首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIMS: To obtain an optimal combination of agitation speed and aeration rate for maximization of specific glucose oxidase (GOD) production in recombinant Saccharomyces cerevisiae, and to establish a correlation between kLa vis-à-vis oxygen transfer condition and specific glucose oxidase production. METHODS AND RESULTS: The oxygen transfer condition was manifested indirectly by manipulating the impeller speed and aeration rate in accordance with a Central Composite Rotatory Design (CCRD). The dissolved oxygen concentration and the volumetric oxygen transfer coefficient (kLa) were determined at corresponding combinations of impeller speed and aeration rate. The maximal specific extracellular glucose oxidase production (3.17 U mg-1 dry cell mass) was achieved when the initial dissolved oxygen concentration was 6.83 mg l-1 at the impeller speed of 420 rev min-1 and at the rate of aeration of 0.25 vvm. It was found out that while impeller speed had a direct effect on the production of enzyme, a correlation between kLa and specific GOD production could not be established. CONCLUSION: At the agitation speed of 420 rev min-1 and at 0.25 vvm aeration rate, the degree of turbulence and the dissolved oxygen concentration were thought to be optimal both for cellular growth and production of enzyme. SIGNIFICANCE AND IMPACT OF THE STUDY: The combined effect of agitation and aeration on recombinant glucose oxidase production in batch cultivation has not yet been reported in the literature. Therefore, this study gives an insight into the effect of these two important physical parameters on recombinant protein production. It also suggests that since there is no correlation between kLa and specific production of GOD, kLa should not be used as one of the scale-up parameters.  相似文献   

2.
The oxygen requirements of Aspergillus awamori as well as the adaptation to it and the aeration of the cultivation medium were determined in the process of glucoamylase synthesis. Under the selected agitation and aeration conditions (impeller-tip speed = 4.2 m/s; aeration 1.5 vvm) the cultivation-medium aeration was analysed by means of dissolved-oxygen-concentration measurement during the course of the process. It was demonstrated that for obtaining the glucoamylase-activity level of 800 U GA/cm3 under the selected conditions and with the fungus applied the dissolved-oxygen concentration at the level of 25% saturation should be maintained. Those findings could serve as auxiliary indexes in the scale-up process of glucoamylase synthesis.  相似文献   

3.
Different dissolved oxygen concentrations and aeration rates were imposed on a stable mutant of Streptomyces fradiae during the antibiotic-producing phase. At high aeration rate (1 vvm), the tylosin yield in the fermentor broth with dissolved oxygen (DO) concentrations controlled close to 100% saturation (6-8 ppm) increased 10% as against uncontrolled. The rates of cellular growth, oil consumption, and tylosin production were severely reduced when DO concentration fell below 25% saturation, but all resumed to their initial rates when DO was raised to saturation level again. The DO concentration in combination with air flow rate affected the pattern of the antibiotics produced. At high DO levels, an additional macrolide antibiotic, macrocin, was synthesized to more than one-third the amount of tylosin at high aeration rate (1 vvm). On the other hand, tylosin production rate remained constant and no significant amount of macrocin was produced at low aeration rate (0.2 vvm).  相似文献   

4.
The effects of agitation rates from 400 to 900 rpm and aeration rates ranging from 0.18 to 0.6 vvm on biomass and citric acid production on glycerol media by acetate-negative mutants of Yarrowia lipolytica, Wratislavia 1.31 and Wratislavia AWG7, in batch culture were studied. The agitation rates of 800 and 900 rpm (at a constant aeration rate of 0.36 vvm) and aeration rates within the range of 0.24-0.48 vvm (at a constant agitation rate of 800 rpm), which generated dissolved oxygen concentration (DO) higher than 40%, were found the best for citric acid biosynthesis from glycerol. An increase in agitation rate (higher than 800 rpm) and aeration rate (higher than 0.36 vvm) had no impact on DO and citric acid production. The highest citric acid concentration (92.8 g/L) and yield (0.63 g/g) were obtained with Wratislavia 1.31 strain at 0.24 vvm. The highest volumetric citric acid production rate (1.15 g/Lh) and specific citric acid production rate (0.071 g/gh) were reached at 0.48 vvm.  相似文献   

