首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The redistribution of platelet membrane proteins in response to platelet activation was studied. To investigate this process we prepared a variety of platelet ligands, including di- and tetrameric concanavalin A, IgG, thrombin, wheat-germ agglutinin and other lectins. These ligands were conjugated either with acceptor (rhodamine isothiocyanate) or donor (fluoresceine isothiocyanate) fluorophore. Platelets exposed to various combinations of ligand species were stimulated with different aggregating agents, and changes in sensitized fluorescence emission or donor quenching were recorded. Energy transfer was observed with thrombin, dimeric concanavalin A after addition of thrombin and various combinations of dimeric concanavalin A with other membrane ligands. The preincubation of platelets with colchicine prevented energy transfer between appropriate ligand pairs and platelet activator. Our studies show that nonradiative energy transfer can be used to analyze redistribution of membrane receptor sites in platelets.  相似文献   

2.
Stimulation of human platelets with concanavalin A resulted in a significant increase in the concentration of cytoplasmic free Ca2+. This effect was due to two different processes: Ca2+ mobilization from internal stores and Ca2+ influx from the extracellular medium. Kinetic analysis revealed that the release of Ca2+ from internal storage sites occurred sooner than the opening of plasma membrane Ca2+ channels. The ability of concanavalin A to induce a sustained increase in cytoplasmic Ca2+ concentration was antagonized and reversed by methyl ∝-D -mannopyranoside, demonstrating that it was promoted by the interaction of the lectin with cell surface glycoproteins. Succinyl–concanavalin A, a dimeric derivative of the lectin, that does not promote patching/capping of the receptor, was able to bind to the platelet surface, and antagonized the effects of native concanavalin A. In addition, succinyl–concanavalin A, per se, was unable to induce Ca2+ mobilization in human platelets. Therefore, the action of the native concanavalin A was mediated by receptor clustering events. Concanavalin A mobilized Ca2+ from the same internal stores from which Ca2+ was mobilized in response to strong platelet agonists, such as thrombin and arachidonic acid. However, while thrombin was ineffective in inducing Ca2+ release after stimulation of platelets with Con A, Con A was able to cause a full discharge of Ca2+ from internal stores even in platelets previously stimulated with thrombin. These results demonstrate for the first time that the clustering of specific membrane glycoproteins can trigger platelet activation. The physiological implications during platelet aggregation are discussed.  相似文献   

3.
Concanavalin A was employed to study the role of platelet membrane glycoproteins in platelet-fibrin interactions during clot formation. A rheological technique was used to study the interactions, measuring the clot rigidity and platelet contractile force simultaneously during the formation of network structure. Concanavalin A lowered the clot rigidity and contractile force of a platelet-rich plasma clot by a small extent. Plasma glycoproteins probably compete with platelet membranes for concanavalin A binding in platelet-rich plasma. Both native concanavalin A (tetrameric) and succinyl concanavalin A (dimeric) lowered the clot rigidity and contractile force of a washed platelet-fibrin clot dramatically, almost down to those values found for fibrin clots. Inhibition studies with alpha-methyl-D-mannoside indicated that the concanavalin A effects were specific for the concanavalin A binding capacity to platelets. The effects of native concanavalin A on platelet-fibrin clots were only partially reversible, while the succinyl concanavalin A effects were completely reversible. The observed concanavalin A effects are probably mainly due to concanavalin A binding to platelet membrane glycoproteins. The concanavalin A binding site appears to play an important role in the fibrin binding to platelets.  相似文献   

