首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that the liver and steroidogenic tissues of rats in vivo and a wider range of cells in vitro, including human cells, selectively take up high density lipoprotein (HDL) cholesteryl esters without parallel uptake of HDL particles. This process is regulated in tissues of rats and in cultured rat cells according to their cholesterol status. In the present study, we examined regulation of HDL selective uptake in cultured human fibroblasts and Hep G2 hepatoma cells. The cholesterol content of these cells was modified by a 20-hr incubation with either low density lipoprotein (LDL) or free cholesterol. Uptake of HDL components was examined in a subsequent 4-6-hr assay using intracellularly trapped tracers: 125I-labeled N-methyl-tyramine-cellobiose-apoA-I (125I-NMTC-apoA-I) to trace apoA-I, and [3H]cholesteryl oleyl ether to trace cholesteryl esters. In the case of fibroblasts, pretreatment with either LDL or free cholesterol resulted in decreased selective uptake (total [3H]cholesteryl ether uptake minus that due to particle uptake as measured by 125I-NMTC-apoA-I). In contrast, HDL particle uptake increased with either form of cholesterol loading. The amount of HDL that was reversibly cell-associated (bound) was increased by prior exposure to free cholesterol, but was decreased by prior exposure to LDL. In the case of Hep G2 cells, exposure to free cholesterol only slightly increased HDL particle uptake; selective uptake decreased after both forms of cholesterol loading, and reversibly bound HDL increased after exposure to free cholesterol, but either did not change or decreased after exposure to LDL. It was excluded that either LDL carried over into the HDL uptake assay or that products secreted by the cultured cells influenced these results. Thus, selective uptake by cells of both hepatic and extrahepatic origin was down-regulated by cholesterol loading, under which conditions HDL particle uptake increased. Total HDL binding was not directly correlated with either the rate of selective uptake or the rate of HDL particle uptake or the cholesterol status of the cells, suggesting more than one type of HDL binding site.  相似文献   

2.
Human high density lipoprotein (HDL3) was reconstituted with the free cholesterol molecules replaced with 4-[13C]-cholesterol. 90 MHz [13C]-NMR spectra were obtained and two cholesterol resonances at chemical shifts of 41.73 and 42.20 ppm could be resolved. The former signal arises from the C-4 atom of cholesterol molecules associated with phospholipids and located in the surface of the HDL3 particle while the latter resonance is due to cholesterol molecules associated with cholesterol ester and triglyceride molecules in the core. HDL3 reconstituted without any cholesterol ester or triglyceride gave a single resonance at 41.73 ppm indicating that all the free cholesterol molecules are in the surface. 60% of the free cholesterol molecules present in normal HDL3 are in the phospholipid monolayer around the surface where they undergo relatively restricted motion compared to the remaining 40% situated in the liquid core. The free cholesterol molecules can equilibrate between the two pools in the timescale 10ms–700s.  相似文献   

3.
Mycoplasma hominis andAcholeplasma laidlawii were grown in media in which a fraction of human serum lipoproteins provided the sole source of cholesterol. Increasing levels of very low density lipoproteins had an inhibitory effect on the growth of the organisms. Low and high density lipoproteins in all concentrations proved to be excellent sources of cholesterol. Both organisms were able to limit the amount of cholesterol taken up and to preferentially incorporate free cholesterol despite an excess of esterified cholesterol in the medium. When similar levels of free cholesterol were provided by low density or high density lipoproteins, the organisms incorporated from 20–45% more cholesterol from the former. This preference for cholesterol from low density lipoproteins partially supports the theory that the low density lipoproteins act as a donor while the high density lipoproteins are a scavenger of cholesterol.  相似文献   

4.
Incubation of plasma lipoproteins with rabbit hepatic microsomes enriched the microsomes with free cholesterol and stimulated cholesterol esterification. The rate of cholesterol esterification correlated well (r = 0.96) with the concentration of microsomal free cholesterol. Lipoproteins from normal and hypercholesterolemic serum varied in their propensity to stimulate cholesterol esterification. Among the normal lipoproteins, low density lipoproteins was more stimulatory than either high density lipoproteins or intermediate density lipoproteins. However, the intermediate density lipoproteins fraction from hypercholesterolemic serum was consistently more stimulatory than any of the normal lipoproteins. The augmentation of cholesterol content, when microsomes were exposed to mixed hyperlipidemic lipoproteins, was proportionately much greater than augementation of phospholipid or protein concentration.  相似文献   

