首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [32P]phosphoamino acids in proteins of first-trimester and term-cultured human placentas have been separated and their relative amounts have been measured. Significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2–4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first-trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

2.
3.
The proton ejection coupled to electron flow from succinate and/or endogenous substrate(s) to cytochrome c using the impermeable electron acceptor ferricyanide is studied in tightly coupled mitochondria isolated from two strains of the yeast Saccharomyces cerevisiae. (1) The observed H+ ejection/2e? ratio approaches an average value of 3 when K+ (in the presence of valinomycin) is used as charge-compensating cation. (2) In the presence of the proton-conducting agent carbonyl cyanide m-chlorophenylhydrazone, an H+ ejection/2e? ratio of 2 is observed. (3) The low stoichiometry of 3H+ ejected (instead of 4) per 2e? and the high rate of H+ back-decay (0.1615 lnδ-(ngatom)H+s and a half-time of 4.6 s for 10 mg protein) into the mitochondrial matrix are related to the presence of an electroneutral K+/H+ antiporter which is demonstrated by passive swelling experiments in isotonic potassium acetate medium.  相似文献   

4.
Protein kinase activity was demonstrated on the cell surface of a murine macrophage-like cell line, J774.1 cells, and was characterized in detail. When intact cells were incubated with [γ-32P]ATP, a transfer of [32P]phosphate into acid-insoluble materials of the cells occurred. This reaction was Mg2+-dependent but cAMP-independent, and Mg2+ could be substituted for by Mn2+. The reaction products were found to be proteins, as revealed by SDS-polyacrylamide gel electrophoresis and autoradiography, with phosphomonoester linkages to serine and threonine residues, but not to tyrosine. The results of experiments with chemical and enzymatic treatments as well as Con A-Sepharose column chromatography ruled out the possibility that an acyl-phosphate linkage or phosphomannosylglycopeptide was present in the reaction products. The protein kinase(s) and the reaction products were located on the cell surface of the cells, as shown by the fact that the products were removed by mild trypsinization of cells carefully controlled so that the cells remained in an intact state. Phosphorylation of exogenous proteins (phosvitin and casein) by intact cells further supported the location of the enzyme. The phosphorylated proteins of the cells were found to be metabolically stable and remained on the cell surface even at 120 min after the phosphorylation reaction. Possible roles of ecto-protein kinase activity in macrophage functions and macrophage-activation are also discussed.  相似文献   

5.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37°C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37°C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37°C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37°C, 80% of the cell-bound radioactivity was not extractable from GH3 cells with acetic acid.  相似文献   

6.
Although previous studies from this and other laboratories have extensively characterized insulin degrading activity in animal tissues, little information has been available on insulin responsive human tissues. The present study describes the insulin degrading activity in skeletal muscle from normal human subjects. Fractionation of a sucrose homogenate of skeletal muscle demonstrated that 97% of the total neutral insulin degrading activity was in the 100 000 × g supernatant with no detectable glutathione-insulin transhydrogenase activity. The 100 000×g pellet contained 85% of the total acid protease activity and all the glutathione-insulin transhydrogenase activity. The soluble insulin degrading activity was purified 1400-fold by ammonium sulfate fractionation, molecular exclusion, ion-exchange and affinity chromatography. Enzymatic activity was determined by measuring an increase in trichloroacetic acid-soluble products of the 125I-labeled hormone substrates. The purified enzyme showed marked proteolytic specificity for insulin with a Km of 1.63·10?7 M (±0.32) and was competitively inhibited by proinsulin and glucagon with Ki values of 2.1 · 10?6 M and 4.0 · 10?6 M, respectively. This insulin protease exhibited a pH optimum between 7 and 8, a molecular weight of 120 000 and was capable of degrading glucagon. Inhibition studies demonstrated that a sulfhydryl group is essential for activity. Molecular exclusion chromatography of [125I]insulin degraded products revealed a time-dependent increase in degradation products with molecular weights intermediate between intact insulin and iodotyrosine. These studies demonstrate that the major enzymatic system responsible for insulin degrading activity is a soluble cysteine protease capable of rapidly metabolizing insulin under physiologic conditions.  相似文献   

7.
Classical fractionation studies showed that chicken liver contains two enzymes which can oxidize DL-3-hydroxybutyrate. The cytosolic enzyme is specific for the L-(+) isomer and accounts for 60% of the total activity. The mitochondrial activity is specific for the D-(?) isomer and accounts for 40% of the total activity. Kinetic studies showed that L-gulonic acid is a competitive inhibitor of the enzyme. We conclude that the cytosolic enzyme is the previously described L-3-hydroxyacid dehydrogenase.  相似文献   

