首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
3-(3,4-Dichlorobenzyloxy)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid 5 (MGS0039) is a highly selective and potent group II metabotropic glutamate receptor (mGluR) antagonist (antagonist activities for mGluR2; IC50=20.0 nM, mGluR3; IC50=24.0 nM) and is detected in both plasma (492 ng/mL) and brain (13.2 ng/g) at oral administration of 10 ng/mL [J. Med. Chem.2004, 47, 4750], but the oral bioavailability of 5 was 10.9%. In order to improve the oral bioavailability of 5, prodrugs of 5 were discovered by esterification of carboxyl group on C6-position of bicyclo[3.1.0]hexane ring. Among these compounds, 6-alkyl esters exhibited approximately 10-fold higher concentrations of 5 in the plasma and brain of rats after oral administration (e.g., ethyl ester of 5; plasma, Cmax=20.7+/-1.3 microM) compared to oral administration of 5 (plasma, Cmax=2.46+/-0.62 microM). 3-(3,4-Dichlorobenzyloxy)-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid 6-heptyl ester (7ao), a prodrug of MGS0039, showed antidepressant-like effects in rat forced swimming test and mouse tail suspension test following oral administration. Moreover, following oral administration of 7ao in mice, high concentrations of MGS0039 were detected in both the brain and plasma, while 7ao was barely detected. In this paper, we report the synthesis, in vitro metabolic stabilities, and pharmacokinetic profiles of the prodrugs of 5, and the antidepressant-like effects of 7ao.  相似文献   

2.
Liu Q  Yu J  Mi WL  Mao-Ying QL  Yang R  Wang YQ  Wu GC 《Life sciences》2007,81(21-22):1489-1495
The present study was designed to investigate whether electroacupuncture (EA) was beneficial to extenuate the behavioral deficit in a rat model of depression induced by chronic unpredictable stress (CUS) and to observe the effect of EA on progenitor cell proliferation in the dentate gyrus (DG) of hippocampus. EA was performed on acupoints "Bai-Hui" (Du 20) and unilateral "An-Mian" (EX 17) once daily for 3 consecutive weeks, 2 weeks post CUS procedure. Open field test and forced swimming test were employed to evaluate the behavioral activity during a stress period or EA treatment. The results revealed that exposure to CUS resulted in a decrease of behavioral activity, whilst a daily session of EA treatment significantly reversed the behavioral deficit of these depression model rats. Moreover, as shown by 5-bromo-2-deoxyuridine (BrdU) labeling immunohistochemistry, hippocampal progenitor cell proliferation was decreased in the DG of depression model rats. Intriguingly, EA treatment effectively blocked this decrease. The study demonstrated a potential antidepressant-like effect of EA treatment on CUS induced depression model rats, which might be mediated by up-regulating the hippocampal progenitor cell proliferation.  相似文献   

3.
We investigated the hippocampal long-term potentiation (LTP), neurogenesis, and the activation of signaling molecules in the 20-month-old aged rats following chronic lithium treatment. Chronic lithium treatment produced a significant 79% increase in the numbers of BrdU(+) cells after treatment completion in the dentate gyrus (DG). Both LTP obtained from slices perfused with artificial cerebrospinal fluid (ACSF-LTP), and LTP recorded in the presence of bicuculline (bicuculline-LTP) were significantly greater in the lithium group than in the saline controls. Our results show that as with young rats, chronic lithium can substantially increase LTP and the number of BrdU(+) cells in the aged rats. However, neurogenesis, assessed by colocalization of NeuN and BrdU, was not detected in the aged rat DG subjected to chronic lithium treatment. Therefore, it is concluded that the increase in LTP and the number of BrdU(+) cells might not be associated with increases in neurogenesis in the granule cell layer of the DG. Lithium might has a beneficial effects through other signaling pathways in the aged brain.  相似文献   