5.
A comparison of nonhuman primate plasma lipoproteins isolated by swinging bucket rotor density gradient or fixed angle rotor differential ultracentrifugation is described. Whereas these two methods produced comparable results for the composition of low density (LDL) and high density (HDL) lipoproteins, the very low density lipoprotein (VLDL) fraction isolated with the swinging-bucket rotor contained relatively more cholesterol (free and esterified) and less phospholipid and protein than that fraction obtained with the fixed-angle rotor. Estimations of lipoprotein concentration by agarose gel electrophoresis and particle size by electron microscopy coupled with molar ratios of surface to core constituents indicate that the swinging bucket procedure resulted in a more complete harvest of VLDL particles, especially those in the larger size range.  相似文献   

6.
Human high density lipoprotein enriched in free cholesterol was obtained by exposing the lipoprotein to lipid dispersions having a free cholesterol/lecithin molar ratio greater than two. The metabolism of cholesterol was studied in tissue culture cells exposed to normal and cholesterol-enriched lipoproteins. Incubation of Fu5-AH rat hepatoma cells in medium containing cholesterol-enriched lipoprotein resulted in the accumulation of cellular cholesterol whereas normal high density lipoprotein produced no change in cellular content. The accumulated sterol was recovered primarily as esterified cholesterol and was derived almost entirely from lipoprotein free cholesterol. The esterification of incorporated free cholesterol and the cellular cholesterol content were directly related to the molar ratio of free cholesterol to phospholipid in the lipoprotein and to the concentration of lipoprotein in the culture medium. Isotopic experiments utilizing lipoprotein labeled with 125I or [4-14C]cholesteryl oleate demonstrated that a large fraction of the cholesterol incorporated from lipoprotein enriched in free cholesterol occurred by mechanisms that did not result in lipoprotein internalization and degradation. The response of other tissue culture cells to cholesterol/phospholipid dispersions is presented. The data indicate that the lipid composition of a lipoprotein can regulate free cholesterol uptake and esterification as well as cellular cholesterol content.  相似文献   

7.
Bovine vascular endothelial cells bind chylomicrons via a high affinity membrane receptor site. Subsequent to binding, the chylomicron apoprotein was neither internalized nor degraded by either sparse or confluent (contact-inhibited) cells. However, the adsorption of chylomicrons was associated with interiorization of chylomicron cholesteryl ester and triglyceride and the hydrolysis of these lipids to free cholesterol and unesterified fatty acids by a lysosome-dependent pathway. This pathway was active in both subconfluent and contact-inhibited cells. The chylomicron free cholesterol so produced inhibited endogeneous cholesterol synthesis measured in terms of the incorporation of [1-14C]-acetate into sterol. An excess of high density lipoprotein was 2- to 3-fold more effective in reducing both binding of chylomicrons and interiorization of chylomicron lipid than was low density lipoprotein. Chylomicron binding was not "down-regulated" by preincubation of the cells with low density lipoprotein or chylomicrons. The results are discussed in the context of cholesterol sources for contact-inhibited endothelial cells which do not interiorize low density lipoprotein cholesterol.  相似文献   

8.
The fractional esterification rate of cholesterol in apolipoprotein B (apoB)-depleted plasma (FER(HDL)) is a good indicator of particle size distribution in high density lipoprotein (HDL) and low density lipoprotein (LDL). However, there has been a discrepancy in the absolute values of FER(HDL) published by different laboratories. Because the main difference between the methods was in the labeling of lipoproteins with [(3)H]cholesterol we investigated the effect of using Corning immunoplates and paper discs as carriers of the labeled unesterified cholesterol. We found that Corning plates trap some (3)H-labeled free cholesterol, which is released during incubation at 37 degrees C. This means that this additional (3)H-labeled free cholesterol is exposed to lecithin: cholesterol acyltransferase (LCAT) for a shorter time and artificially decreases FER(HDL). Using paper discs discarded before incubation as carriers of the (3)H-labeled free cholesterol results in complete labeling of HDL and thus yields higher values of FER(HDL).  相似文献   