4.
A possible receptor for thrombin on the platelet membrane has been identified. Whole platelets were treated with 125I-labelled thrombin followed by washing of the platelets, solubilization in Triton X-100, crossed immunoelectrophoresis and autoradiography. A heavily labelled antigen which migrated slightly more slowly than albumin was observed. No corresponding arc was seen on the same immunoplate when stained with Coomassie brilliant blue, indicating that the antigen possessed weak antigenic properties and/or was present in very small amounts. When 125I-labelled thrombin that had been inactivated by phenylmethylsulphonyl fluoride was used, no such labelled arc was seen. The radiolabelled immunoprecipitate does not represent any of the antigens identified hitherto in the immunoelectrophoretic patterns obtained with platelets or platelet material. The electrophoretic mobility of the antigen was influenced neither by neuraminidase treatment of the platelets prior to the 125I-labelled thrombin exposure nor by inclusion of concanavalin A, wheat-germ lectin or lentil lectin in the gel during the first-dimension electrophoresis. This suggests that the antigen does not represent a glycoprotein. Upon subcellular fractionation the radioactively labelled arc was observed in the cytosol fraction following crossed immunoelectrophoresis and autoradiography. Analysis of the secreted proteins after induction of the release reaction with 125I-labelled thrombin revealed labelling of immunoprecipitates representing thrombospondin, albumin and the 'line' form of platelet factor 4. This confirms that stable complexes of 125I-labelled thrombin and platelet proteins can exist in the presence of Triton X-100 and during electrophoresis.  相似文献   

5.
Integrins are the major receptor type known to facilitate cell adhesion and lamellipodia formation on extracellular matrix proteins. However, collagen-related peptide and thrombin have recently been shown to mediate platelet lamellipodia formation when presented as immobilized surfaces. The aims of this study were to establish if there exists a role for the platelet integrin alpha(IIb)beta(3) in this response; and if so, whether signalling from the integrin is required for lamellipodia formation on these surfaces. Real-time analysis was used to compare platelet morphological changes on surfaces of fibrinogen, collagen-related peptide or thrombin in the presence of various pharmacological inhibitors and platelets from 'knockout' mice. We demonstrate that collagen-related peptide and thrombin stimulate distinct patterns of platelet lamellipodia formation and elevation of intracellular Ca(2+) to that induced by the integrin alpha(IIb)beta(3) ligand, fibrinogen. Nevertheless, lamellipodia formation on collagen-related peptide and thrombin is dependent upon engagement of alpha(IIb)beta(3), consistent with release of alpha(IIb)beta(3) ligand(s) from platelet granules. However, the requirement for signalling by the integrin on fibrinogen can be bypassed by the addition of thrombin to the solution. These observations reveal a critical role for alpha(IIb)beta(3) in forming lamellipodia on collagen-related peptide and thrombin which is dependent on its ability to function as an adhesive receptor but not necessarily on its ability to signal. These results suggest that integrins may play an important role in lamellipodia formation triggered by nonintegrin ligands in platelets and possibly in other cell types.  相似文献   

6.
A possible receptor for thrombin on the platelet membrane has been identified. Whole platelets were treated with 125I-labelled thrombin followed by washing of the platelets, solubilization in Triton X-100, crossed immunoelectrophoresis and autoradiography. A heavily labelled antigen which migrated slightly more slowly than albumin was observed. No corresponding arc was seen on the same immunoplate when stained with Coomassie brilliant blue, indicating that the antigen possessed weak antigenic properties and/or was present in very small amounts. When 125I-labelled thrombin that had been inactivated by phenylmethylsulphonyl fluoride was used, no such labelled arc was seen. The radiolabelled immunoprecipitate does not represent any of the antigens identified hitherto in the immunoelectrophoretic patterns obtained with platelets or platelet material. The electrophoretic mobility of the antigen was influenced neither by neuraminidase treatment of the platelets prior to the 125I-labelled thrombin exposure nor by inclusion of concanavalin A, wheat-germ lectin or lentil lectin in the gel during the first-dimension electrophoresis. This suggests that the antigen does not represent a glycoprotein. Upon subcellular fractionation the radioactively labelled arc was observed in the cytosol fraction following crossed immunoelectrophoresis and autoradiography. Analysis of the secreted proteins after induction of the release reaction with 125I-labelled thrombin revealed labelling of immunoprecipitates representing thrombospondin, albumin and the ‘line’ form of platelet factor 4. This confirms that stable complexes of 125I-labelled thrombin and platelet proteins can exist in the presence of Triton X-100 and during electrophoresis.  相似文献   

