首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial strain LW1, which belongs to the family Comamonadaceae, utilizes 1-chloro-4-nitrobenzene (1C4NB) as a sole source of carbon, nitrogen, and energy. Suspensions of 1C4NB-grown cells removed 1C4NB from culture fluids, and there was a concomitant release of ammonia and chloride. Under anaerobic conditions LW1 transformed 1C4NB into a product which was identified as 2-amino-5-chlorophenol by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. This transformation indicated that there was partial reduction of the nitro group to the hydroxylamino substituent, followed by Bamberger rearrangement. In the presence of oxygen but in the absence of NAD, fast transformation of 2-amino-5-chlorophenol into a transiently stable yellow product was observed with resting cells and cell extracts. This compound exhibited an absorption maximum at 395 nm and was further converted to a dead-end product with maxima at 226 and 272 nm. The compound formed was subsequently identified by 1H and 13C NMR spectroscopy and mass spectrometry as 5-chloropicolinic acid. In contrast, when NAD was added in the presence of oxygen, only minor amounts of 5-chloropicolinic acid were formed, and a new product, which exhibited an absorption maximum at 306 nm, accumulated.  相似文献   

2.
The synthesis of a new bis-(D-glucopyranosid-2-yl)oxamides via the key intermediate, N-acetyl N-(methyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranosid-2-yl) oxamic acid chloride (2alpha) is described. Treatment of compound 2alpha with methyl 3,4,6-tri-O-acetyl-2-amino-2-deoxy-beta-D-glucopyranoside afforded N-(methyl 3,4,6-tri-O-acetyl-alpha-D-glucopyranosid-2-yl)-N'-(methyl 3,4,6-tri-O-acetyl-beta-D-glucopyranosid-2-yl)-oxamide. Reaction of 2alpha with 1,2-diaminoethane afforded 1,2-bis-[N,N'-(methyl 3',4',6'-tri-O-acetyl-alpha-D-glucopyranosid-2'-yl)]ethyloxamide as a main product, while 2-N-[N'-(methyl 3',4',6'-tri-O-acetyl-alpha-D-glucopyranosid-2'-yl)oxamide]-ethyl acetamide was formed as a side product. Reaction of 2alpha with 1,3-diamino-2-hydroxypropane gave only 1,3-bis-N,N-[N'-(methyl 3',4',6'-tri-O-acetyl-2'-deoxy-alpha-D-glucopyranosid-2'-yl)-oxamido]-2-propanol.  相似文献   

3.
4-Ethoxy-3-methoxyphenylglycerol-γ-formyl ester (compound IV) was identified as a degradation product of both 4-ethoxy-3-methoxyphenylglycerol-β-syringaldehyde ether (compound I) and 4-ethoxy-3-methoxyphenylglycerol-β-2,6-dimethoxyphenyl ether (compound II) by a ligninolytic culture of Coriolus versicolor. An isotopic experiment with a 13C-labeled compound (compound II′) indicated that the formyl group of compound IV was derived from the β-phenoxyl group of β-O-4 dimer as an aromatic ring cleavage fragment. However, compound IV was not formed from 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether (compound III). γ-Formyl arylglycerol (compound IV) could be a precursor of 4-ethoxy-3-methoxyphenylglycerol (compound VI), because 3-(4-ethoxy-3-methoxyphenyl)-1-formyloxy propane (compound VII) was cleaved to give 3-(4-ethoxy-3-methoxyphenyl)-1-propanol (compound VIII) by C. versicolor. 4-Ethoxy-3-methoxyphenylglycerol-β,γ-cyclic carbonate (compound V), previously found as a degradation product of compound III by Phanerochaete chrysosporium (T. Umezawa, and T. Higuchi, FEBS Lett., 25:123-126, 1985), was also identified from the cultures with compound I, II, and III and degraded to give the arylglycerol (compound VI). An isotopic experiment with 13C-labeled compounds II′ and III′ indicated that the carbonate carbon of compound V was derived from the β-phenoxyl groups of β-O-4 substructure.  相似文献   