4.
To investigate the effects of exposure to an 1800 MHz electromagnetic field on cell death and cell proliferation in the developing brain, postnatal day 7 (P7) and P21 healthy Kunming mice were randomly assigned into the experimental and control groups. The experimental groups were exposed to an 1800 MHz electromagnetic field for 8 h daily for three consecutive days. The thymidine analog 5-bromo-2-deoxyuridine (BrdU) was injected intraperitoneally 1 h before each exposure session, and all animals were sacrificed 24 h after the last exposure. Cell death and proliferation markers were detected by immunohistochemistry in the dentate gyrus of the hippocampus. Electromagnetic exposure has no influence on cell death in the dentate gyrus of the hippocampus in P7 and P21 mice as indicated by active caspase-3 immunostaining and Fluoro-Jade labeling. The basal cell proliferation in the hippocampus was higher in P7 than in P21 mice as indicated by the number of cells labeled with BrdU and by immunohistochemical staining for phosphor-histone H3 (PHH3) and brain lipid-binding protein (BLBP). Electromagnetic exposure stimulated DNA synthesis in P7 neural stem and progenitor cells, but reduced cell division and the total number of stem cells in the hippocampus as indicated by increased BrdU labeling and reduced PHH3 and BLBP labeling compared to P7 control mice. There were no significant changes in cell proliferation in P21 mice after exposure to the electromagnetic field. These results indicate that interference with stem cell proliferation upon short-term exposure to an 1800 MHz electromagnetic field depends on the developmental stage of the brain.  相似文献   

5.
惊厥后大鼠海马神经再生与凋亡的动态变化   总被引:1,自引:0,他引:1  
探讨惊厥持续状态(status convulsion,SC)后大鼠海马神经再生与凋亡的动态变化。建立成年Wistar鼠30minSC模型,在SC后1天至56天的6个时间点上处死动物,处死前1天均腹腔注射5-溴2-脱氧尿嘧啶核苷(5-bromo-2-deoxyuridine,BrdU);采用免疫组织化学方法动态检测BrdU、nestin的表达,确定神经干细胞增殖水平;双重荧光染色标记nestin/TUNEL,确定新生神经干细胞存活时间。与对照组相比,BrdU阳性细胞数目于SC后第7天在CA1区达增殖高峰,28天降至正常水平;于SC后第28天在齿状回达增殖高峰,56天降至正常水平;在SC后第7天,CA3区有大量的BrdU阳性细胞;BrdU和nestin阳性细胞数目无统计学差异。在SC后的前3天,CA1区新增殖的神经细胞呈TUNEL阳性;齿状回新增殖细胞始终表现TUNEL阴性。上述结果提示:SC后能激活自体神经干细胞原位增殖,并且部分新生细胞向损伤区域迁移。  相似文献   

6.
Estradiol increases cell proliferation in the dentate gyrus of the female rodent but it is not known whether the G protein-coupled estrogen receptor (GPER), a membrane receptor, is involved in this process, nor whether there are regional differences in estradiol’s effects on cell proliferation. Thus, we investigated whether estradiol exerts its effects on cell proliferation in the dorsal and ventral dentate gyrus through GPER, using the GPER agonist, G1, and antagonist, G15. Ovariectomized adult female rats received a single injection of either: 17β-estradiol (10 μg), G1 (0.1, 5, 10 μg), G15 (40 μg), G15 and estradiol, or vehicle (oil, DMSO, or oil+DMSO). After 30 min, animals received an injection of bromodeoxyuridine (BrdU) and were perfused 24 h later. Acute treatment with estradiol increased, while the GPER agonist G1 (5 μg) decreased, the number of BrdU+ cells in the dentate gyrus relative to controls. The GPER antagonist, G15 increased the number of BrdU+ cells relative to control in the dorsal region and decreased the number of BrdU+ cells in the ventral region. However, G15 treatment in conjunction with estradiol partially eliminated the estradiol-induced increase in cell proliferation in the dorsal dentate gyrus. Furthermore, G1 decreased the expression of GPER in the dentate gyrus but not the CA1 and CA3 regions of the hippocampus. In summary, we found that activation of GPER decreased cell proliferation and GPER expression in the dentate gyrus of young female rats, presenting a potential and novel estrogen-independent role for this receptor in the adult hippocampus.  相似文献   