9.
Particles closely resembling rat high density lipoproteins (HDL) in terms of equilibrium density profile and particle size were prepared by sonication of apoA-I with a microemulsion made with egg lecithin and cholesterol oleate. These particles, like authentic HDL, allowed selective uptake of their cholesterol ester moieties by cultured cells without parallel uptake of the particle itself. That uptake was saturable and competed by HDL. In rats, the plasma decay kinetics and sites of uptake of a cholesteryl ether tracer were similar whether that tracer was incorporated into synthetic or authentic HDL. Synthetic particles containing other apoproteins were made by generally the same method, but using in place of apoA-I either a mixture of rat apoCs or apoE that was either competent or reductively methylated to prevent interaction with the B/E receptor. These particles, of lower density and larger Stokes radius than those made with apoA-I, also allowed selective uptake of cholesterol esters, albeit with a lower degree of selectivity than in the case of apoA-I. Thus a specific apoprotein component in the subject lipoprotein particle is not required for selective uptake. However, selective uptake was shown to be a function of particle density or size, and part of the difference in rates of selective uptake from the particles made with various apoproteins was explained by their differences in density or size.  相似文献   

10.
Previously, we isolated and characterized unique liposomal-like, cholesterol-rich lipid particles that accumulate in human atherosclerotic lesions. Human plasma low density lipoprotein (LDL) has a molar ratio of total cholesterol to phospholipid (3:1) similar to that of this lesion cholesterol-rich lipid particle. However, LDL is enriched in cholesteryl ester while the lesion lipid particle is enriched in unesterified cholesterol. To examine a possible precursor-product relationship between LDL and the lesion lipid particle, we hydrolyzed the cholesteryl ester core of LDL with cholesterol esterase. Cholesteryl ester hydrolysis occurred only after LDL was treated with trypsin. Trypsin pretreatment was not required for cholesteryl ester hydrolysis of LDL oxidized with copper, a treatment that also degrades apolipoprotein B, the major protein moiety in LDL. In contrast to greater than 90% hydrolysis of cholesteryl ester in trypsin-cholesterol esterase-treated or copper-oxidized LDL, there was only 18% hydrolysis of cholesteryl ester in similarly treated high density lipoprotein. With a limited 10-min hydrolysis of LDL cholesteryl ester, LDL-sized particles and newly formed larger flattened films or discs were present. With complete hydrolysis of LDL cholesteryl ester, LDL particles converted to complex multilamellar, liposomal-like, structures with sizes approximately five times larger than native LDL. These liposomal-like particles derived from LDL were chemically and structurally similar to unesterified cholesterol-rich lipid particles that accumulate in atherosclerotic lesions.  相似文献   

11.
The simultaneous exchange of (3h)tocopherol and (14C)cholesterol between rat plasma, rat plasma lipoproteins, and RBC was studied in vitro to compare quantitavely (a) the fractional exchange rates and (b) the half-times for isotope equilibration. In all incubations of RBC with plasma or with plasma lipoprotein fractions, (14C)cholesterol approached equilibrium more rapidly than (3H)tocopherol. When the RBC contained the initial radioactivity, the half-times for equilibration with plasma of cholesterol and of tocopherol were 1.0 and 2.2 hr, respectively. However, the fractional exchange rates (KRBC leads to plasma) were 0.097/hr for cholesterol and 0.188/hr for tocopherol, indicating that the RBC tocopherol pool is turning over almost twice as rapidly as the RBC cholesterol pool. The rat plasma lipoproteins were separated into five fractions by successive ultracentrifugation. Only two fractions, the high density lipoproteins (d 1.063-1.21) and the very low density lipoproteins (d is less than 1.006), participated to a significant extent in the exchange of either tocopherol or cholesterol with RBC. Cholesterol exchange between individual rat plasma lipoproteins and RBC had the same half-times for isotope equilibrium for the very low and high density lipoproteins, and the RBC fractional exchange rates were proportional to the amount of cholesterol in the lipoproteins. In tocopherol exchange between individual rat plasma lipoproteins and RBC, the very low density lipoprotein tocopherol did not equilibrate completely with the RBC. However, the initial rate of tocopherol exchange appeared to be the same for very low and high density lipoproteins. The very low density lipoproteins were disrupted by repeated freezing and thawing or by dehydrating and rehydrating, and analysis of the resulting lipoproteins indicated that free cholesterol was associated more closely than tocopherol with the phospholipid-protein portion of the molecule, which is thought to be on the surface. This difference in distribution of tocopherol and free cholesterol within very low density lipoproteins could account for their different rates of exchange and for the nonequilibrium of tocopherol between RBC and very low density lipoproteins.  相似文献   