4.
4-Ethoxy-3-methoxyphenylglycerol-gamma-formyl ester (compound IV) was identified as a degradation product of both 4-ethoxy-3-methoxyphenylglycerol-beta-syringaldehyde ether (compound I) and 4-ethoxy-3-methoxyphenylglycerol-beta-2,6-dimethoxyphenyl ether (compound II) by a ligninolytic culture of Coriolus versicolor. An isotopic experiment with a C-labeled compound (compound II') indicated that the formyl group of compound IV was derived from the beta-phenoxyl group of beta-O-4 dimer as an aromatic ring cleavage fragment. However, compound IV was not formed from 4-ethoxy-3-methoxyphenylglycerol-beta-guaiacyl ether (compound III). gamma-Formyl arylglycerol (compound IV) could be a precursor of 4-ethoxy-3-methoxyphenylglycerol (compound VI), because 3-(4-ethoxy-3-methoxyphenyl)-1-formyloxy propane (compound VII) was cleaved to give 3-(4-ethoxy-3-methoxyphenyl)-1-propanol (compound VIII) by C. versicolor. 4-Ethoxy-3-methoxyphenylglycerol-beta,gamma-cyclic carbonate (compound V), previously found as a degradation product of compound III by Phanerochaete chrysosporium (T. Umezawa, and T. Higuchi, FEBS Lett., 25:123-126, 1985), was also identified from the cultures with compound I, II, and III and degraded to give the arylglycerol (compound VI). An isotopic experiment with C-labeled compounds II' and III' indicated that the carbonate carbon of compound V was derived from the beta-phenoxyl groups of beta-O-4 substructure.  相似文献   

5.
Eukaryotic protein synthesis initiation factor 4D (eIF-4D) (current nomenclature, eIF-5A) contains the unique amino acid hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine). The first step in hypusine biosynthesis, i.e. the formation of the intermediate, deoxyhypusine (N epsilon-(4-aminobutyl)lysine), was carried out in vitro using spermidine, deoxyhypusine synthase, and ec-eIF-4D(Lys), an eIF-4D precursor prepared by over-expression of human eIF-4D cDNA in Escherichia coli. In a parallel reaction, using N-(3-aminopropyl)cadaverine in place of spermidine, a variant form of eIF-4D containing homodeoxyhypusine (N epsilon-(5-aminopentyl)lysine) was prepared. Evidence that N-(3-aminopropyl)cadaverine can also act as the amine substrate for deoxyhypusine synthase in intact cells was obtained by incubating putrescine- and spermidine-depleted Chinese hamster ovary cells with [3H]cadaverine. In these cells, in which [3H]cadaverine is readily converted to N-(3-aminopropyl) [3H]cadaverine, small amounts of [3H]homodeoxyhypusine and another 3H-labeled compound, presumed to be N epsilon-(5-amino-2-hydroxy[3H]pentyl)lysine, were found. eIF-4D stimulates methionyl-puromycin synthesis, an in vitro model assay for translation initiation. Whereas the unmodified precursor ec-eIF-4D(Lys) appeared inactive, the deoxyhypusine-containing form provided a significant degree of stimulation. The variant form containing homodeoxyhypusine, on the other hand, showed little or no activity. These findings emphasize the importance of hypusine or deoxyhypusine for the biological activity of eIF-4D and demonstrate the influence of both the length and chemical nature of its amino alkyl side chain.  相似文献   

6.
Imidoesters have been used in biological studies to measure interresidue distances of proteins and macromolecular complexes, and in hematology as antisickling agents. Treatment of human red blood cells with14C-labeled dimethyl adipimidate (DMA), a bifunctional imidoester with antisickling properties, was followed by gradual loss of radioactivity from the treated cells. The radioactive compound released was isolated by thin-layer chromatography and identified by high-resolution mass spectrometry and by carbon-13 nuclear magnetic resonance, ultraviolet, and infrared spectroscopy as 5-carbomethyoxyvaleramidine, which was also shown to be the major product of DMA hydrolysis in vitro at physiologic pH in phosphate buffer. High-resolution mass spectrometry studies indicated that this product is formed via cyclization to a reactive intermediate (7-methoxy-2-imino-3,4,5,6-tetrahydro-2H-azepine) followed by hydrolysis. The intermediate exhibited strong UV absorbance, maximal at 232 nm. Such an intermediate would be capable of participating in cross-linking reactions which would have smaller dimensions than those observed with the imidoester in its extended form. The hydrolysis product, an unreactive species, should have no toxic effects on individuals receiving infusions of DMA-treated red cells.  相似文献   