5.
Xanthan gum fermentation represents a good model for the study of the mixing of rheologically complex culture broths. Most of the previous work on power consumption dealt with ‘standard’, single impellers and used model fluids to simulate xanthan broths. This work describes the characterization of three dual-impeller combinations (D/T = 0·53) for the mixing of dehydrated—reconstituted fermentation broths of Xanthomonas campestris that had matched rheology to the actual broths. The bottom impeller was a Rushton turbine (RT) and the top impeller was another RT, a 45° pitched blade turbine (PT) or an A-310 Lightnin mixer (A310). The experiments were carried out in a tank of 0·0094 m3 working volume equipped with an air bearing dynamometer. The power was measured in a wide range of xanthan concentrations (5–40 kg m−3) in aerated (0·25, 0·5 and 1·0 vvm) and unaerated conditions. Unaerated power number (Po) vs. Reynolds number (Re) curves showed similar trends for the three combinations. Exponents close to −1 were obtained in the laminar region. A minimum in Po (Pomin) occurred at Re = 30–40, then increasing to a plateau value which was evident at Re> 200. In the transition region Pomin values were 4·3 (RT and RT), 3·6 (RT and PT) and 2·4 (RT and A310). The aerated power data for (RT and PT) and (RT and A-310) showed higher torque instabilities than the dual RT combinations at higher xanthan concentrations. The higher the xanthan concentrations, the higher the drop in power and the less important the effect of the aeration rate. Among the combinations tested, when using Rushton turbines, the well-mixed ‘cavern’ reached the tank wall (i.e., fluid motion was observed) at the lowest volumetric power input. High  相似文献   

6.
The effect of the dissolved oxygen on glycerol and ethanol productions by an osmotolerant yeast Hansenula anomala was examined during growth in media at low water activity resulting from the addition of 2M NaCl in the culture medium. High stirring rate, high culture medium aeration, as well as high mass transfer surface inhibited both glycerol and ethanol biosynthesis. In absence of oxygen, yeast used acetaldehyde as a hydrogen acceptor, leading to the stimulation of ethanol biosynthesis and accounting for the low biomass and glycerol production; the experimental ratio ethanol on glycerol produced was 5.1 when the available oxygen was lowered (low stirring rate, 500rpm) and increased to 10.2 in absence of aeration. Extracellular glycerol production was therefore optimal for a moderate stirring (1000rpm) and aeration (1.4vvm) rates. These optimal conditions resulted in an experimental ratio ethanol on glycerol produced of 4.1, namely close to the theoretical value of 4, illustrating the osmodependent channelling of carbon towards polyols production.  相似文献   

7.
The behaviour of Pichia stipitis, Pachysolen tannophilus, Candida shehatae and Candida parapsilosis was investigated to select the most suitable yeast to convert xylose either to ethanol or to xylitol, with little or no formation of by-products. The aeration rate was used as a variable parameter. P. stipitis and C. parapsilosis were the most effective producers or ethanol and xylitol, respectively, both reaching productivities at very low levels of oxygenation. With P. stipitis, better ethanol productivity was attained under microaerobic conditions (KLa = 4·8 h−1) while with C. parapsilosis high yields and rates of xylitol production were detected at KLa values of about 16·3 h−1. P. tannophilus and C. shehatae showed lower performances under all conditions used while changes in oxygenation modified the ratio of ethanol to xylitol produced by these yeasts, suggesting that they are more dependent on the oxygen power input than P. stipitis and C. parapsilosis. The influence of oxygen transfer rates on ethanol and xylitol formation with the best producers is discussed.  相似文献   

8.
Fungal fermentation is very complex in nature due to its nonlinear relationship with the time, especially in batch culture. Growth and production of carbonyl reductase by Geotrichum candidum NCIM 980 have been studied in a laboratory scale stirred tank bioreactor at different pH (uncontrolled and controlled), agitation, aeration and dissolved oxygen concentration. The yield of the process has been calculated in terms of glucose consumed. Initial studies showed that fermenter grown cells have more than 15 times higher activity than that of the shake flask grown cells. The medium pH was found to have unspecific but significant influence on the enzyme productivity. However, at controlled pH 5.5 the specific enzyme activity was highest (306U/mg). Higher agitation had detrimental effect on the cell mass production. Dissolved oxygen concentration was maintained by automatic control of the agitation speed at an aeration rate of 0.6 volume per volume per minute (vvm). Optimization of glucose concentration yielded 21g/l cell mass with and 9.77x10(3)U carbonyl reductase activity/g glucose. Adaptation of different strategies for glucose feeding in the fermenter broth was helpful in increasing the process yield. Feeding of glucose at a continuous rate after 3h of cultivation yielded 0.97g cell mass/g glucose corresponding to 29.1g/l cell mass. Volumetric oxygen transfer coefficient (K(L)a) increased with the increasing of agitation rate.  相似文献   

