首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein-coupled receptors (GPCRs) initiate Ras-dependent activation of the Erk 1/2 mitogen-activated protein kinase cascade by stimulating recruitment of Ras guanine nucleotide exchange factors to the plasma membrane. Both integrin-based focal adhesion complexes and receptor tyrosine kinases have been proposed as scaffolds upon which the GPCR-induced Ras activation complex may assemble. Using specific inhibitors of focal adhesion complex assembly and receptor tyrosine kinase activation, we have determined the relative contribution of each to activation of the Erk 1/2 cascade following stimulation of endogenous GPCRs in three different cell types. The tetrapeptide RGDS, which inhibits integrin dimerization, and cytochalasin D, which depolymerizes the actin cytoskeleton, disrupt the assembly of focal adhesions. In PC12 rat pheochromocytoma cells, both agents block lysophosphatidic acid (LPA)- and bradykinin-stimulated Erk 1/2 phosphorylation, suggesting that intact focal adhesion complexes are required for GPCR-induced mitogen-activated protein kinase activation in these cells. In Rat 1 fibroblasts, Erk 1/2 activation via LPA and thrombin receptors is completely insensitive to both agents. Conversely, the epidermal growth factor receptor-specific tyrphostin AG1478 inhibits GPCR-mediated Erk 1/2 activation in Rat 1 cells but has no effect in PC12 cells. In HEK-293 human embryonic kidney cells, LPA and thrombin receptor-mediated Erk 1/2 activation is partially sensitive to both the RGDS peptide and tyrphostin AG1478, suggesting that both focal adhesion and receptor tyrosine kinase scaffolds are employed in these cells. The dependence of GPCR-mediated Erk 1/2 activation on intact focal adhesions correlates with expression of the calcium-regulated focal adhesion kinase, Pyk2. In all three cell types, GPCR-stimulated Erk 1/2 activation is significantly inhibited by the Src kinase inhibitors, herbimycin A and 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo-D-3,4-pyrimidine (PP1), suggesting that Src family nonreceptor tyrosine kinases represent a point of convergence for signals originating from either scaffold.  相似文献   

2.
3.
Binding of growth factors to specific cell surface receptors is the first step in initiating cell signaling cascades that ultimately result in diverse activities such as proliferation, differentiation, and apoptosis. Dimerization and phosphorylation of tyrosine kinase transmembrane receptors is the typical paradigm for this activation but, for many growth factors, cell surface interactions are not limited to a single receptor type. In particular, heparin-binding growth factors, such as fibroblast growth factor-2 (FGF-2), bind to heparan sulfate proteoglycans (HSPG) on the cell surface and within the extracellular matrix (ECM), and these molecules have been viewed as accessory co-receptors serving to facilitate tyrosine kinase receptor binding. Recent studies, however, have indicated that HSPG can directly participate in signal transduction in response to FGF-2 binding. Thus, in the present study, we used mathematical modeling to examine whether the kinetics of formation of the various FGF-2 bound complexes on the cell surface correlate with the activation of the downstream mediators of FGF-2 response, Erk1/2. We find that FGF-2 binding to its receptor correlates well with Erk1/2 activation and that HSPG can modulate this response through its ability to stabilize these ligand receptor complexes. Moreover, we also observed that FGF-2 binding to HSPG correlates strongly with Erk1/2 activation under conditions where there is a loss of receptor activity, and we demonstrate that the relative amounts of signaling and non-signaling HSPG on the cell surface, as well as the presence of competing HSPG in the ECM, can impact the signal potential via this pathway. Thus, the selective regulation of specific HSPG might provide a mechanism for fine tuned modulation of heparin-binding growth factor signaling in cells where signal intensity and duration could direct cellular response toward growth, migration or differentiation.  相似文献   