8.
Several nucleotide triphosphates (NTPs) were tested as energy source for the Ca2+ uptake by human platelet membrane vesicles. The Ca2+ uptake by these membranes was driven by ATP, GTP, ITP, UTP and CTP. The steady-state level of accumulated Ca2+ was equal with the different NTPs. The highest uptake velocity was found with ATP, but about 40–80% of the velocity with ATP could be accomplished with the other nucleotides. The highest affinity was also found with ATP (Km apparent  15 μM). The liberation of Pi from the various NTPs was measured simultaneously with the Ca2+ uptake. The coupling ratio (moles of Ca2+ taken up/moles of Pi liberated) varied from 0.4 for ATP to 2.3 for UTP and was almost independent of the NTP concentration. The enzyme activity with ATP as substrate is strongly dependent on the Ca2+ concentration in contrast to the activity with GTP, ITP, UTP or CTP.  相似文献   

9.
ATP-enriched human red cells display high rates of Ca2+-dependent ATP hydrolysis (16 mmol·litre cells?1·h?1) with a high Ca2+ affinity (K0.5~0.2 μM). The finding suggests a mechanism for regulation of cell Ca2+ levels, involving highly-cooperative stimulation of active Ca2+ extrusion following binding of calmodulin to the (Ca2+ + Mg2+)-ATPase.  相似文献   

10.
Short-term synthesis of radioactivity labeled melanin (using dl-[2-14C]tyrosine or 2-[2-14C]thiouracil) by chick retinal pigment tissues in vitro was not influenced by inhibitors of protein synthesis, puromycin and cyloheximide. Co-ordinate synthesis of protein is, therefore, unnecessary for melanin synthesis, and melanoproteins must represent secondary interactions between melanin and protein. Melanin was isolated from chick embryo feather germs by extracting the proteins with hot dodecyl sulfate/mercaptoethanol. Melanin isolated from tissues incubated previously in l-[U-14C]valine medium had no associated radioactivity compared to the radioactivity of melanin prepared from tissues incubated in dl-[2-14C]tyrosine or 2-[2-14C]thiouracil. If melanoproteins exist at all, they are non-covalently bonded associations of melanin and melanosomal proteins.  相似文献   

11.
Tyrosine-specific protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) activity was measured in normal human nonadherent peripheral blood lymphocytes using synthetic peptide substrates having sequence homologies with either pp60src or c-myc. A high level of tyrosine-specific protein kinase activity was found associated with the cell particulate fraction (100 000 × g pellet). High-pressure liquid chromatography and phosphoamino acid analysis of the synthetic peptide substrates substantiated the phosphorylation of tyrosine residues by the particulate fraction enzyme. The human enzyme was also capable of phosphorylating a synthetic random polymer of 80% glutamic acid and 20% tyrosine. Enzyme activity was half-maximal with 22 μM Mg·ATP and had apparent Km values for the synthetic peptides from 1.9 to 7.1 mM. The enzyme preferred Mg2+ to Mn2+ for optimal activity and was stimulated 2–5-fold by low levels (0.05%) of some ionic as well as non-ionic detergents including deoxycholate, Nonidet P-40 and Triton X-100. The enzyme activity was not stimulated by N6;O2′-dibutyryl cyclic AMP (100 μM), N6;O2′-dibutyryl cyclic GMP (100 μM), Ca2+ (200 μM), insulin (1 μg/ml) or homogeneous human T-cell growth factor (3 μg/ml) under the conditions used. Alkaline-resistant phosphorylation of particulate proteins in vitro revealed protein bands with Mr 59 000 and 54 000 suggesting that there are endogenous substrates for the human lymphocyte tyrosine protein kinase.  相似文献   

12.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in phosphocreatinecreatine ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 μmol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in [phosphocreatine][creatine] ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

13.
The transfer of phospholipid molecules between biological and synthetic membranes is facilitated by the presence of soluble catalytic proteins, such as those isolated from bovine brain which interacts with phosphatidylinositol and phosphatidylcholine and from bovine liver which is specific for phosphatidylcholine. A series of tertiary amine local anesthetics decreases the rates of protein-catalyzed phospholipid transfer. The potency of inhibition is dibucaine>tetracaine>lidocaine>procaine, an order which is compared with and identical to those for a wide variety of anesthetic-dependent membrane phenomena. Half-maximal inhibition of phosphatidylinositol transfer by dibucaine occurs at a concentration of 0.18 mM, significantly lower than the concentration of 1.9 mM required for half-maximal inhibition of phosphatidylcholine transfer activity of the brain protein. Comparable inhibition of liver protein phosphatidylcholine transfer activity is observed at 1.6 mM dibucaine. For activity measurements performed at different pH, dibucaine is more potent at the lower pH values which favor the equilibrium toward the charged molecular species. With membranes containing increasing molar proportions of phosphatidate, dibucaine is increasingly more potent. No effect of Ca2+ on the control transfer activity or the inhibitory action of dibucaine is noted. These results are discussed in terms of the formation of specific phosphatidylinositol or phosphatidylcholine complexes with the amphiphilic anesthetics in the membrane bilayer.  相似文献   

