首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glioblastoma (GBM) is an aggressive brain cancer with a poor prognosis. While surgical resection is the primary treatment, adjuvant temozolomide (TMZ) chemotherapy and radiotherapy only provide slight improvement in disease course and outcome. Unfortunately, most treated patients experience recurrence of highly aggressive, therapy-resistant tumours and eventually succumb to the disease. To increase chemosensitivity and overcome therapy resistance, we have modified the chemical structure of the PFI-3 bromodomain inhibitor of the BRG1 and BRM catalytic subunits of the SWI/SNF chromatin remodelling complex. Our modifications resulted in compounds that sensitized GBM to the DNA alkylating agent TMZ and the radiomimetic bleomycin. We screened these chemical analogues using a cell death ELISA with GBM cell lines and a cellular thermal shift assay using epitope tagged BRG1 or BRM bromodomains expressed in GBM cells. An active analogue, IV-129, was then identified and further modified, resulting in new generation of bromodomain inhibitors with distinct properties. IV-255 and IV-275 had higher bioactivity than IV-129, with IV-255 selectively binding to the bromodomain of BRG1 and not BRM, while IV-275 bound well to both BRG1 and BRM bromodomains. In contrast, IV-191 did not bind to either bromodomain or alter GBM chemosensitivity. Importantly, both IV-255 and IV-275 markedly increased the extent of DNA damage induced by TMZ and bleomycin as determined by nuclear γH2AX staining. Our results demonstrate that these next-generation inhibitors selectively bind to the bromodomains of catalytic subunits of the SWI/SNF complex and sensitize GBM to the anticancer effects of TMZ and bleomycin. This approach holds promise for improving the treatment of GBM.  相似文献   

2.
Previous studies have identified sin mutations that alleviate the requirement for the yeast SWI/SNF chromatin remodelling complex, which include point changes in the yeast genes encoding core histones. Here we characterise the biochemical properties of nucleosomes bearing these mutations. We find that sin mutant nucleosomes have a high inherent thermal mobility. As the SWI/SNF complex can alter nucleosome positioning, the higher mobility of sin mutant nucleosomes provides a means by which sin mutations may substitute for SWI/SNF function. The location of sin mutations also provides a new opportunity for insights into the mechanism for nucleosome mobilisation. We find that both mutations altering histone DNA contacts at the nucleosome dyad and mutations in the dimer-tetramer interface influence nucleosome mobility. Furthermore, incorporation of H2A.Z into nucleosomes, which also alters dimer-tetramer interactions, affects nucleosome mobility. Thus, variation of histone sequence or subtype provides a means by which eukaryotes may regulate access to chromatin through alterations to nucleosome mobility.  相似文献   

3.
4.
5.
6.
7.
The SWI/SNF and SAGA chromatin-modifying complexes contain bromodomains that help anchor these complexes to acetylated promoter nucleosomes. To study the importance of bromodomains in these complexes, we have compared the chromatin-remodeling and octamer-transfer activity of the SWI/SNF complex to a mutant complex that lacks the Swi2/Snf2 bromodomain. Here we show that the SWI/SNF complex can remodel or transfer SAGA-acetylated nucleosomes more efficiently than the Swi2/Snf2 bromodomain-deleted complex. These results demonstrate that the Swi2/Snf2 bromodomain is important for the remodeling as well as for the octamer-transfer activity of the complex on H3-acetylated nucleosomes. Moreover, we show that, although the wild-type SWI/SNF complex displaces SAGA that is bound to acetylated nucleosomes, the bromodomain mutant SWI/SNF complex is less efficient in SAGA displacement. Thus, the Swi2/Snf2 bromodomain is required for the full functional activity of SWI/SNF on acetylated nucleosomes and is important for the displacement of SAGA from acetylated promoter nucleosomes.  相似文献   

8.
Drosophila Mi-2 (dMi-2) is the ATPase subunit of a complex combining ATP-dependent nucleosome remodelling and histone deacetylase activities. dMi-2 contains an HMG box-like region, two PHD fingers, two chromodomains and a SNF2-type ATPase domain. It is not known which of these domains contribute to nucleosome remodelling. We have tested a panel of dMi-2 deletion mutants in ATPase, nucleosome mobilization and nucleosome binding assays. Deletion of the chromodomains impairs all three activities. A dMi-2 mutant lacking the chromodomains is incorporated into a functional histone deacetylase complex in vivo but has lost nucleosome-stimulated ATPase activity. In contrast to dHP1, dMi-2 does not bind methylated histone H3 tails and does not require histone tails for nucleosome binding. Instead, the dMi-2 chromodomains display DNA binding activity that is not shared by other chromodomains. Our results suggest that the chromodomains act at an early step of the remodelling process to bind the nucleosome substrate predominantly via protein-DNA interactions. Furthermore, we identify DNA binding as a novel chromodomain-associated activity.  相似文献   

9.
Rap1 (repressor-activator protein 1) is a multifunctional protein that controls telomere function, silencing and the activation of glycolytic and ribosomal protein genes. We have identified a novel function for Rap1, regulating the ribonucleotide reductase (RNR) genes that are required for DNA repair and telomere expansion. Both the C terminus and DNA-binding domain of Rap1 are required for the activation of the RNR genes, and the phenotypes of different Rap1 mutants suggest that it utilizes both regions to carry out distinct steps in the activation process. Recruitment of Rap1 to the RNR3 gene is dependent on activation of the DNA damage checkpoint and chromatin remodelling by SWI/SNF. The dependence on SWI/SNF for binding suggests that Rap1 acts after remodelling to prevent the repositioning of nucleosomes back to the repressed state. Furthermore, the recruitment of Rap1 requires TAF(II)s, suggesting a role for TFIID in stabilizing activator binding in vivo. We propose that Rap1 acts as a rheostat controlling nucleotide pools in response to shortened telomeres and DNA damage, providing a mechanism for fine-tuning the RNR genes during checkpoint activation.  相似文献   

10.
Although recent studies highlight the importance of histone modifications and ATP‐dependent chromatin remodelling in DNA double‐strand break (DSB) repair, how these mechanisms cooperate has remained largely unexplored. Here, we show that the SWI/SNF chromatin remodelling complex, earlier known to facilitate the phosphorylation of histone H2AX at Ser‐139 (S139ph) after DNA damage, binds to γ‐H2AX (the phosphorylated form of H2AX)‐containing nucleosomes in S139ph‐dependent manner. Unexpectedly, BRG1, the catalytic subunit of SWI/SNF, binds to γ‐H2AX nucleosomes by interacting with acetylated H3, not with S139ph itself, through its bromodomain. Blocking the BRG1 interaction with γ‐H2AX nucleosomes either by deletion or overexpression of the BRG1 bromodomain leads to defect of S139ph and DSB repair. H3 acetylation is required for the binding of BRG1 to γ‐H2AX nucleosomes. S139ph stimulates the H3 acetylation on γ‐H2AX nucleosomes, and the histone acetyltransferase Gcn5 is responsible for this novel crosstalk. The H3 acetylation on γ‐H2AX nucleosomes is induced by DNA damage. These results collectively suggest that SWI/SNF, γ‐H2AX and H3 acetylation cooperatively act in a feedback activation loop to facilitate DSB repair.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号