12.
The present study demonstrates very high levels of plasma lipids and high density lipoprotein (HDL) apolipoproteins (apoA-I and apoE) in female Nagase analbuminemic rats (NAR) fed a semi-synthetic diet in order to further increase the hyperlipidemia present in this strain. Plasma apoB-containing lipoproteins (very low, intermediate, and low density lipoproteins) were also elevated in NAR. Plasma cholesterol was mainly present in lipoprotein particles with a density between 1.02 and 1.12 g/ml. Separation of lipoprotein classes by gel filtration showed that the major cholesterol-carrying lipoprotein fractions in NAR plasma are apoE-rich HDL and apoA-I-rich HDL. The high HDL levels in NAR are explained, at least partly, by the two- to threefold elevated activity of plasma lecithin:cholesterol acyltransferase (LCAT). The lysophosphatidylcholine generated in the LCAT reaction, as well as plasma free fatty acids, are bound to lipoproteins in NAR plasma. A study was carried out to determine whether the elevated LDL and aopoE-rich HDL levels could be corrected by administration of the HMG-CoA reductase inhibitor pravastatin (at a dose of 1 mg/kg per day). Pravastatin treatment results in a 43% decrease in plasma triglycerides in NAR, but not in Sprague-Dawley (SDR) rats, and had no significant effect on plasma total cholesterol, phospholipids apolipoproteins A-I, A-IV, B, or E, as well as on plasma LCAT activity levels in NAR or SDR.  相似文献   

13.
The effect of lipid transfers on the structure and composition of high density lipoproteins (HDL) has been studied in vitro in incubations that contained the lipoprotein-free fraction of human plasma as a source of lipid transfer protein. These incubations did not contain lecithin:cholesterol acyltransferase activity and were not supplemented with lipoprotein lipase. Incubations were performed at 37 degrees C for 6 hr in both the presence and absence of either added very low density lipoproteins (VLDL) or the artificial triglyceride emulsion, Intralipid. Incubation in the absence of added VLDL or Intralipid had little or no effect on the HDL. By contrast, incubation in the presence of either VLDL or Intralipid resulted in marked changes in the HDL. The effect of incubation with VLDL was qualitatively similar to that of Intralipid; both resulted in obvious transfers of lipid and changes in the density, particle size, and composition of HDL. Incubation of the plasma fraction of density 1.006-1.21 g/ml, total HDL, or HDL3 with either VLDL or Intralipid resulted in the following: 1) a depletion of the cholesteryl ester and free cholesterol content and an increase in the triglyceride content of both HDL2 and HDL3; 2) a decrease in density and an increase in particle size of the HDL3 to form a population of HDL2-like particles; and 3) the formation of a discrete population of very small lipoproteins with a density greater than that of the parent HDL3. The newly formed lipoproteins had a mean particle radius of 3.7-3.8 nm and consisted mainly of protein, predominantly apolipoprotein A-I and phospholipid.  相似文献   