9.
Spodoptera frugiperda (Sf-9) insect cells have been grown in serum-free medium in 250-ml spinner flasks. The maximum cell density obtained in these cultures was dependent on the aeration rate of the culture. Similar yields of uninfected cells were obtained when cultures were stirred in spinner flasks at 80 rev min-1 and in a 4-1 stirred-tank bioreactor and the dissolved oxygen in the bioreactor was controlled at 20% of air saturation. Cells were infected with a recombinant baculovirus at different multiplicities of infection: the timing and maximum level of expression of the recombinant protein were dependent on the multiplicity of infection, the cell density at infection, and on the aeration rate of the culture. Oxygen-limited growth resulted in undetectable levels of recombinant protein (< 6 ng recombinant protein 10(-7) cells). Compared with the maximum yields observed in spinner flask cultures, higher levels of recombinant protein were produced when cells were grown and infected in the bioreactor. The level of dissolved oxygen in the bioreactor was controlled at 50% of air saturation.  相似文献   

10.
The optimal conditions for the production of carboxymethylcellulase (CMCase) by Bacillus velezensis A-68 at a flask scale have been previously reported. In this study, the parameters involved in dissolved oxygen in 7 and 100 L bioreactors were optimized for the pilot-scale production of CMCase. The optimal agitation speed and aeration rate for cell growth of B. velezensis A-68 were 323 rpm and 1.46 vvm in a 7 L bioreactor, whereas those for the production of CMCase were 380 rpm and 0.54 vvm, respectively. The analysis of variance (ANOVA) implied that the highly significant factor for cell growth was the aeration rate, whereas that for the production of CMCase was the agitation speed. The optimal inner pressures for cell growth and the production of CMCase by B. velezensis A-68 in a 100 L bioreactor were 0.00 and 0.04 MPa, respectively. The maximal production of CMCase in a 100 L bioreactor under optimized conditions using rice hulls was 108.1 U/ml, which was 1.8 times higher than that at a flask scale under previously optimized conditions.  相似文献   

11.
Studies were conducted on the production of leucine amino peptidase (LAP) by Streptomyces gedanensis to ascertain the performance of the process in shake flask, parallel fermenter and 5-L fermenter utilizing soy bean meal as the carbon source. Experiments were conducted to analyze the effects of aeration and agitation rate on cell growth and LAP production. The results unveiled that an agitation rate of 300 rpm, 50% dissolved oxygen (DO) upholding and 0.15 vvm strategies were the optimal for the enzyme production, yielding 22.72 ± 0.11 IU/mL LAP in parallel fermenter which was comparable to flask level (24.65 ± 0.12 IU/mL LAP) fermentation. Further scale-up, in 5-L fermenter showed 50% DO and 1 vvm aeration rate was the best, producing optimum and the production was 20.09 ± 0.06 IU/mL LAP. The information obtained could be useful to design a strategy to improve a large-scale bioreactor cultivation of cells and production of LAP.  相似文献   

12.
To evaluate the relationship between somatic embryogenesis and dissolved oxygen concentration, somatic embryo cultures of carrot (Daucus carota L.) were cultured under various dissolved oxygen concentration levels (bubble free aeration with 4%, 7%, 20%, 30%, and 40% oxygen in flasks). The system used allows dissolved oxygen concentration control without bubble aeration or mixing speed modification. The total number of somatic embryos was not affected by the dissolved oxygen (DO) concentration tested. Even if globular-stage embryos were induced at a low level of oxygen aeration, heart-stage embryo formation was still repressed. Oxygen enrichment (20%, 30% and 40% oxygen) enhanced torpedo and cotyledonary-stage embryo production. The oxygen-enriched aeration was effective in promoting the growth of the late developmental stages. Sugar consumption did not increase when the oxygen concentration was enriched above the ambient level. The number of heart-stage embryos increased as oxygen concentration increased up to the 7% level, while above the 20% level no change in production was observed. The production of cotyledonary-stage embryos was directly related to oxygen concentration. These results support that oxygen-enriched aeration provides oxygen to the low oxygen areas in somatic embryo. After the heat-stage embryos, which were grown at the 7% level were transferred to a flask with ambient, they developed an elongated root part and eventually grew to normal plantlets. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Summary Effect of aeration rate and impeller tip speed on mycelium growth and itaconic acid production was investigated in a batch culture of Aspergillus terreus IFO-6365. When impeller tip speed was 94.2 cm/sec at a fixed aeration rate of 0.5 vvm, itaconic acid concentration was 3.6 and 1.6 times higher than those in the impeller tip speed of 62.8 and 125.7 cm/sec, respectively. When an oxygen-enriched air was supplied at a fixed impeller tip speed of 94.2 cm/sec and dissolved oxygen concentration was maintained in the 20–60 % range, both itaconic acid concentration and mycelium growth were not affected by the dissolved oxygen concentration.  相似文献   