7.
2-amino-5-carboxymuconic 6-semialdehyde is an unstable intermediate in the meta-cleavage pathway of 4-amino-3-hydroxybenzoic acid in Bordetella sp. strain 10d. In vitro, this compound is nonenzymatically converted to 2,5-pyridinedicarboxylic acid. Crude extracts of strain 10d grown on 4-amino-3-hydroxybenzoic acid converted 2-amino-5-carboxymuconic 6-semialdehyde formed from 4-amino-3-hydroxybenzoic acid by the first enzyme in the pathway, 4-amino-3-hydroxybenzoate 2,3-dioxygenase, to a yellow compound (epsilonmax = 375 nm). The enzyme in the crude extract carrying out the next step was purified to homogeneity. The yellow compound formed from 4-amino-3-hydroxybenzoic acid by this purified enzyme and purified 4-amino-3-hydroxybenzoate 2,3-dioxygenase in a coupled assay was identified as 2-hydroxymuconic 6-semialdehyde by GC-MS analysis. A mechanism for the formation of 2-hydroxymuconic 6-semialdehyde via enzymatic deamination and nonenzymatic decarboxylation is proposed based on results of spectrophotometric analyses. The purified enzyme, designated 2-amino-5-carboxymuconic 6-semialdehyde deaminase, is a new type of deaminase that differs from the 2-aminomuconate deaminases reported previously in that it primarily and specifically attacks 2-amino-5-carboxymuconic 6-semialdehyde. The deamination step in the proposed pathway differs from that in the pathways for 2-aminophenol and its derivatives.  相似文献   

8.
Studies were carried out to determine possible intermediates involved in the biosynthetic pathway of riboflavin, using resting cells of a riboflavin-adenine-deficient mutant, Bacillus subtilis AJ1988. The cells excreted 6,7-dimethyl-8-ribityllumazine, the end product in the biosynthetic pathway, into the incubation medium in large amounts. The addition of glyoxal caused a large accumulation of a green fluorescent compound; an inverse relation was observed between the formation of the lumazine and the concentration of glyoxal. Furthermore, added [2-14C]guanine effectively incorporated into the lumazine and the fluorescent compound in the same specific activity during incubation. The fluorescent compound was isolated, purified, and identified by paper chromatographic, fluorometric, and spectrophotometric analyses. It was proved to be 8-(1'-D-ribityl)lumazine, which appeared to have been formed by a reaction between glyoxal and a possible intermediate in the cells. Accordingly, 4-(1'-D-ribitylamino)-5-amino-2,6-dihydroxypyrimidine was concluded to be an immediate precursor of 6,7-dimethyl-8-ribityllumazine.  相似文献   

9.
A series of lipophilic diaromatic derivatives of the glia-selective GABA uptake inhibitor (R)-4-amino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol [(R)-exo-THPO, 4] were synthesized via reductive amination of 3-ethoxy-4,5,6,7-tetrahydrobenzo[d]isoxazol-4-one (9) or via N-alkylation of O-alkylatedracemic 4. The effects of the target compounds on GABA uptake mechanisms in vitro were measured using a rat brain synaptosomal preparation or primary cultures of mouse cortical neurons and glia cells (astrocytes), as well as HEK cells transfected with cloned mouse GABA transporter subtypes (GAT1-4). The activity against isoniazid-induced convulsions in mice after subcutaneous administration of the compounds was determined. All of the compounds were potent inhibitors of synaptosomal uptake the most potent compound being (RS)-4-[N-(1,1-diphenylbut-1-en-4-yl)amino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (17a, IC50 = 0.14 microM). The majority of the compounds showed a weak preference for glial, as compared to neuronal, GABA uptake. The highest degree of selectivity was 10-fold corresponding to the glia selectivity of (R)-N-methyl-exo-THPO (5). All derivatives showed a preference for the GAT1 transporter, as compared with GAT2-4, with the exception of (RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (28d), which quite surprisingly turned out to be more potent than GABA at both GAT1 and GAT2 subtypes. The GAT1 activity was shown to reside in (R)-28d whereas (R)-28d and (S)-28d contributed equally to GAT2 activity. This makes (S)-28d a GAT2 selective compound, and (R)-28d equally effective in inhibition of GAT1 and GAT2 mediated GABA transport. All compounds tested were effective as anticonvulsant reflecting that these compounds have blood-brain barrier permeating ability.  相似文献   