4.
5.
6.
Activation of growth factor receptors by ligand binding initiates a cascade of events leading to cell growth and division. Progression through the cell cycle is controlled by cyclin-dependent protein kinases (Cdks), but the mechanisms that link growth factor signaling to the cell cycle machinery have not been established. We report here that Ras proteins play a key role in integrating mitogenic signals with cell cycle progression through G1. Ras is required for cell cycle progression and activation of both Cdk2 and Cdk4 until approximately 2 h before the G1/S transition, corresponding to the restriction point. Analysis of Cdk-cyclin complexes indicates that Ras signaling is required both for induction of cyclin D1 and for downregulation of the Cdk inhibitor p27KIP1. Constitutive expression of cyclin D1 circumvents the requirement for Ras signaling in cell proliferation, indicating that regulation of cyclin D1 is a critical target of the Ras signaling cascade.  相似文献   

7.
Fridman M  Walker F  Catimel B  Domagala T  Nice E  Burgess A 《Biochemistry》2000,39(50):15603-15611
Mutational analysis of the cRaf-1 Ras binding domain (RBD) identified several point mutants with elevated Ras binding. Detailed examination of the binding kinetics of one mutant (A85K) suggests that it associates with a greater range of isomeric conformers of v-H-Ras than wt-RBD. At limiting v-H-Ras concentrations, saturation binding to A85K-RBD is higher than to wt-RBD. Notably, in assay systems where the RBD concentration is limiting, no difference exists between wt-RBD and A85K-RBD saturation levels in the presence of a sufficiently large molar excess of Ras. The inability of wt-RBD to saturate all bindable Ras/GTP (defined by its binding to A85K-RBD) suggests that Ras/GTP exists as several isoforms and that only a minority of these isoforms are capable of associating with wt-RBD. These findings provide the first experimental evidence in support of functionally distinct Ras/GTP isoforms. We also describe a novel analysis of such isoforms.  相似文献   

8.
Growth factor receptors activate Ras by recruiting the nucleotide exchange factor son of sevenless (SOS) to the cell membrane, thereby triggering the production of GTP-loaded Ras. Crystallographic analyses of Ras bound to the catalytic module of SOS have led to the unexpected discovery of a highly conserved Ras binding site on SOS that is located distal to the active site and is specific for Ras.GTP. The crystal structures suggest that Ras.GTP stabilizes the active site of SOS allosterically, and we show that Ras.GTP forms ternary complexes with SOS(cat) in solution and increases significantly the rate of SOS(cat)-stimulated nucleotide release from Ras. These results demonstrate the existence of a positive feedback mechanism for the spatial and temporal regulation of Ras.  相似文献   

9.
Integrin activation generates different signalings in a cell type-dependent manner and stimulates cell proliferation through the Ras/Raf-1/Mek/Erk pathway. In this study, we demonstrate that integrin stimulation by fibronectin (FN), besides activating the Ras/Erk pathway, generates an auxiliary calcium signal that activates calmodulin and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). This signal regulates Raf-1 activation by Ras and modulates the FN-stimulated extracellular signal-regulated kinase (Erk-1/2). The binding of soluble FN to integrins induced increase of intracellular calcium concentration associated with phosphorylation and activation of CaMKII. In two different cell lines, inhibition of CaMKII activity by specific inhibitors inhibited Erk-1/2 phosphorylation. Whereas CaMK inhibition affected neither integrin-stimulated Akt phosphorylation nor p21Ras or Mek-1 activity, it was necessary for Raf-1 activity. FN-induced Raf-1 activity was abrogated by the CaMKII specific inhibitory peptide ant-CaNtide. Integrin activation by FN induced the formation of a Raf-1/CaMKII complex, abrogated by inhibition of CaMKII. Active CaMKII phosphorylated Raf-1 in vitro. This is the first demonstration that CaMKII interplays with Raf-1 and regulates Erk activation induced by Ras-stimulated Raf-1. These findings also provide evidence supporting the possible existence of cross-talk between other intracellular pathways involving CaMKII and Raf-1.  相似文献   