14.
The severe depletion of cholesteryl ester (CE) in adrenocortical cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays an important role in the high density lipoprotein (HDL) CE selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. A recent study showed that apoA-I(-/-) HDL binds to SR-BI with the same affinity as apoA-I(+/+) HDL, but apoA-I(-/-) HDL has a decreased V(max) for CE transfer from the HDL particle to adrenal cells. The present study was designed to determine the basis for the reduced selective uptake of CE from apoA-I(-/-) HDL. Variations in apoA-I(-/-) HDL particle diameter, free cholesterol or phospholipid content, or the apoE or apoA-II content of apoA-I(-/-) HDL had little effect on HDL CE selective uptake into Y1-BS1 adrenal cells. Lecithin cholesterol acyltransferase treatment alone or addition of apoA-I to apoA-I(-/-) HDL alone also had little effect. However, addition of apoA-I to apoA-I(-/-) HDL in the presence of lecithin cholesterol acyltransferase reorganized the large heterogeneous apoA-I(-/-) HDL to a more discrete particle with enhanced CE selective uptake activity. These results show a unique role for apoA-I in HDL CE selective uptake that is distinct from its role as a ligand for HDL binding to SR-BI. These data suggest that the conformation of apoA-I at the HDL surface is important for the efficient transfer of CE to the cell.  相似文献   

15.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

16.
Lipoproteins, present in serum of chow-fed rats, were fractionated according to size by chromatography of serum on 6% agarose columns. The distributions of apolipoprotein (apo) A-I, E, and A-IV within the high density lipoprotein (HDL) size range (i.e., lipoprotein complexes smaller than low density lipoproteins) showed the existence of lipoprotein subclasses with different size and chemical composition. Sequential immunoprecipitations were performed on these fractions obtained by agarose column chromatography, using specific antisera against apoA-I, apoE, and apoA-IV. The resulting precipitates and supernatants were analyzed for cholesteryl esters, unesterified cholesterol, phospholipids, triglycerides, and specific lipoproteins. The following conclusions were drawn from these experiments. Sixty-three +/- 3% of apoE in the total HDL size range is present on a large particle (mol wt 750,000). This lipoprotein contains apoE as its sole protein constituent and is called LpE. Thirty-nine +/- 4% of the cholesterol found in the HDL size range is present in this fraction. The cholesterol:phospholipid ratio is 1:1.1. Sixty-nine +/- 8% of apoA-I in the total HDL size range is present on a smaller particle (mol wt 250,000). This apoA-I-HDL has apoA-I as its major protein component and possibly contains minor amounts of C apoproteins and A-II, but neither apoE nor apoA-IV. It contains 39 +/- 8% of the total cholesterol found in the HDL size range and the cholesterol:phospholipid ratio is 1:1.6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
As judged from measurements of the diameters of particles fixed with osmium tetroxide and shadowed with platinum, gel chromatography on 2% agarose has been shown to be an effective quantitative method for separating triglyceride-rich lipoproteins according to particle size. Particles in the size range of chylomicrons, uncontaminated by lipoproteins smaller than about 700 A or by other serum proteins, emerged in the void volume of the column, and very low density lipoproteins with diameters between 400 and 700 A were separated into fractions with average standard deviation of 71 A from the mean. Systematic comparison of the relationship between diameter and chemical composition of fractions obtained from subjects with various hyperlipoproteinemic disorders demonstrated a precise correlation consistent with a spherical model for these lipoproteins in which phospholipids, free cholesterol, and protein occupy a surface monolayer with an invariant thickness of 21.5 A surrounding a liquid core of triglycerides and cholesteryl esters. The chemical composition of very low density lipoproteins of given particle size in most recognized types of hyperlipemia was similar to that of normolipemic subjects, but particles in the size range of chylomicrons sometimes had higher contents of cholesteryl esters and free cholesterol. Results obtained in subjects with dysbetalipoproteinemia were consistent with the presence of three populations of particles. Two of these, with mean diameters of about 850 and 350 A, had unusually high cholesteryl ester content and reduced triglyceride content and may represent "remnants" of the metabolism of structurally normal chylomicrons and very low density lipoproteins, respectively. The third, a heterogeneous group with intermediate range of particle size and pre-beta mobility, may represent a population of very low density lipoproteins with relatively normal composition.  相似文献   