7.
A stochastic model is described that predicts the degree of singlet/singlet energy transfer in complexes formed between monovalent ligands and monovalent receptors. The modeling approach is intended to serve as an analytical tool for approximating the level of fluorescence quenching that can be expected to occur in fluorescently labeled monovalent ligands and receptors that are bound together in complexes. This approach has utility in areas such as modeling protein/protein interactions and designing fluorescence energy transfer assays.Using the crystallographic data for papain (monovalent ligand ) and concanavalin A (monovalent receptor ) along with a molecular graphics computational package the ligand and receptor were docked together to form a ligand/receptor complex. The intermolecular distances between the lysine resides of the ligand and receptor were then estimated, receptor complex was calculated assuming a value for the characteristic length R(0) of the donor/acceptor pair. Results from the stochastic model were used to calculate the level of fluorescence quenching one would expect for a resonance energy transfer competition assay based on the monovalent ligand/pair.Three key assumptions were made during the model development. First, all lysine resides for the ligand and receptor were equally reactive with the dye molecules so the stoichiometry of the donor and acceptor chromophores was governed by a binomial distribution. Second, the dye molecules were located at the alpha-carbon position for each reactive lysine residue. Finally, in the energy transfer competition assay, it was assumed that equilibrium existed between the ligand, receptor, and competing hapten at all times. Based on these assumptions, results are presented that indicate the maximum energy transfer for the monovalent papain/concanavalin. A complex is strongly dependent on the number of acceptor chromophores and on the value of R(0). Results are also presented on the approximate level of fluorescence quenching that may occur in a competition assay based on the papin/pConA complex. Lastly, a strategy is discussed for maximizing the dynamic range and linearity of energy transfer assays by optimizing several key design variables.  相似文献   

8.
Domains 3 and 5 of high-molecular-weight kininogen (HK) have been shown to bind to platelets in a zinc-dependent reaction. However, the platelet-binding proteins responsible for this interaction have not been identified. We have focused on the platelet-binding site for the heavy chain (domain 3), which we approached using a domain 3-derived peptide ligand and isolated binding proteins by affinity chromatography. The domain 3-derived peptide, thrombin, HK, factor XII, as well as antibody to glycocalicin (the N-terminal portion of the alpha chain of GPIb) recognized a protein at 74 kD. We also isolated the thrombin receptor (PAR 1) at 45 kD, however, none of the above-mentioned ligands bound to this protein. Isolation of platelet membrane proteins using a monoclonal anti-glycocalicin antibody column revealed the same HK binding protein at 74 kD, which was reactive with anti-GPIb and represents a GPIb fragment. By photoaffinity labeling, HK interacted with membrane GPIb, which was then isolated in native form (135 kD) along with gC1qR, a ligand for the HK light chain. Finally, (125)I-HK binding to platelets was significantly inhibited by the anti-GPIb antibody. These results suggest that the GPIb alpha chain, a known thrombin binding protein, is also one of the zinc-dependent platelet membrane binding sites for HK domain 3.  相似文献   

9.
Membrane microenvironmental changes associated with thrombin-induced platelet activation were followed by fluorescence intensity and polarization studies of 1,6-diphenyl-1,3,5-hexatriene (DPH)-labeled human platelets. The labeling of washed platelets with DPH did not alter platelet intactness and morphology. In response to thrombin, DPH-labeled platelets exhibited reduced serotonin release, yet aggregation was barely inhibited. Shape change induced by thrombin or ADP was indistinguishable in control and in DPH-labeled platelets. During platelet aggregation induced by thrombin, fluorescence intensity increased by about 14%, which may indicate a more hydrophobic exposure of the probe. However, no change in fluorescence was detected during platelet shape change, induced either by thrombin in presence of EDTA or by ADP. Thrombin-activated platelets exhibited an increase in values of fluorescence polarization (P) during the stages of shape change and secretion, which further increased during aggregation. A similar pattern of increase in P values characterized platelet shape changes, caused either by thrombin in the presence of EDTA or by ADP. Changes in individual platelets are discernible from the alterations of the aggregating cells. These results may indicate that platelet activation is accompanied by an increase in rigidity of the membrane lipids. Functionally, the elevated "microviscosity" may reflect a primary role of membrane lipids in modulating the process of platelet activation or secondary transitions in lipids due to membrane events mediated by proteins.  相似文献   