14.
Human placental microsomes exhibit uptake of d-[3H]glucose which is sensitive to inhibition by cytochalasin B (apparent Ki = 0.78 /gm M). Characterization of [3H]cytochalasin B binding to these membranes reveals a glucose-sensitive site, inhibited by d-glucose with an ED50 = 40 mM. The glucose-sensitive cytochalasin B binding site is found to have a Kd = 0.15μM by analysis according to Scatchard. Solubilization with octylglucoside extracts 60–70% of the glucose-sensitive binding component. Equilibrium dialysis binding of [3H]cytochalasin B to the soluble protein displays a pattern of inhibition by d-glucose similar to that observed for intact membranes, and the measurement of an ED50 = 37.5 mM d-glucose confirms the presence of the cytochalasin B binding component, putatively assigned as the glucose transporter. Further evidence is attained by photoaffinity labelling; ultraviolet-sensitive [3H]cytochalasin B incorporation into soluble protein (Mr range 42 000-68 000) is prevented by the presence of d-glucose. An identical photolabelling pattern is observed for incorporation of [3H]cytochalasin B into intact membrane protein, confirming the usefulness of this approach as a means of identifying the presence of the glucose transport protein under several conditions.  相似文献   

15.
NADPH and NADP+ levels were measured in rat lens from normal controls, from galactose-fed and diabetic rats during the first week of cataract formation.The level of NADPH in normal rat lens was determined to be 12.3 ± 0.4 nmol/g wet weight, and that of NADP+ 4.6 ± 0.2 nmol/g wet weight. In early cataract formation NADPH levels decreased rapidly during the first 2 days and then remained stable at 76% of control for galactose-fed and 84% for diabetic rats. NADP+ levels increased by 38% of control for galactose-fed and 54% for diabetic rats. Calculated NADPH/NADP+ ratios dropped from 3.36 ± 0.21 to 1.86 ± 0.16 in galactose fed rats, and from 2.81 ± 0.15 to 1.61 ± 0.16 in diabetic rats (P < 0.001 for both experimental groups). These data are consistent with rapid NADPH oxidation during onset of lens cataracts. No significant changes in aldose reductase enzymatic activity levels were observed in either the galactosemic or the diabetic rats during the times measured.  相似文献   

16.
Target sizes of the renal sodium-d-glucose cotransport system in brush-border membranes of calf kidney cortex were estimated by radiation inactivation. In brush-border vesicles irradiated at ?50°C with 1.5 MeV electron beams, sodium-dependent phlorizin binding, and Na+-dependent d-glucose tracer exchange decreased exponentially with increasing doses of radiation (0.4–4.4 Mrad). Inactivation of phlorizin binding was due to a reduction in the number of high-affinity phlorizin binding sites but not in their affinity. The molecular weight of the Na+-dependent phlorizin binding unit was estimated to be 230 000 ± 38 000. From the tracer exchange experiments a molecular weight of 345 000 ± 24 500 was calculated for the d-glucose transport unit. The validity of these target size measurements was established by concomitant measurements of two brush-border enzymes, alkaline phosphatase and γ-glutamyltransferase, whose target sizes were found to be 68 570 ± 2670 and 73 500 ± 2270, respectively. These findings provide further evidence for the assumption that the sodium-d-glucose cotransport system is a multimeric structure, in which distinct complexes are responsible for phlorizin binding and d-glucose translocation.  相似文献   

17.
Interferon-treated mouse and human cells show enhanced levels of a protein kinase activity which is manifested by the phosphorylation of endogenous 67,000 and 72,000 Mr proteins, respectively. Enhanced levels of such kinase activity are also detectable in the plasma of patients treated with interferon and in the plasma and tissues of interferon-treated mice. A rapid and efficient method of assay for these protein kinase activities is described. The samples are first incubated with heparin (100 units/ml), which results in the inhibition of different protein kinase activities, but not the one mediated by interferon. The latter one is then assayed after partial purification on poly(rI):(rC)-Sepharose or poly(rG)-Sepharose. The protein kinase from human and mouse cells in culture and from the different tissues of mice binds specifically to poly(rI):(rC)-Sepharose. On the other hand, the protein kinase activity from both mouse and human plasma shows a higher affinity toward poly(rG)-Sepharose. These methods are successfully applied for the determination of the interferon-mediated protein kinase activity from tissue extracts and plasma.  相似文献   