7.
Stress is known to inhibit granule cell proliferation in the hippocampus. However, recent studies suggest that the commonly used dose of bromodeoxyuridine (BrdU) is insufficient to label all fractions of granule cells. Furthermore, stress-induced changes in BrdU availability may influence the labeling of newly born cells. To investigate whether changes in BrdU availability affect measurements of stress-induced granule cell proliferation, granule cell proliferation was assessed using injection of high doses of BrdU before and after restraint stress lasting 1 h. In addition, to determine whether stress-induced changes in plasma corticosterone levels were influenced by the BrdU, time-dependent changes in plasma corticosterone levels over 2 h after BrdU injection were compared with total accumulated plasma corticosterone levels [as determined by areas under the curve (AUC)]. Restraint stress significantly reduced the numbers of BrdU-labeled cells and clusters in the granule cell layer (GCL) of rats that received BrdU after stress, and decreases of similar magnitude were observed when the rats were given BrdU before stress. BrdU injection enhanced the stress-induced plasma corticosterone response, but there was no difference between the mean AUCs of plasma corticosterone levels of animals injected with BrdU before or after stress. These observations suggest that restraint stress decreases granule cell proliferation, and that this may be influenced by the extent and duration of plasma corticosterone increases rather than by changes in the availability of BrdU.  相似文献   

8.
The subiculum (SUB) is a pivotal structure positioned between the hippocampus proper and various cortical and subcortical areas. Despite the growing body of anatomical and intrinsic electrophysiological data of subicular neurons, modulation of synaptic transmission in the SUB is not well understood. In the present study we investigated the role of group II metabotropic glutamate receptors (mGluRs), which have been shown to be involved in the regulation of synaptic transmission by suppressing presynaptic cAMP activity. Using field potential and patch-clamp whole cell recordings we demonstrate that glutamatergic transmission at CA1-SUB synapses is depressed by group II mGluRs in a cell-type specific manner. Application of the group II mGluR agonist (2S,1′R,2′R,3′R)-2-(2, 3-dicarboxycyclopropyl)glycine (DCG-IV) led to a significantly higher reduction of excitatory postsynaptic currents in subicular bursting cells than in regular firing cells. We further used low-frequency stimulation protocols and brief high-frequency bursts to test whether synaptically released glutamate is capable of activating presynaptic mGluRs. However, neither frequency facilitation is enhanced in the presence of the group II mGluR antagonist LY341495, nor is a test stimulus given after a high-frequency burst. In summary, we present pharmacological evidence for presynaptic group II mGluRs targeting subicular bursting cells, but both low- and high-frequency stimulation protocols failed to activate presynaptically located mGluRs.  相似文献   

9.
Gonadal steroid hormones play an important role in the proliferation, survival, and activation of neurons. The present study was performed to examine the effects of testosterone and its metabolites on newly proliferated cells in the amygdala of adult male meadow voles (Microtus pennsylvanicus). Treatment with testosterone propionate (TP) in castrated males resulted in plasma testosterone levels similar to males following mating. TP-treated males displayed a significant increase in the density of cells labeled with a cell proliferation marker (BrdU) in the amygdala. Treatment with estradiol benzoate (EB) exerted a similar effect as TP on the density of BrdU-labeled cells, whereas 5alpha-dihydrotestosterone (DHT) was ineffective. A larger proportion (approximately 44%) of the BrdU-labeled cells in the amygdala displayed a neuronal phenotype, and a lesser percentage (approximately 35%) displayed a glial progenitor phenotype; however, treatment effects were not found in either population of cells. Hormonal effects appeared to be site-specific as no group differences were found in the dentate gyrus of the hippocampus or ventromedial hypothalamus. Finally, a time course study indicated that BrdU-labeled cells in the amygdala are present as early as 30 min following an acute injection of BrdU. Together, these data suggest that gonadal steroid hormones influence the number of newly proliferated cells in the amygdala, most likely by acting through an estrogenic mechanism, and these effects may be exerted on locally proliferating progenitors within the amygdala.  相似文献   