10.
Concanavalin A aggregated gel-filtered platetes in 0.9% NaCl solution signifying cross-bridging by the lectin. Aggregation of these platelets by concanavalin A was temperature dependent; it did not occur at 0–4 °C unless the platelets were previously trypsinized. The level of aggregation of trypsinized platelets by concanavalin A at 0–4°C was similar to that of untreated platelets at 37°C. It is suggested that trypsin facilitates platelet aggregation by concanavalin A at 0–4°C by causing a configurational change in membrane glycoproteins which orientates concanavalin A receptor sites into positions that favour lectin cross-bridging. Concanavalin A failed to aggregate platelets in plasma. Radioisotope studies showed that the amount of [3H]concanavalin A which combined with platelets in plasma was extremely low compared with gel-filtered platelets in saline. The aggregation of Ehrlich ascites cells by concanavalin A was considerably reduced when platelet-free plasma was added to the medium suggesting that it was due to the presence of concanavalin A-reactive components in the plasma.Concanavalin A inhibited the ADP-induced aggregation of platelets suspended in plasma or in a salts solution supplemented with calcium and fibrinogen, although the inhibitory effect was more conspicuous in the latter case. The results suggests that concanavalin A produces its inhibitory effect on ADP-induced platelet aggregation by interacting with membrane glycoproteins, and this further suggests their involvement in aggregation.  相似文献   

11.
H Y Wang  E Friedman 《Life sciences》1990,47(16):1419-1425
Protein kinase C (PKC) activity and translocation in response to the phorbol ester, phorbol 12-myristate, 13-acetate (PMA), serotonin (5-HT) and thrombin was assessed in human platelets. Stimulation with PMA and 5-HT for 10 minutes or thrombin for 1 minute elicited platelet PKC translocation from cytosol to membrane. The catecholamines, norepinephrine or epinephrine at 10 microM concentrations did not induce redistribution of platelet PKC. Serotonin (0.5-100 microM) and the specific 5-HT2 receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (10-100 microM) but not the 5-HT1A or 5-HT1B agonists, (+/-) 8-hydroxy-dipropylamino-tetralin (8-OH-DPAT) or 5-methoxy-3-3-(1,2,3,6-tetrahydro-4-pyridin) 1H-indole succinate (RU 24969) induced dose-dependent PKC translocations. Serotonin-evoked PKC translocation was blocked by selective 5-HT2 receptor antagonists, ketanserin and spiroperidol. These results suggest that, in human platelets, PMA, thrombin and 5-HT can elicit PKC translocation from cytosol to membrane. Serotonin-induced PKC translocation in platelets is mediated via 5-HT2 receptors.  相似文献   

12.
Activation of human platelets by complement proteins C5b-9 is accompanied by the release of small plasma membrane vesicles (microparticles) that are highly enriched in binding sites for coagulation factor Va and exhibit prothrombinase activity. We have now examined whether assembly of the prothrombinase enzyme complex (factors VaXa) is directly linked to the process of microparticle formation. Gel-filtered platelets were incubated without stirring with various agonists at 37 degrees C, and the functional expression of cell surface receptors on platelets and on shed microparticles was analyzed using specific monoclonal antibodies and fluorescence-gated flow cytometry. In addition to the C5b-9 proteins, thrombin, collagen, and the calcium ionophore A23187 were each found to induce formation of platelet microparticles that incorporated plasma membrane glycoproteins GP Ib, IIb, and IIIa. These microparticles were enriched in binding sites for factor Va, and their formation paralleled the expression of catalytic surface for the prothrombinase enzyme complex. Little or no microparticle release or prothrombinase activity were observed when platelets were stimulated with epinephrine and ADP, despite exposure of platelet fibrinogen receptors by these agonists. When platelets were exposed to thrombin plus collagen, the shed microparticles contained activated GP IIb-IIIa complexes that bound fibrinogen. By contrast, GP IIb-IIIa incorporated into C5b-9 induced microparticles did not express fibrinogen receptor function. Platelets from a patient with an isolated defect in inducible procoagulant activity (Scott syndrome) were found to be markedly impaired in their capacity to generate microparticles in response to all platelet activators, and this was accompanied by a comparable decrease in the number and function of inducible factor Va receptors. Taken together, these data indicate that the exposure of the platelet factor Va receptor is directly coupled to plasma membrane vesiculation and that this event can be dissociated from other activation-dependent platelet responses. Since a catalytic membrane surface is required for optimal thrombin generation, platelet microparticle formation may play a role in the normal hemostatic response to vascular injury.  相似文献   