18.
Methods were developed for obtaining highly viable mouse hepatocytes in single cell suspension and for maintaining the hepatocytes in adherent static culture. The characteristics of transferrin binding and iron uptake into these hepatocytes was investigated. (1) After attachment to culture dishes for 18–24 h hepatocytes displayed an accelerating rate of iron uptake with time. Immediately after isolation mouse hepatocytes in suspension exhibited a linear iron uptake rate of 1.14·105molecules/cell per min in 5 μM transferrin. Iron uptake also increased with increasing transferrin concentration both in suspension and adherent culture. Pinocytosis measured in isolated hepatocytes could account only for 10–20% of the total iron uptake. Iron uptake was completely inhibited at 4°C. (2) A transferrin binding component which saturated at 0.5 μM diferric transferrin was detected. The number of specific, saturable diferric transferrin binding sites on mouse hepatocytes was 4.4·104±1.9·104 for cells in suspension and 6.6·104±2.3·104 for adherent cultured cells. The apparent association constants were 1.23·107 1·mol?1 and 3.4·106 1·mol?1 for suspension and cultured cells respectively. (3) Mouse hepatocytes also displayed a large component of non-saturable transferrin binding sites. This binding increased linearly with transferrin concentration and appeared to contribute to iron uptake in mouse hepatocytes. Assuming that only saturable transferrin binding sites donate iron, the rate of iron uptake is about 2.5 molecules iron/receptor per min at 5 μM transferrin in both suspension and adherent cells and increases to 4 molecules iron/receptor per min at 10 μM transferrin in adherent cultured cells. These rates are considerably greater than the 0.5 molcules/receptor per min observed at 0.5 μM transferrin, the concentration at which the specific transferrin binding sites are fully occupied. The data suggest that either the non-saturable binding component donates some iron or that this component stimulates the saturable component to increase the rate of iron uptake. (4) During incubations at 4°C the majority of the transferrin bound to both saturable and nonsaturable binding sites lost one or more iron atoms. Incubations including 2 mM α,α′-dipyridyl (an Fe11 chelator) decreased the cell associated 59Fe at both 4 and 37°C while completely inhibiting iron uptake within 2–3 min of exposure at 37°C. These observations suggest that most if not all iron is loosened from transferrin upon interaction of transferrin with the hepatocyte membrane. There is also greater sensitivity of 59Fe uptake compared to transferrin binding to pronase digestion, suggesting that an iron acceptor moiety on the cell surface is available to proteolysis.  相似文献   

19.
An axolemma-rich membrane vesicle fraction was prepared from the leg nerve of the lobster, Homerus americanus. In this preparation Ca2+ transport across the membrane was shown to require a Na+ gradient (Na+-Ca2+ exchange), and external K+ was found to facilitate this Na+-Ca2+ exchange activity. In addition, at high Ca2+ concentrations (20 mM) a Ca2+-Ca2+ exchange system was shown to operate, which is stimulated by Li+. The Na+-Ca2+ exchange system is capable of operating in the reverse direction, with Ca2+ uptake coupled with Na+ efflux. Such a vesicular preparation has the potential for providing useful experimental approaches to study the mechanism of this important Ca2+ extrusion system in the nervous system.  相似文献   

20.
[3H]Cytochalasin B binding and its competitive inhibition by d-glucose have been used to identify the glucose transporter in plasma and microsomal membranes prepared from intact rat diaphragm. Scatchard plot analysis of [3H]cytochalasin B binding yields a binding site with a dissociation constant of roughly 110 nM. Since the inhibition constant of cytochalasin B for d-glucose uptake by diaphragm plasma membranes is similar to this value, this site is identified as the glucose transporter. Plasma membranes prepared from diaphragms bind approx. 17 pmol of cytochalasin B/mg of membrane protein to the d-glucose-inhibitable site. If 280 nM (40 000 μunits/ml) insulin is present during incubation, cytochalasin B binding is increased roughly 2-fold without alteration in the dissociation constant of this site. In addition, membranes in the microsomal fraction contain 21 pmol of d-glucose-inhibitable cytochalasin B binding sites/mg of membrane protein. In the presence of insulin during incubation the number of these sites in the microsomal fraction is decreased to 9 pmol/mg of membrane protein. These results suggest that rat diaphragm contain glucose transporters with characteristics identical to those observed for the rat adipose cell glucose transporter. In addition, insulin stimulates glucose transport in rat diaphragm through a translocation of functionally identical glucose transporters from an intracellular membrane pool to the plasma membrane without an alteration in the characteristics of these sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号