10.
Bacterial strain LW1, which belongs to the family Comamonadaceae, utilizes 1-chloro-4-nitrobenzene (1C4NB) as a sole source of carbon, nitrogen, and energy. Suspensions of 1C4NB-grown cells removed 1C4NB from culture fluids, and there was a concomitant release of ammonia and chloride. Under anaerobic conditions LW1 transformed 1C4NB into a product which was identified as 2-amino-5-chlorophenol by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. This transformation indicated that there was partial reduction of the nitro group to the hydroxylamino substituent, followed by Bamberger rearrangement. In the presence of oxygen but in the absence of NAD, fast transformation of 2-amino-5-chlorophenol into a transiently stable yellow product was observed with resting cells and cell extracts. This compound exhibited an absorption maximum at 395 nm and was further converted to a dead-end product with maxima at 226 and 272 nm. The compound formed was subsequently identified by 1H and 13C NMR spectroscopy and mass spectrometry as 5-chloropicolinic acid. In contrast, when NAD was added in the presence of oxygen, only minor amounts of 5-chloropicolinic acid were formed, and a new product, which exhibited an absorption maximum at 306 nm, accumulated.  相似文献   

11.
Transgenic tobacco-cell-suspension cultures expressing separately the human cytochrome P450 monooxygenases CYP1A1, CYP1A2, and CYP3A4 were utilized to study the biotransformation of the 14C-labelled insecticide carbaryl (=naphthalen-1-yl methylcarbamate). The resulting data were compared to similar data from the corresponding non-transformed (NT) tobacco-cell culture and commercially available membrane preparations (Bactosomes) of genetically modified bacteria separately containing the same human P450s. A rapid conversion rate of carbaryl was observed with the CYP1A1 and CYP1A2 cells, where only 49.7 and 0.2% of applied carbaryl (1 mg/l), respectively, remained after 24 h, as compared to 77.7% in the non-transformed culture. Unexpectedly, the corresponding results obtained from the CYP3A4 cultures were not definite. With 25 mg/l of carbaryl and 96 h of incubation, it was proven that the insecticide is also substrate of CYP3A4. This finding was supported by GC/EI-MS analysis of the primary metabolite pattern produced by the isozyme. This consisted of naphthalene-1-ol, N-(hydroxymethyl)carbaryl, 4-hydroxycarbaryl, and 5-hydroxycarbaryl, whereas the main product in non-transformed cells was N-(hydroxymethyl)carbaryl. Data obtained from the CYP1A1, CYP1A2, or CYP3A4 Bactosomes agreed with those of the P450-transgenic tobacco cells. Problems with GC/EI-MS analysis of carbaryl and its metabolites are discussed.  相似文献   

12.
The white-rot basidiomycete Phanerochaete chrysosporium metabolized 3-(4'-ethoxy-3'-methoxyphenyl)-2-(4'-methoxyphenyl)propionic acid (V) in low-nitrogen, stationary cultures, conditions under which ligninolytic activity is expressed. The ability of several fungal mutant strains to degrade V reflected their ability to degrade [C]lignin to CO(2). 1-(4'-Ethoxy-3'-methoxyphenyl)-2-(4'-methoxyphenyl)-2- hydroxyethane (VII), anisyl alcohol, and 4-ethoxy-3-methoxybenzyl alcohol were isolated as metabolic products, indicating an initial oxidative decarboxylation of V, followed by alpha, beta cleavage of the intermediate (VII). Exogenously added VII was rapidly converted to anisyl alcohol and 4-ethoxy-3-methoxybenzyl alcohol. When the degradation of V was carried out under O(2), O was incorporated into the beta position of the diarylethane product (VII), indicating that the reaction is oxygenative.  相似文献   

13.
The catalytic C-C bond cleavage of a lignin model compound was investigated by use of tetraphenylporphyrinatoiron(III)chloride as a model for enzymic degradation of lignin. The C-C bond of the lignin model compound 1,2-bis(4-ethoxy-3-methoxyphenyl) propane-1,3-diol was oxidatively cleaved by catalysis of iron-porphyrins in the presence of tert-butylhydroperoxide or iodosylbenzene at a room temperature. The products formed after complete oxidation of the substrate were identified as 4-O-ethylvanillin, alpha-hydroxy-4-ethoxy-3-methoxyacetophenone, 4-O-ethylvanillic acid, 4-ethoxy-3-methoxyphenylglycol, 4-ethoxy-3-methoxy-alpha-(4-ethoxy-3-methoxyphenyl)-beta-hydroxypropi ophenone and formaldehyde.  相似文献   