10.
High density lipoprotein (HDL) stimulates multiple signaling pathways. HDL-induced activation of the mitogen-activated protein kinase (MAPK) pathway can be mediated by protein kinase C (PKC) and/or pertussis toxin-sensitive G-proteins. Although HDL-induced activation of MAPK involves Raf-1, Mek, and Erk1/2, the upstream contribution of p21(ras) (Ras) on the activation of Raf-1 and MAPK remains elusive. Here we examine the effect of HDL on Ras activity and demonstrate that HDL induces PKC-independent activation of Ras that is completely blocked by pertussis toxin, thus implicating heterotrimeric G-proteins. In addition, the HDL-induced activation of Ras is inhibited by a neutralizing antibody against scavenger receptor type BI. We conclude that the binding of HDL to scavenger receptor type BI activates Ras in a PKC-independent manner with subsequent induction of the MAPK signaling cascade.  相似文献   

11.
In neuronal cells, the mitogen-activated protein kinase (MAP kinase) cascade is an important mediator of neurotrophin signaling from cell surface receptors to the nucleus, resulting in changes in gene expression. Nuclear localization of Erk is thought to be required for these effects. To examine the mechanism and regulation of Erk nuclear translocation, we have created a green fluorescent protein (GFP)-labeled Erk2 construct, which provides a sensitive means to follow the movement of Erk from the cytoplasm to the nucleus following receptor-mediated MAP kinase activation. Using this system in PC12 cells, we have examined a number of mechanisms that have been implicated in regulating the translocation of Erk. In PC12 cells, NGF and EGF induce a rapid translocation of GFP-Erk that requires Ras and Mek. We have found that prolonged phosphorylation of Erk is not required for the rapid and early influx of Erk into the nucleus following growth factor stimulation. Furthermore, following influx, GFP-Erk rapidly returned to the cytoplasm regardless of its phosphorylation state. The release of Erk from its cytoplasmic activator, Mek, followed by the dimerization of Erk, was sufficient to stimulate nuclear uptake, whereas Erk kinase activity was dispensable. PKA activity has been reported to be required for Erk translocation in PC12 cells. However, PKA activity was also not necessary for the early translocation of Erk into the nucleus by NGF or Ras, but it was able to induce a small influx of Erk that could be measured with GFP-Erk2.  相似文献   

12.
The classical model for the activation of the nucleotide exchange factor Son of sevenless (SOS) involves its recruitment to the membrane, where it engages Ras. The recent discovery that Ras*GTP is an allosteric activator of SOS indicated that the regulation of SOS is more complex than originally envisaged. We now present crystallographic and biochemical analyses of a construct of SOS that contains the Dbl homology-pleckstrin homology (DH-PH) and catalytic domains and show that the DH-PH unit blocks the allosteric binding site for Ras and suppresses the activity of SOS. SOS is dependent on Ras binding to the allosteric site for both a lower level of activity, which is a result of Ras*GDP binding, and maximal activity, which requires Ras*GTP. The action of the DH-PH unit gates a reciprocal interaction between Ras and SOS, in which Ras converts SOS from low to high activity forms as Ras*GDP is converted to Ras*GTP by SOS.  相似文献   

13.
The four receptor tyrosine kinases of the ErbB family play essential roles in several physiological processes and have also been implicated in tumor generation and/or progression. Activation of ErbB1/EGFR is mainly triggered by epidermal growth factor (EGF) and other related ligands, while activation of ErbB2, ErbB3, and ErbB4 receptors occurs by binding to another set of EGF-like ligands termed neuregulins (NRGs). Here we show that the Erk5 mitogen-activated protein kinase (MAPK) pathway participates in NRG signal transduction. In MCF7 cells, NRG activated Erk5 in a time- and dose-dependent fashion. The action of NRG on Erk5 was dependent on the kinase activity of ErbB receptors but was independent of Ras. Expression in MCF7 cells of a dominant negative form of Erk5 resulted in a significant decrease in NRG-induced proliferation of MCF7 cells. Analysis of Erk5 in several human tumor cell lines indicated that a constitutively active form of this kinase was present in the BT474 and SKBR3 cell lines, which also expressed activated forms of ErbB2, ErbB3, and ErbB4. Treatments aimed at decreasing the activity of these receptors caused Erk5 inactivation, indicating that the active form of Erk5 present in BT474 and SKBR3 cells was due to a persistent positive stimulus originating at the ErbB receptors. In BT474 cells expression of the dominant negative form of Erk5 resulted in reduced proliferation, indicating that in these cells Erk5 was also involved in the control of proliferation. Taken together, these results suggest that Erk5 may play a role in the regulation of cell proliferation by NRG receptors and indicate that constitutively active NRG receptors may induce proliferative responses in cancer cells through this MAPK pathway.  相似文献   