13.
Several lectins have been studied for their effects on the interaction of thrombin with human platelets. Wheat germ agglutinin, concanavalin A and Ricinus communis lectin increased the number of high affinity sites for diisopropylphosphothrombin on washed platelets from 3000 to about 12 000 but the binding affinities were unchanged (Kd approx 4 nM). Two other lectins, Lens culinaris and Bandieria simplicifolia, were without effect. (2) Using formalinized platelets to avoid possible complications of the platelet release reaction, wheat germ agglutinin showed a marked increase (5-fold) in the binding of active thrombin, peanut agglutinin had no effect while Ricinus communis and :Bandieria simplicifolia showed marginal increases (2-fold). Thrombin binding was decreased to about one quarter with Lens culinaris, Phaseolus vulgaris and concanavalin A. (3) Wheat germ agglutinin caused a synergistic increase of platelet aggregation at low concentrations of thrombin (12.5 mU/ml) and ADP (1 microM), both in the absence and presence of added fibrinogen, but had no effect on ristocetin-induced aggregation.  相似文献   

14.
The apparent steady-state fluorescence anisotropy of DPH- or TMA-DPH-labeled washed rat platelets is strongly affected by factors that also influence the turbidity by these platelet suspensions. Sonicated preparations from platelet lipids have a low turbidity and give anisotropy values which are hardly affected by the experimental conditions. We studied the effect of four high-fat diets on membrane fluidity, lipid composition and activation tendency of washed platelets. The diets contained 50 energy% of oils with different levels of saturated and (poly)unsaturated fatty acids. Only small diet-induced differences in DPH fluorescence anisotropy were found, which were comparable for intact platelets and platelet lipids. These differences were unrelated to the degree of saturation of the dietary fatty acids. Platelets from rats fed mainly saturated fatty acids differed significantly from other diet groups in a higher unsaturation degree of phospholipids and a lower cholesterol/phospholipid ratio, but this was not detected by DPH in terms of decreased anisotropy. These platelets aggregated less than other platelets in response to thrombin or collagen. The lower response to collagen persisted in indomethacin-treated platelets activated with the thromboxane A2 mimetic U46619, indicating a different sensitivity of these platelets for thromboxane A2. We conclude that in rat platelets: (a) the overall membrane fluidity and phospholipid unsaturation degree are subject to strong homeostatic control; (b) steady-state anisotropy with DPH or TMA-DPH label is inadequate to reveal subtile changes in lipid profile; (c) changes in platelet responsiveness to thrombin and thromboxane A2, rather than (plasma) membrane fluidity, determine the effect of dietary fatty acids on platelet aggregation.  相似文献   

15.
Concanavalin A is capable of activating platelets in a concentration-dependent manner as judged by [14C]serotonin secretion from prelabeled platelets. In contrast, succinyl concanavalin A does not induce platelet secretion. Concanavalin A treatment also results in a number of alterations in platelet macromolecules which are presumably associated with the process of platelet activation. These include the phosphorylation of 20 and 47 kDa platelet proteins, the increased polymerization and association of new proteins with the platelet cytoskeleton and the association of the platelet membrane glycoprotein IIb/III complex with the platelet cytoskeleton. Succinyl concanavalin A treatment results in none of these macromolecular events. This difference is observed despite the demonstration that both lectins bind to the platelet surface. Gel overlay experiments also indicate that concanavalin A and succinyl concanavalin A bind to the same receptors. These differences in the biological effects of concanavalin A and succinyl concanavalin A on platelets may be due to decreased receptor crosslinking by the succinylated derivative. The formation of multiple linked interactions between surface receptors may be an important event in the activation of platelets by concanavalin A.  相似文献   