14.
During growth of Pseudomonas putida strain TW3 on 4-nitrotoluene (4NT) or its metabolite 4-nitrobenzoate (4NB), the culture medium gradually becomes yellow-orange with a λmax of 446 nm. The compound producing this color has been isolated and identified as a new phenoxazinone, 2-aminophenoxazin-3-one-7-carboxylate (APOC). This compound is formed more rapidly and in greater quantity when 4-amino-3-hydroxybenzoate (4A3HB) is added to growing cultures of strain TW3 and is also formed nonbiologically when 4A3HB is shaken in mineral salts medium but not in distilled water. It is postulated that APOC is formed by the oxidative dimerization of 4A3HB, although 4A3HB has not been reported to be a metabolite of 4NT or a product of 4NB catabolism by strain TW3. Using the cloned pnb structural genes from TW3, we demonstrated that the formation of the phenoxazinone requires 4-hydroxylaminobenzoate lyase (PnbB) activity, which converts 4-hydroxylaminobenzoate (4HAB) to 3,4-dihydroxybenzoate (protocatechuate) and that 4-nitrobenzoate reductase (PnbA) activity, which causes the accumulation of 4HAB from 4NB, does not on its own result in the formation of APOC. This rules out the possibility that 4A3HB is formed abiotically from 4HAB by a Bamberger rearrangement but suggests that PnbB first acts to effect a Bamberger-like rearrangement of 4HAB to 4A3HB followed by the replacement of the 4-amino group by a hydroxyl to form protocatechuate and that the phenoxazinone is produced as a result of some misrouting of the intermediate 4A3HB from its active site.  相似文献   

15.
The degradation of several alkyl ethers of vanillic acid, of 3-ethoxy-4-hydroxybenzoic acid, and of syringic acid, by the lignin-decomposing fungus Polyporus dichrous included (i) 4-dealkylation (e.g., 3-ethoxy-4-isopropoxybenzoic acid was in part dealkylated to 3-ethoxy-4-hydroxybenzoic acid), (ii) hydroxylation of the 4-alkoxyl groups (e.g., 3-ethoxy-4-isopropoxybenzoic acid was oxidized in part to 2-[4-carboxy-2-ethoxyphenoxy]-propane-1-ol), and (iii) reduction of carboxyl groups (older cultures) (e.g., 3-ethoxy-4-isopropoxybenzoic acid was reduced to 3-ethoxy-4-isopropoxybenzaldehyde and 3-ethoxy-4-isopropoxybenzyl alcohol). Some ethers (e.g., tri-O-methyl gallic acid and glycerol-beta-[4-carboxy-2-ethoxyphenyl]-ether) were not affected. The dealkylations and hydroxylations indicate that the fungus has a relatively nonspecific mechanism for oxygenating various 4-alkoxyl groups of alkoxybenzoic acids; no evidence for oxygenation of 3-alkoxyl groups was obtained. Hydroxylation products were generally degraded further, probably via dealkylation. The vanillic acid and 3-ethoxy-4-hydroxybenzoic acid formed by dealkylations were readily metabolized. Although the isopropyl ether of syringic acid was hydroxylated to 2-(4-carboxy-2, 6-dimethoxyphenoxy)-propane-1-ol, neither this compound nor the parent isopropyl ether was dealkylated; syringic acid itself was only slowly and incompletely metabolized. The relationship of these results to lignin degradation is discussed.  相似文献   

16.
The enzyme system responsible for the conversion of 2-amino-4-oxo-6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihyd roptridine triphosphate (dihydroneopterin triphosphate or H2-NTP) to 2-amino-4-oxo-6-acetyl-7,8-dihydro-3H,9H-pyrimido[4,5-b]-[1,4]diazepine (pyrimidodiazepine or PDA), a precursor to the red eye pigments, he drosopterins, has been purified from the heads of Drosophila melanogaster. The PDA-synthesizing system consists of two components, a heat-stable enzyme and a heat-labile enzyme. The heat-stable enzyme can be replaced by sepiapterin synthase A, a previously purified enzyme required for the Mg2+-dependent conversion of H2-NTP to an unstable compound that appears to be 6-pyruvoyltetrahydropterin (pyruvoyl-H4-pterin). The heat-labile enzyme, purified to near-homogeneity and termed PDA synthase (Mr = 48,000), catalyzes the conversion of pyruvoyl-H4-pterin to PDA in a reaction requiring the presence of reduced glutathione. Because PDA is two electrons more reduced than pyruvoyl-H4-pterin, the reducing power required for this transformation is probably supplied by glutathione. The PDA-synthesizing system requires the presence of another thiol-containing compound such as 2-mercaptoethanol when incubation conditions 2-mercaptoethanol is no longer required. Evidence is presented to indicate that the Drosophila eye color mutant, sepia, is missing PDA synthase.  相似文献   