14.
15.
Fibroblast growth factors (FGFs) inhibit chondrocyte proliferation via the Erk MAP kinase pathway. Here, we explored the role of protein kinase C in FGF signaling in chondrocytes. Erk activity in FGF2-treated RCS (rat chondrosarcoma) chondrocytes or human primary chondrocytes was abolished by the protein kinase C inhibitor bisindolylmaleimide I (Bis I). Bis I inhibited FGF2-induced activation of MEK, Raf-1, and Ras members of Erk signaling module but not the FGF2-induced tyrosine phosphorylation of Frs2 or the kinase activity of FGFR3, demonstrating that it targets the Erk cascade immediately upstream of Ras. Indeed, Bis I abolished the FGF2-mediated association of Shp2 tyrosine phosphatase with Frs2 and Gab1 adaptor proteins necessary for proper Ras activation. We also determined which PKC isoform is involved in FGF2-mediated activation of Erk. When both conventional and novel PKCs expressed by RCS chondrocytes (PKCalpha, -gamma, -delta, and -epsilon) were down-regulated by phorbol ester, cells remained responsive to FGF2 with Erk activation, and this activation was sensitive to Bis I. Moreover, treatment with PKClambda/zeta pseudosubstrate lead to significant reduction of FGF2-mediated activation of Erk, suggesting involvement of an atypical PKC.  相似文献   

16.
Arai A  Aoki M  Weihua Y  Jin A  Miura O 《Cellular signalling》2006,18(12):2162-2171
Intracellular signaling mechanisms regulating SDF-1-induced chemotaxis of hematopoietic cells have remained elusive. Here we demonstrate that overexpression of the adaptor molecule CrkL enhances SDF-1-induced chemotaxis of hematopoietic BaF3 and 32Dcl3 cells. Overexpression of CrkL also enhanced SDF-1-induced activation of the Raf-1/MEK/Erk signaling pathway as well as that of the small GTPases Ras, Rap1, and Rac, while a dominant negative mutant of Ras or Rac suppressed CrkL-enhanced Erk activation. SDF-1 stimulation induced tyrosine phosphorylation of CrkL, which was inhibited by the Src family kinase inhibitor PP1 or by dominant negative mutants of Lyn, thus indicating that Lyn mediated SDF-1-induced phosphorylation of CrkL. However, inhibition of the Lyn kinase activity failed to affect SDF-1-induced activation of the small GTPases and Erk. On the other hand, SDF-1-induced activation of the Erk signaling pathway as well as chemotaxis was inhibited by overexpression of a CrkL mutant lacking the N-terminal SH3 domain, which mediates interaction with various signaling molecules including guanine nucleotide exchange factors for the Ras and Rho family GTPases. SDF-1-induced chemotaxis was also inhibited by the dominant negative Ras or Rac mutant as well as by the MEK inhibitor PD98059. These results indicate that CrkL mediates SDF-1-induced activation of the Raf-1/MEK/Erk signaling pathway through Ras as well as Rac in hematopoietic cells and, thereby, plays important roles in the induction of chemotactic response.  相似文献   