16.
Using three experimental approaches, we have addressed the questions of whether the presence of saturably bound thrombin plays a role in potentiating the activation of platelet phospholipase C (PLC) and/or accumulation of the 3-phosphorylated phosphoinositides (3-PPI), i.e. phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, and whether the generation of tethered ligand (Vu, T-K.H., Hung, D. T., Wheaton, V. I., and Coughlin, S. R. (1991) Cell 64, 1057-1068) by thrombin can account fully for thrombin's proteolytic effects in activating platelets, as gauged by the above parameters. We have 1) measured PLC activation or 3-PPI after we have exposed platelets to thrombin for various periods and either blocked thrombin's proteolytic activity without interrupting its binding or blocked both binding and proteolytic activity of thrombin; 2) attempted to potentiate 3-PPI accumulation, using combinations of protein kinase C stimulation, Ca2+ elevation, and saturating but proteolytically inactive thrombins; and 3) compared the activation of platelets by thrombin with activation by the "thrombin" receptor-directed peptide, SFLLRNPNDKYEPF (SFLL; a portion of the tethered ligand created by thrombin's proteolytic activity), and examined the effect of thrombin on this latter activation. We conclude that the initial and sustained effects of thrombin in stimulating PLC and the accumulation of 3-PPI are completely attributable to thrombin's proteolytic activity. Further, thrombin's effects in promoting these responses can be accounted for by the actions of SFLL peptide, and by implication, formation of tethered ligand.  相似文献   

17.
The redistribution of beta-thromboglobulin (beta TG), platelet Factor 4 (PF4), and fibrinogen from the alpha granules of the platelet after stimulation with thrombin was studied by morphologic and immunocytochemical techniques. The use of tannic acid stain and quick-freeze techniques revealed several thrombin-induced morphologic changes. First, the normally discoid platelet became rounder in form, with filopodia, and the granules clustered in its center. The granules then fused with one another and with elements of the surface-connected canalicular system (SCCS) to form large vacuoles in the center of the cell and near the periphery. Neither these vacuoles nor the alpha granules appeared to fuse with the plasma membrane, but the vacuoles were connected to the extracellular space by wide necks, presumably formed by enlargement of the narrow necks connecting the SCCS to the surface of the unstimulated cell. The presence of fibrinogen, beta TG, and PF4 in corresponding large intracellular vacuoles and along the platelet plasma membrane after thrombin stimulation was demonstrated by immunocytochemical techniques in saponin-permeabilized and nonpermeabilized platelets. Immunocytochemical labeling of the three proteins on frozen thin sections of thrombin-stimulated platelets confirmed these findings and showed that all three proteins reached the plasma membrane by the same pathway. We conclude that thrombin stimulation of platelets causes at least some of the fibrinogen, beta TG, and PF4 stored in their alpha granules to be redistributed to their plasma membranes by way of surface-connected vacuoles formed by fusion of the alpha granules with elements of the SCCS.  相似文献   

18.
Treatment of human platelets with the lectin Concanavalin A (Con A) resulted in the tyrosine phosphorylation of several proteins with molecular masses 65, 80, 85, 95, 120, 135, and 150 kDa. These proteins were divided in two groups: the first group included the 65-, 85-, 95-, and 120-kDa bands, which were tyrosine phosphorylated also in thrombin-stimulated platelets; the second group (80-, 135-, and 150-kDa bands) included proteins whose tyrosine phosphorylation was exclusively promoted by Con A, but not by thrombin. Members of the second group were rapidly dephosphorylated when the lectin was displaced from the cell surface by methyl α-D -mannopyranoside. Pretreatment of intact platelets with the prostacyclin analog iloprost, inhibited Con A-induced tyrosine phosphorylation of the first group of proteins, but had no effect on the tyrosine phosphorylation of the proteins of the second group. Succinyl-Con A, a dimeric derivative of the lectin, which binds to the platelet surface but does not promote clustering of the receptor, did not induce tyrosine phosphorylation of the second group of proteins, although phosphorylation of some members of the first group was observed. Our results demonstrate the presence of two different mechanisms leading to protein-tyrosine phosphorylation in Con A-stimulated platelets, and identify a new signal transduction pathway, promoted by the clustering of membrane glycoproteins, that produces tyrosine phosphorylation of specific substrates. This new pathway may be activated by platelet interaction with multivalent ligands, such as adhesive proteins, during adhesion, spreading, and aggregation.  相似文献   