10.
11.
The dentate gyrus (DG) of the hippocampus is one of a few regions in the adult mammalian brain characterized by ongoing neurogenesis. Proliferation of neural precursors in the granule cell layer of the DG has been identified in pentylenetetrazol (PTZ) kindling epilepsy model, however, little is known about the molecular mechanism. We previously reported that the expression pattern of bone morphogenetic proteins-4 (BMP4) mRNA in the hippocampus was developmentally regulated and mainly localized in the DG of the adult. To explore the role of BMP4 in epileptic activity, we detected BMP4 expression in the DG during PTZ kindling process and explore its correlation with cell proliferation combined with bromodeoxyuridine (BrdU) labeling technique. We found that dynamic changes in BMP4 level and BrdU labeled cells dependent on the kindling stage of PTZ induced seizure-prone state. The number of BMP4 mRNA-positive cells and BrdU labeled cells reached the top level 1 day after PTZ kindled, then declined to base level 2 months later. Furthermore, there was a significant correlation between increased BMP4 mRNA expression and increased number of BrdU labeled cells. After effectively blocked expression of BMP4 with antisense oligodeoxynucleotides(ASODN), the BrdU labeled cells in the dentate gyrus subgranular zone(DG-SGZ) and hilus were significantly decreased 16d after the first PTZ injection and 1, 3, 7, 14d after kindled respectively. These findings suggest that increased proliferation in the DG of the hippocampus resulted from kindling epilepsy elicited by PTZ maybe be modulated by BMP4 over-expression.  相似文献   

12.
We evaluated the possible functional expression of metabotropic glutamate receptors (mGluRs) by neural progenitors from embryonic mouse neocortex. Constitutive expression was seen with group I, II, and III mGluRs in undifferentiated cells and neurospheres formed by clustered cells during culture with epidermal growth factor. The group III mGluR agonist, l -2-amino-4-phosphonobutyrate, drastically reduced proliferation activity at 1–100 μM without inducing cell death, with group I and group II mGluR agonists being ineffective, in these neurospheres. Both forskolin and a group III mGluR antagonist significantly increased the proliferation alone, but significantly prevented the suppression by l -2-amino-4-phosphonobutyrate. Activation of group III mGluR significantly decreased mRNA expression of the cell cycle regulator cyclinD1, in addition to inhibiting the transactivation mediated by cAMP of cyclinD1 gene in the pluripotent P19 progenitor cells. Prior activation of group III mGluR led to a significant decrease in the number of cells immunoreactive for a neuronal marker, with an increase in that for an astroglial marker irrespective of differentiation inducers. These results suggest that group III mGluR may be functionally expressed to suppress self-renewal capacity through a mechanism related to cAMP formation with promotion of subsequent differentiation into astroglial lineage in neural progenitors.  相似文献   

13.
The purpose of this study was to investigate the effects of Rhodiola rosea extract and depression on the serotonin (5-HT) level, cell proliferation and quantity of neurons at cerebral hippocampus of depressive rats induced by Chronic Mild Stress (CMS). Seventy male Sprague-Dawley rats were divided into seven groups (10 per group): normal control group, untreated depressive rat model group, negative control group, positive control group, low dosage Rhodiola rosea extract (1.5 g/kg) group, medium dosage Rhodiola rosea extract (3 g/kg) group and high dosage Rhodiola rosea extract (6 g/kg) group. After the depressive rats induced by CMS had received Rhodiola rosea extract for 3 weeks, the 5-HT levels at cerebral hippocampus were detected by high performance liquid chromatography. Bromodeoxyuridine (BrdU) was injected in vivo to label the proliferating cells at hippocampus, and morphometry was used to count the hippocampal neurons. The results showed that the 5-HT level of the three experimental groups had recovered to normal status. The immunohistochemistry of hippocampus BrdU positive cells had returned to the normal level in the group of depressive rats with low dosage Rhodiola rosea extract. In conclusion the results demonstrated that Rhodiola rosea extract could improve 5-HT level in hippocampus in depressive rats, and low dosage Rhodiola rosea could induce neural stem cell proliferation at hippocampus to return to normal level, repairing the injured neurons at hippocampus.  相似文献   