18.
1. Livers from normal fed male rats were perfused in vitro with a bloodless medium which contained intially 3% bovine serum albumin and 100 mg% glucose. Albumin alone, or myristate (14 : 0), palmitate (16 : 0), palmitoleate (16 : 1), stearate (18 : 0), oleate (18 : 1), or linoleate (18:2) was infused at a constant rate (496 mumol/4 h), as a complex with albumin, during the experiment. 2. The very low density lipoprotein secreted by the liver after infusion of unsaturated fatty acids (16 : 1, 18 :1, 18 : 2) has a faster rate-zonal mobility in the ultracentrifuge and is, therefore, probably a larger particle with fewer moles of phospholipid and cholesterol relative to triacyglycerol (triacyglycerol/phospholipids/cholesterol = 100/25.1/16.4) than the very low density lipoproteins produced after infusion of saturated (14 : 0, 16 : 0, 18 : 0) fatty acids (triacyglycerol/phospholipids/cholesterol = 100/30.1/19.1). The molar ratio of phosphoipids/cholesterol of the very low density lipoprotein was similar regardless of which fatty acid was infused. The predominant fatty acid of the very low density lipoprotein or hepatic triacyglycerol, in all cases, was the infused acid. 3. We conclude that free fatty acid regulates the quantity and proportions of triacyglycerol, phospholipids, and cholesterol secreted by the liver in the very low density lipoprotein, and therefore, may secondarily influence concentrations of lipids in the very low density lipoprotein and other plasma lipoproteins circulating in vivo.  相似文献   

19.
(1) Human HDL2 (d 1.070-1.125) and HDL3 (d 1.125-1.21) labelled with unesterified [14C]cholesterol, were incubated with a source of lecithin-cholesterol acyltransferase. For optimal activity, the reaction required the addition of albumin in excess, at least 3-times greater than the concentration of HDL-free cholesterol. Under such conditions, the reaction appeared saturable. HDL3 was found the most efficient substrate and the Vmax values expressed for 1.5 IU LCAT/ml and with an albumin/free cholesterol ratio of 3, were 8.3 nmol free cholesterol esterified/ml per h and 4.1 nmol/ml per h for HDL3 and HDL2, respectively. (2) HDL3 were modified in the presence of VLDL by inducing triacylglycerol lipolysis with a semipurified lipoprotein lipase from bovine milk. The newly formed HDL had gained free cholesterol and phospholipids, so that about 50% of these modified HDL, referred to as light-LIP-HDL3, were reisolated in the HDL2 density range. Light-LIP-HDL3 were enriched mostly in free cholesterol (+ 160%) and in phospholipid (+ 40%). Their reactivity towards LCAT was half-reduced compared to parent HDL3, which correlated well with a decrease in their phospholipid/free cholesterol molar ratio. Moreover, HDL3 artificially enriched in free cholesterol and exhibiting a comparable PL/FC behaved like lipolysis-modified HDL in their reactivity towards LCAT. (3) HDL3 were also modified by co-incubation with VLDL (post-VLDL-HDL3), or with VLDL and a source of lipid transfer protein (CET-HDL3). The latter treatment greatly affected the lipid composition of the core particle (-25% esterified cholesterol, +190% TG). In both cases, the moderate decreasing LCAT reactivity observed could be related to the phospholipid/free cholesterol ratio. Thus, like in artificial substrates, the lipid composition of the HDL surface may control the rate of LCAT-mediated cholesterol esterification.  相似文献   

20.
Total, free and esterified cholesterol were measured in the plasma, high density lipoproteins, low density lipoproteins, and total cholesterol in the very low density lipoproteins of 141 pairs of adult white male twins. Free cholesterol in plasma, high density lipoproteins and low density lipoproteins had significant genetic variance. Esterified cholesterol had greater total variance in dizygotic than monozygotic twins, interpreted as evidence for greater environmental influences on the two types of twins. After bias due to unequal environmental effects on the two types of twins was removed, there was no significant genetic variance for any esterified fraction of cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号