14.
Antibodies have been used as probe to detect cloned genes coding for toxin and surface antigens of Vibrio cholerae E1 Tor strain KB207. Eco RI-digested chromosomal DNA of KB207 was cloned in plasmid pBR325 and transformed in Escherichia coli HB 101(λcI857). Transformants were grown at 32° C on plates containing antibodies. Lysogen was induced at 42 °C to release expressed antigens. Antigen-antibody reaction produced a halo around positive clones.  相似文献   

15.
The influence of the oxygen supply on the growth, acetic acid and ethanol production by Brettanomyces bruxellensis in a glucose medium was investigated with different air flow rates in the range 0-300 l h(-1 ) x (0-0.5 vvm). This study shows that growth of this yeast is stimulated by moderate aeration. The optimal oxygen supply for cellular synthesis was an oxygen transfer rate (OTR) of 43 mg O(2) l(-1) x h(-1). In this case, there was an air flow rate of 60 l h(-1) (0.1 vvm). Above this value, the maximum biomass concentration decreased. Ethanol and acetic acid production was also dependent on the level of aeration: the higher the oxygen supply, the greater the acetic acid production and the lower the ethanol production. At the highest aeration rates, we observed a strong inhibition of the ethanol yield. Over 180 l h(-1) x (0.3 vvm, OTR =105 mg O(2) l(-1) x h(-1)), glucose consumption was inhibited and a high concentration of acetic acid (6.0 g x l(-1)) was produced. The ratio of "ethanol + acetic acid" produced per mole of consumed glucose using carbon balance calculations was analyzed. It was shown that this ratio remained constant in all cases. This makes it possible to establish a stoichiometric equation between oxygen supply and metabolite production.  相似文献   

16.
A circulating loop bioreactor (CLB) with cells immobilized in loofa sponge was constructed for simultaneous aerobic and anaerobic processes. The CLB consists of an aerated riser and a non-aerated downcomer column connected at the top and bottom by cylindrical pipes. Ethanol production from raw cassava starch was investigated in the CLB. Aspergillus awamori IAM 2389 and Saccharomyces cerevisiae IR2 immobilized on loofa sponge were placed, respectively, in the aerated riser column and non-aerated downcomer column. Both alpha-amylase and glucoamylase activities increased as the aeration rate was increased. Ethanol yield and productivity increased with an increase in the aeration rate up to 0.5 vvm, but decreased at higher aeration rates. The CLB was operated at an aeration rate of 0.5 vvm for more than 600 h, resulting in an average ethanol productivity and yield from raw cassava starch of 0.5 g-ethanol l(-1) x h(-1) and 0.45 g ethanol/g starch, respectively. In order to increase ethanol productivity, it was necessary to increase the dissolved oxygen (DO) concentration in the riser column and decrease the DO concentration in the downcomer column. However, increasing the aeration rate resulted in increases in the DO concentration in both the riser and the downcomer columns. At high aeration rate, there was no significant difference in the DO concentration in the riser and downcomer columns. The aeration rate was therefore uncoupled from the liquid circulation by attaching a time-controlled valve in the upper connecting pipe. By optimizing the time and frequency of valve opening, and operation at high aeration rate, it was possible to maintain a very high DO concentration in the riser column and a low DO concentration in the downcomer column. Under these conditions, ethanol productivity increased by more than 100%, to 1.17 g l(-1) x h(-1).  相似文献   

17.
The bacterium Serratia entomophila (Enterobacteriaceae) has been developed as a commercially available biopesticide for control of the pasture pest Costelytra zealandica. The influence of culture medium composition, dissolved oxygen (DO) concentration and harvesting time were investigated in order to optimise the production of S. entomophila. In batch fermentations, highest yields were achieved using sucrose (40 g L-1) as the carbon source, followed closely by fructose and molasses. The effect of yeast extract (YE), marmite and bakery yeast as cell growth enhancers was also examined in both batch and fed-batch mode. Culture medium containing 20 g L-1 of YE (fed-batch) produced the highest cell density. No significant effect on cell yield was detected when cultures were supplemented with bakery yeast or marmite. The DO concentration influenced biomass production: a 5-fold increase in cell density was achieved when the concentration of DO was maintained in the range of 20-50% (5.7×1010 CFUs mL-1) in comparison with 1% (1.2×1010 CFUs mL-1). In cultures maintained at 1 and 20% DO concentration, cells harvested from the exponential growth phase survived for less than 2 weeks when stored at 4°C. In contrast, high cell survival (85-100%) was achieved when cells were harvested after they had entered the stationary growth phase. Recommendations are provided for the production of robust, high cell density cultures of S. entomophila.  相似文献   