14.
Lithium has been demonstrated to increase neurogenesis in the dentate gyrus of rodent hippocampus. The present study was undertaken to investigate the effects of lithium on the proliferation and differentiation of rat neural progenitor cells in hippocampus both in vitro and in vivo. Lithium chloride (1-3 mM) produced a significant increase in the number of bromodeoxyuridine (BrdU)-positive cells in high-density cultures, but did not increase clonal size in low-density cultures. Lithium chloride at 1 mM (within the therapeutic range) also increased the number of cells double-labeled with BrdU antibody and TuJ1 (a class III beta-tubulin antibody) in high-density cultures and the number of TuJ1-positive cells in a clone of low-density cultures, whereas it decreased the number of glial fibrillary acidic protein-positive cells in both cultures. These results suggest that lithium selectively increased differentiation of neuronal progenitors. These actions of lithium appeared to enhance a neuronal subtype, calbindin(D28k)-positive cells, and involved a phosphorylated extracellular signal-regulated kinase and phosphorylated cyclic AMP response element-binding protein-dependent pathway both in vitro and in vivo. These findings suggest that lithium in therapeutic amounts may elicit its beneficial effects via facilitation of neural progenitor differentiation toward a calbindin(D28k)-positive neuronal cell type.  相似文献   

15.
《Phytomedicine》2015,22(13):1178-1185
BackgroundWater extract of the fixed combination of Gardenia jasminoides Ellis fruit, Citrus aurantium L. fruit and Magnolia officinalis Rehd. et Wils. bark, traditional name – Zhi-Zi-Hou-Po (ZZHPD) is used for treatment of depressive-like symptoms in traditional Chinese medicine for centuries.Hypothesis/PurposeThe present study aimed to explore antidepressant-like effects and potential mechanisms of ZZHPD in a rat model of chronic unpredictable mild stress (CUMS).Study designAntidepressant-like effects of ZZHPD were investigated through behavioral tests, and potential mechanism was assessed by neuroendocrine system, neurotrophin and hippocampal neurogenesis.MethodsAntidepressant-like effects of ZZHPD (3.66, 7.32 and 14.64 g/kg/day) were estimated through coat state test, sucrose preference test, forced swimming test and open-field test. Effects of ZZHPD on hypothalamic-pituitary-adrenal (HPA) axis were evaluated by hormones measurement and dexamethasone suppression test. In addition, the expression of brain-derived neurotrophic factor (BDNF) in hippocampus was measured, as well as hippocampal neurogenesis was investigated by doublecortin (DCX) and 5-bromo-2-deoxyuridine/neuronal nuclei (BrdU/NeuN).ResultsThe results demonstrated that ZZHPD significantly reversed the depressive-like behaviors, normalized the levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT), restored the negative feedback loop of HPA axis and improved the levels of BDNF, DCX and BrdU/NeuN compared with those in CUMS-induced rats.ConclusionThe above results revealed that ZZHPD exerted antidepressant-like effects possibly by normalizing HPA axis function, increasing expression of BDNF in hippocampus and promoting hippocampal neurogenesis.  相似文献   

16.
Neurogenesis is a life long process, but the rate of cell proliferation and differentiation decreases with age. In Alzheimer''s patients, along with age, the presence of Aβ in the brain inhibits this process by reducing stem cell proliferation and cell differentiation. GLP-1 is a growth factor that has neuroprotective properties. GLP1 receptors are present on neuronal progenitor cells, and the GLP-1 analogue liraglutide has been shown to increase cell proliferation in an Alzheimer''s disease (AD) mouse model. Here we investigated acute and chronic effects of liraglutide on progenitor cell proliferation, neuroblast differentiation and their subsequent differentiation into neurons in wild type and APP/PS-1 mice at different ages. APP/PS1 and their littermate controls, aged 3, 6, 12, 15 months were injected acutely or chronically with 25 nmol/kg liraglutide. Acute treatment with liraglutide showed an increase in cell proliferation in APP/PS1 mice, but not in controls whereas chronic treatment increased cell proliferation at all ages (BrdU and Ki67 markers). Moreover, numbers of immature neurons (DCX) were increased in both acute and chronic treated animals at all ages. Most newly generated cells differentiated into mature neurons (NeuN marker). A significant increase was observed with chronically treated 6, 12, 15 month APP/PS1 and WT groups. These results demonstrate that liraglutide, which is currently on the market as a treatment for type 2 diabetes (VictozaTM), increases neurogenesis, which may have beneficial effects in neurodegenerative disorders like AD.  相似文献   

