experiments indicate that Ag-specific CD4+ T cell help can be induced by the engagement of MHC class I-restricted TCRs in peripheral CD4+ T cells but that it is highly dependent on the coreceptor function of the CD8beta-chain. The ability to generate Th cell immunity by infusion of MHC class I-restricted Th cells may prove useful for the induction of tumor-specific T cell immunity in cases where MHC class II-associated epitopes are lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号