17.
The BCR/ABL fusion tyrosine kinase activates various intracellular signaling pathways, thus causing chronic myeloid leukemia (CML). Here we demonstrate that the inducible expression of BCR/ABL in a murine hematopoietic cell line, TonB210, leads to the activation of the Ras family small GTPase Rap1, which is inhibited by the ABL kinase inhibitor imatinib. The Rap1 activity in a CML cell line, K562, was also inhibited by imatinib. Inhibition of Rap1 activation by a dominant negative mutant of Rap1, Rap1-N17, or SPA-1 inhibited the BCR/ABL-induced activation of Elk-1. BCR/ABL also activated in a kinase activity-dependent manner the B-Raf kinase, which is an effector molecule of Rap1 and a potent activator of the MEK/Erk/Elk-1 signaling pathway. Together, these data suggest that, in addition to the well-established Ras/Raf-1 pathway, BCR/ABL activates the alternative signaling pathway involving Rap1 and B-Raf to activate Erk, which may play important roles in leukemogenesis.  相似文献   

18.
Interactions between Eph receptor tyrosine kinases (RTKs) and membrane-anchored ephrin ligands critically regulate axon pathfinding and development of the cardiovascular system, as well as migration of neural cells. Similar to other RTKs, ligand-activated Eph kinases recruit multiple signalling and adaptor proteins, several of which are involved in growth regulation. However, in contrast to other RTKs, activation of Eph receptors fails to promote cell proliferation or to transform rodent fibroblasts, indicating that Eph kinases may initiate signalling pathways that are distinct from those transmitted by other RTKs. Here we show that stimulation of endogenous EphA kinases with ephrin-A1 potently inhibits the Ras/MAPK cascade in a range of cell types, and attenuates activation of mitogen-activated protein kinase (MAPK) by receptors for platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). In prostatic epithelial cells and endothelial cells, but not fibroblasts, treatment with ephrin-A1 inhibits cell proliferation. Our results identify EphA kinases as negative regulators of the Ras/MAPK pathway that exert anti-mitogenic functions in a cell-type-specific manner.  相似文献   

19.
20.
Proximal signaling events and protein-protein interactions initiated after activation of the c-Ret receptor tyrosine kinase by its ligand, glial cell line-derived neurotrophic factor (GDNF), were investigated in cells carrying native and mutated forms of this receptor. Mutation of Tyr-1062 (Y1062F) in the cytoplasmic tail of c-Ret abolished receptor binding and phosphorylation of the adaptor Shc and eliminated activation of Ras by GDNF. Phosphorylation of Erk kinases was also greatly attenuated but not eliminated by this mutation. This residual wave of Erk phosphorylation was independent of the kinase activity of c-Ret. Mutation of Tyr-1096 (Y1096F), a binding site for the adaptor Grb2, had no effect on Erk activation by GDNF. Activation of phosphatidylinositol-3 kinase (PI3K) and its downstream effector Akt was also reduced in the Y1062F mutant but not completely abolished unless Tyr-1096 was also mutated. Ligand stimulation of neuronal cells induced the assembly of a large protein complex containing c-Ret, Grb2, and tyrosine-phosphorylated forms of Shc, p85(PI3K), the adaptor Gab2, and the protein-tyrosine phosphatase SHP-2. In agreement with Ras-independent activation of PI3K by GDNF in neuronal cells, survival of sympathetic neurons induced by GDNF was dependent on PI3K but was not affected by microinjection of blocking anti-Ras antibodies, which did compromise neuronal survival by nerve growth factor, suggesting that Ras is not required for GDNF-induced survival of sympathetic neurons. These results indicate that upon ligand stimulation, at least two distinct protein complexes assemble on phosphorylated Tyr-1062 of c-Ret via Shc, one leading to activation of the Ras/Erk pathway through recruitment of Grb2/Sos and another to the PI3K/Akt pathway through recruitment of Grb2/Gab2 followed by p85(PI3K) and SHP-2. This latter complex can also assemble directly onto phosphorylated Tyr-1096, offering an alternative route to PI3K activation by GDNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号