17.
Kim SH  Kim HB  Jang MH  Lim BV  Kim YJ  Kim YP  Kim SS  Kim EH  Kim CJ 《Life sciences》2002,71(11):1331-1340
The effects of forced treadmill exercise on cell proliferation and apoptosis in the hippocampal dentate gyrus in Sprague-Dawley rats were investigated. The animals were classified into three groups: the control group, the easy exercise group, and the moderate exercise group. In the control group, rats were left on the treadmill without running for 30 min per day, while rats in the exercise groups were made to run on the treadmill for the same duration. All rats were injected intraperitoneally with 5-bromo-2'-deoxyuridine (BrdU) one-hour prior to exercise once a day for 7 consecutive days beginning at the start of the exercise regimens. Each of the rats was sacrificed 2 h after the last exercise. Both the easy and moderate exercise groups revealed increased number of BrdU-positive cells in the dentate gyrus compared to the control group. The terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay revealed very few apoptotic cells, with no statistically significant differences among the groups. These results showed that treadmill exercise increases cell proliferation without altering of apoptosis in the dentate gyrus of the hippocampus.  相似文献   

18.
Excitatory transmission within hippocampal area CA3 stems from three major glutamatergic pathways: the perforant path formed by axons of layer II stellate cells in the entorhinal cortex, the mossy fiber axons originating from the dentate gyrus granule cells, and the recurrent axon collaterals of CA3 pyramidal cells. The synaptic communication of each of these pathways is modulated by metabotropic glutamate receptors that fine-tune the signal by affecting both the timing and strength of the connection. Within area CA3 of the hippocampus, group I mGluRs (mGluR1 and mGluR5) are expressed postsynaptically, whereas group II (mGluR2 and mGluR3) and III mGluRs (mGluR4, mGluR7, and mGluR8) are expressed presynaptically. Receptors from each group have been demonstrated to be required for different forms of pre- and postsynaptic long-term plasticity and also have been implicated in regulating short-term plasticity. A recent observation has demonstrated that a presynaptically expressed mGluR can affect the timing of action potentials elicited in the postsynaptic target. Interestingly, mGluRs can be distributed in a target-specific manner, such that synaptic input from one presynaptic neuron can be modulated by different receptors at each of its postsynaptic targets. Consequently, mGluRs provide a mechanism for synaptic specialization of glutamatergic transmission in the hippocampus. This review will highlight the variability in mGluR modulation of excitatory transmission within area CA3 with an emphasis on how these receptors contribute to the strength and timing of network activity within pyramidal cells and interneurons.  相似文献   

19.
M Iwai  K Abe  H Kitagawa  T Hayashi 《Human cell》2001,14(1):27-38
Recent advancements in molecular biology are made to expect the appearance of the new treatment of stroke patients. One is the administration of neurotrophic factors, and another is the use of neural stem cell. In this report, we performed two experiments. First experiment is administration of glial cell line-derived neurotrophic factor (GDNF) using an adenovirus vector into ischemic rat brain. A replication-defective adenoviral vector containing GDNF gene (Ad-GDNF) was directly injected into the cerebral cortex at 1 day before 90 min of transient middle cerebral artery occlusion (MCAO) in rats. Infarct volume of the Ad-GDNF injected group at 24 h after the transient MCAO was significantly smaller than that of vehicle or Ad-LacZ treated group. These results suggest that the successful exogenous GDNF gene transfer ameliorates the ischemic brain injury after transient MCAO in association with the reduction of apoptotic signals. Second one is the neural stem cell activation after transient ischemia. We investigated a possible expression of highly polysialylated neural cell adhesion molecule (PSA-NCAM) in gerbil hippocampus after 5 min of transient global ischemia in association to the proliferation of neural stem cell labeled with bromodeoxyuridine (BrdU). The number of PSA-NCAM positive cells increased in dentate gyrus (DG) at 10 and 20 days, and that of BrdU-labeled cells increased in DG at 5 and 10 days after the reperfusion. Immunofluorescence for PSA-NCAM and BrdU showed that a few cells per section were double labeled in DG only at 10 days after the reperfusion. These results suggest different chronological change of PSA-NCAM positive and BrdU-labeled cells in DG after transient ischemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号