17.
In aqueous solution, in the presence of ammonium chloride, N1-substituted 2-nitroimidazoles are readily reduced to the corresponding hydroxylamines. In air, under neutral conditions, analogous to the reactions of aromatic hydroxylamines, 2-hydroxylaminoimidazoles are converted to the azoxy derivatives via a base-catalyzed condensation reaction between the hydroxylamine and its oxidation product, the nitroso derivative. In nitrogen, rearrangement to form the 2-amino-4(5)hydroxyimidazole derivative followed by addition of water across the C4-C5 double bond to yield isomers of a 4,5-dihydro-4,5-dihydroxy derivative appears to be a major reaction. 2-hydroxylaminoimidazoles undergo a complex series of reactions with glutathione. The initial reaction is the formation of a labile conjugate involving an N-S-linkage. Subsequently in the presence of excess GSH, under neutral conditions, two stable conjugates identified as 2-amino-4-S-glutathionyl- and 2-amino-5-S-glutathionyl imidazoles are formed. Nucleophilic attack by GSH on the imidazole ring of a nitrenium ion is postulated as the initial step in the formation of the stable GSH conjugates as well as the 2-amino-4,5-dihydro dihydroxy derivative. The results provide a molecular mechanism for many of the biological effects of N1-substituted 2-nitroimidazoles in hypoxic mammalian cells.  相似文献   

18.
Methanopterin is a coenzyme involved in methanogenesis. From 2 kg wet cells of Methanobacterium thermoautotrophicum about 35 mumol methanopterin were isolated. The structure of this compound was elucidated by various two-dimensional nuclear-magnetic-resonance techniques. Methanopterin was identified as N-[1'-(2"-amino-4"-hydroxy-7" - methyl-6"- pteridinyl) ethyl]-4-[2',3',4',5'- tetrahydroxypent-1'- yl (5' leads to 1") O-alpha-ribofuranosyl-5"-phosphoric acid] aniline, in which the phosphate group is esterified with alpha-hydroxyglutaric acid. The molecular formula of the sodium salt of methanopterin at pH 7.0 is C30H38O16N6PNa3 X chiH2O (chi is about 4). The anhydrous sodium salt of methanopterin has a molecular mass of 838.60 Da and the molar absorption coefficient at 342 nm is 7.4 mM-1 cm-1 at pH 7.0.  相似文献   

19.
The enzyme, previously called "sepiapterin synthase A," has been purified by approximately 700-fold from the heads of Drosophila melanogaster. This enzyme catalyzes the Mg2+-dependent conversion of 2-amino-4-oxo-6-(D-erythro-1',2',3'-trihydroxypropyl)-7,8-dihydrop teridine triphosphate (dihydroneopterin triphosphate or H2-NTP) to two products, one of which we have identified as tripolyphosphate. The other product is a phosphate-free, unstable compound which is an intermediate in the biosynthesis of several other naturally occurring pterins in Drosophila. This product is stable enough under anaerobic conditions to allow it to be characterized as 6-pyruvoyl-5,6,7,8-tetrahydropterin (6-pyruvoyl-H4-pterin). The 3-carbon side chain was identified as a pyruvoyl group on the basis of the susceptibility of the enzymatic product to reduction with tritiated sodium borohydride and the determination of the amounts and the sites of incorporation of tritium resulting from this reduction. From these observations, we suggest that this enzyme be renamed "6-pyruvoyl-H4-pterin synthase."  相似文献   

20.
A thiol compound, glutathione, is essential for healthy cell defence against xenobiotics and oxidative stress. Glutathione reductase (GR) and glutathione S-transferase (GST) are two glutathione-related enzymes that function in the antioxidant and the detoxification systems. In this study, potential inhibitory effects of methyl 4-aminobenzoate derivatives on GR and GST were examined in vitro. GR and GST were isolated from human erythrocytes with 7.63 EU/mg protein and 5.66 EU/mg protein specific activity, respectively. It was found that compound 1 (methyl 4-amino-3-bromo-5-fluorobenzoate with Ki value of 0.325±0.012 μM) and compound 5 (methyl 4-amino-2-nitrobenzoate with Ki value of 92.41±22.26 μM) inhibited GR and GST stronger than other derivatives. Furthermore, a computer-aided method was used to predict the binding affinities of derivatives, ADME characteristics, and toxicities. Derivatives 4 (methyl 4-amino-2-bromobenzoate) and 6 (methyl 4-amino-2-chlorobenzoate) were estimated to have the lowest binding energies into GR and GST receptors, respectively according to results of in silico studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号