18.
Aureobasidium pullulans grown on arabinoxylan accumulates β-xylanase, p-nitrophenyl xylosidase, - -arabinofuranosidase and acetyl esterase activity in the culture fluid. The pH and temperature optima of these arabinoxylan-degrading enzymes were determined. The temperature optima of β-xylanase and p-nitrophenyl xylosidase were between 45 and 50°C whereas the optima for acetyl esterase and - -arabinofuranosidase were 55 and 60°C, respectively. β-xylanase, p-nitrophenyl xylosidase and - -arabinofuranosidase were stable over 3 h at 35°C, 35°C and 60°C, respectively, whereas acetyl esterase remained stable at 55°C for h. The enzymes were inactivated at higher temperatures. The pH optima for β-xylanase, p-nitrophenyl xylosidase and - -arabinofuranosidase were pH 4·0, between 4·0 and 7·0 and 5·0, respectively. β-xylanase, p-nitrophenyl xylosidase, - -arabinofuranosidase and acetyl esterase were most stable at pH 5·0 4·0–5·0, 6·0 and 5·0–6·0, respectively. The most suitable conditions for the use of the enzymes together to hydrolyze arabinoxylan would be 35 °C and pH 5.  相似文献   

19.
The photosynthetic capacity of Myriophyllum salsugineum A.E. Orchard was measured, using plants collected from Lake Wendouree, Ballarat, Victoria and grown subsequently in a glasshouse pond at Griffith, New South Wales. At pH 7.00, under conditions of constant total alkalinity of 1.0 meq dm−3 and saturating photon irradiance, the temperature optimum was found to be 30–35°C with rates of 140 μmol mg−1 chlorophyll a h−1 for oxygen production and 149 μmol mg−1 chlorophyll a h−1 for consumption of CO2. These rates are generally higher than those measured by other workers for the noxious Eurasian water milfoil, Myriophyllum spicatum L., of which Myriophyllum salsugineum is a close relative. The light-compensation point and the photon irradiance required to saturate photosynthetic oxygen production were exponentially dependent on water temperature. Over the temperature range 15–35°C the light-compensation point increased from 2.4 to 16.9 μmol (PAR) m−2 s−1 for oxygen production while saturation photon irradiance increased from 41.5 to 138 μmol (PAR) m−2 s−1 for oxygen production and from 42.0 to 174 μmol (PAR) m−2 s−1 for CO2 consumption. Respiration rates increased from 27.1 to 112.3 μmol (oxygen consumed) g−1 dry weight h−1 as temperature was increased from 15 to 35°C. The optimum temperature for productivity is 30°C.  相似文献   

20.
The production of enterotoxin A and nuclease by Staphylococcus aureus strain 100 was studied in a 1.0-liter fermentor. The effects of the gas flow rate, pH, and dissolved oxygen were evaluated. Toxin and nuclease secretion occurred under all conditions which permitted growth of the organism. Final yields of toxin and nuclease in cultures grown at constant air flow rates, ranging from 50 to 500 cm3 per min, were higher at successively higher flow rates. An optimum flow rate for either toxin or nuclease production was not observed. When the aeration rate alone or aeration rate and pH were held constant, the dissolved oxygen levels in the culture decreased from the initial 100% level to 0 to 5% 3 to 4 h after inoculation. The O2 demand of the culture then maintained this level for an additional 4 to 5 h. This low dissolved oxygen interval was characterized by rapid growth and extracellular protein production. Controlling the dissolved oxygen at a constant level throughout growth did not increase the final levels of toxin and nuclease above those achieved at the respective constant pH values. Growth under the influence of a constant aeration rate of 500 cm3 per min and a constant pH of 6.5 and 7.0 yielded the highest titers of nuclease (1,550 units/ml) and toxin (10.5 mug/ml) obtained in any of the fermentations conducted in this study. Sparging fermentor cultures with pure oxygen at a rate of 100 cm3 per min yielded growth and extracellular protein levels similar to those achieved at the sparge rate of 500 cm3 of air per min. Controlling the dissolved oxygen at 100% of pure oxygen saturation appeared to inhibit the culture, as the final cultural turbidity as well as the levels of toxin and nuclease were reduced. These data indicate that enterotoxin and nuclease secretions are closely associated with the growth of strain 100. Analyses of the production rates of these components indicated that early log phase was the most efficient production interval in the growth cycle and that this efficiency was increased by pH control at 6.7 to 6.8 and dissolved oxygen control at 10% of air saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号