19.
Factor XI binds to activated platelets where it is efficiently activated by thrombin. The factor XI receptor is the platelet membrane glycoprotein (GP) Ib-IX-V complex (Baglia, F. A., Badellino, K. O., Li, C. Q., Lopez, J. A., and Walsh, P. N. (2002) J. Biol. Chem. 277, 1662-1668), a significant fraction of which exists within lipid rafts on stimulated platelets (Shrimpton, C. N., Borthakur, G., Larrucea, S., Cruz, M. A., Dong, J. F., and Lopez, J. A. (2002) J. Exp. Med. 196, 1057-1066). Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids implicated in localizing membrane ligands and in cellular signaling. We now show that factor XI was localized to lipid rafts in activated platelets ( approximately 8% of total bound) but not in resting platelets. Optimal binding of factor XI to membrane rafts required prothrombin (and Ca2+) or high molecular weight kininogen (and Zn2+), which are required for factor XI binding to platelets. An antibody to GPIb (SZ-2) that disrupts factor XI binding to the GPIb-IX-V complex also disrupted factor XI-raft association. The isolated recombinant Apple 3 domain of factor XI, which mediates factor XI binding to platelets, also completely displaces factor XI from membrane rafts. To investigate the physiological relevance of the factor XI-raft association, the structural integrity of lipid rafts was disrupted by cholesterol depletion utilizing methyl-beta-cyclodextrin. Cholesterol depletion completely prevented FXI binding to lipid rafts, and initial rates of factor XI activation by thrombin on activated platelets were inhibited >85%. We conclude that factor XI is localized to GPIb in membrane rafts and that this association is important for promoting the activation of factor XI by thrombin on the platelet surface.  相似文献   

20.
Cooling and freezing damage platelet membrane integrity.   总被引:6,自引:0,他引:6  
Cytoskeletal rearrangements and a membrane lipid phase transition (liquid crystalline to gel) occur in platelets on cooling from 23 to 4 degrees C. A consequence of these structural alterations is irreversible cellular damage. We investigated whether platelet membrane integrity could be preserved by (a) previously studied combinations of a calcium chelator (EGTA) and microfilament stabilizer (cytochalasin B) with apparent benefit in protecting platelets from cooling injury or (b) agents of known benefit in protecting membranes and proteins from freezing injury. Platelet function and activation before and after freezing or cooling were measured by agglutination with ristocetin, aggregation with thrombin or ADP, platelet-induced clot retraction (PICR), and expression of P-selectin. Platelets were loaded with 10 nM fluorescein diacetate. After freezing or cooling, the preparations were centrifuged and the supernatant was measured for fluorescein. For cooling experiments, fresh platelets were chilled at 4 degrees C for 1 to 21 days with or without the combination of 80 microM EGTA/AM and 2 microM cytochalasin B (EGTA/AM-CytoB) and then warmed rapidly at 37 degrees C. For freezing experiments, 5% dimethyl sulfoxide (Me2SO) or 5 mM glycerol were added to fresh platelets. The preparations were then frozen at -1 degrees C/min to -70 degrees C and then thawed rapidly at 37 degrees C. Platelet membrane integrity, as measured by supernatant levels of fluorescein, correlated inversely with platelet function. Chilling platelets at 4 degrees C with EGTA/AM-CytoB showed a gradual loss of membrane integrity, with maximum loss reached on day 7. The loss of membrane integrity preceded complete loss of function as demonstrated by PICR. In contrast, platelets chilled without these agents had complete loss of membrane integrity and function after 1 day of storage. Freezing platelets in Me2SO resulted in far less release of fluorescein than did freezing with or without other cryoprotectants (P < 0.001). This result correlated with enhanced function as demonstrated by PICR and supports earlier observations that Me2SO protects platelet membranes from freezing injury. Release of fluorescein into the surrounding medium reflected loss of membrane integrity and function in both cooled and frozen platelets. Membrane cytoskeletal rearrangements are linked to membrane changes during storage. These results may be generally applicable to the study of platelet storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号