首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein phosphatase activities in developing Dictyostelium discoideum cells were investigated. Substrates were prepared by phosphorylation of histone H2b and kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) using cAMP-dependent protein kinase. Two histone phosphatase activities (Mr 170 000 and 520 000) and one kemptide phosphatase activity (Mr 230 000) were found in the cytosolic cell fraction. Histone phosphatase was also present in the particulate fraction, kemptide phosphatase was not. All phosphatase activities were present throughout development. No differences in protein phosphatase activities were found in prespore and prestalk cells. A heat-stable factor which inhibits the particulate and both soluble histone phosphatase activities was isolated.  相似文献   

2.
In the previous paper, we showed that the K+ channels of the mouse neuroblastoma cell (clone N-18) are closed at low concentration of external K+ ([K+]0) including the physiological concentration for the cells. In the present study, the origin of the resting membrane potential of N-18 cells has been examined. (1) The resting membrane potential of N-18 cells was depolarized by increasing concentration of the polyvalent cations (La3+, Fe3+, Co2+, Ca2+, Sr2+, Mg2+) and by decreasing the pH of the medium. The input membrane resistance was slightly increased during the depolarization. The depolarization was not explained in terms of the diffusion of the cations across the membrane, since the trivalent cations of greater ionic size were effective at much lower concentrations than the divalent cations. The results obtained from the measurements of 86Rb efflux suggested that the depolarization cannot be explained in terms of blocking of the K+ channels by the cations. (2) An increase in Ca2+ concentration from 0.3 to 1.8 mM induced depolarization of about 10 mV at low [K+]0 where the K+ channels are closed, but did not induce any depolarization at high [K+]0 where the channels are open. (3) In order to estimate the changes in the zeta-potential, the electrophoretic mobility of N-18 cells was measured under various conditions. There was a close correlation between the changes in the zeta-potential and those in the membrane potential in response to the polyvalent cations and proton. On the other hand, an increase in K+-concentration in the medium, which induced a large depolarization in the cells, did not affect the zeta-potential. (4) The results obtained were explained by an electrical circuit model for the membranes of N-18 cells. In this model, an electrical circuit for the membrane part carrying no selective ionic channels, in which changes in the surface potential directly affect the transmembrane potential, is connected in parallel to the usual circuit model representing selective ionic channel systems. It was concluded that the surface potential contributes significantly to the resting membrane potential of N-18 cells at low [K+]0 where the K+ channels are closed.  相似文献   

3.
ATP-dependent active calcium transport in inside-out human red cell membrane vesicles is stimulated by magnesium essentially parallel with an increase in MgATP concentration. At a constant, low (1 μM) calcium concentration, increasing ATP and magnesium increase the maximum calcium transport rate irrespective of the constant or decreasing concentrations of CaATP present. KCa for calcium pumping is practically unchanged at variable ATP and magnesium concentrations. Free magnesium above 1–2 mM inhibits active calcium transport, probably through a direct interaction with the transport enzyme. Based on the experimental findings reported we suggest that the true, physiological substrate of the red cell calcium pump is MgATP.  相似文献   

4.
Proteins from crown gall tissue labelled in vivo with [32P]orthophosphate were analysed by SDS-polyacrylamide gel electrophoresis. The major phosphorylated proteins were of 50.6 and 48.3 kDa, with minor bands at 80.1, 73.9, 68, 40.4, 30, 21.5, 20.2 and 15.2 kDa. Partial hydrolysates of total 32P-labelled proteins were analysed in a number of ways. A two-dimensional separation on paper by electrophoresis in pyridine/acetic acid at pH 3.5 followed by chromatography in isobutyric acid/0.5 M ammonia revealed radioactive spots coincident with phosphoserine and phosphothreonine markers and only partially coincident with the phosphotyrosine marker. Two-dimensional electrophoresis at pH 1.9 followed by pH 3.5, however, unequivocally showed the presence of phosphotyrosine after elution of the phosphotyrosine marker. Phosphoserine, phosphothreonine and phosphotyrosine were present in the ratio 89.4:8.5:2.1. This is a much higher level of phosphotyrosine than normally found in animal cells. The three phosphoamino acids were confirmed by chromatography with authentic samples in four solvent systems on cellulose or silica TLC, and by dansylation followed by silica TLC. The radioactive compound running almost coincident with phosphotyrosine on two-way electrophoresis, pH 3.5, followed by chromatography in isobutyric acid/0.5 M ammonia was identified tentatively as uridine 5′-monophosphate on the basis of electrophoretic and chromatographic behaviour. Further experiments to compare normal (growing and non-growing) tobacco callus and T37-transformed cells did not give markedly different ratios of the three phosphoamino acids, although the rapidly-growing normal tobacco (i.e., plus cytokinin) appeared to have a greater abundance of the two minor phosphoamino acids (approx. 2-times). The lack of effect of transformation is in contrast to animal cells where transformation results in a 10-fold increase in the virally affected cells.  相似文献   

5.
Tyrosine-specific protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) activity was measured in normal human nonadherent peripheral blood lymphocytes using synthetic peptide substrates having sequence homologies with either pp60src or c-myc. A high level of tyrosine-specific protein kinase activity was found associated with the cell particulate fraction (100 000 × g pellet). High-pressure liquid chromatography and phosphoamino acid analysis of the synthetic peptide substrates substantiated the phosphorylation of tyrosine residues by the particulate fraction enzyme. The human enzyme was also capable of phosphorylating a synthetic random polymer of 80% glutamic acid and 20% tyrosine. Enzyme activity was half-maximal with 22 μM Mg·ATP and had apparent Km values for the synthetic peptides from 1.9 to 7.1 mM. The enzyme preferred Mg2+ to Mn2+ for optimal activity and was stimulated 2–5-fold by low levels (0.05%) of some ionic as well as non-ionic detergents including deoxycholate, Nonidet P-40 and Triton X-100. The enzyme activity was not stimulated by N6;O2′-dibutyryl cyclic AMP (100 μM), N6;O2′-dibutyryl cyclic GMP (100 μM), Ca2+ (200 μM), insulin (1 μg/ml) or homogeneous human T-cell growth factor (3 μg/ml) under the conditions used. Alkaline-resistant phosphorylation of particulate proteins in vitro revealed protein bands with Mr 59 000 and 54 000 suggesting that there are endogenous substrates for the human lymphocyte tyrosine protein kinase.  相似文献   

6.
The intracellular movement, following uptake of 125I-labelled denatured serum albumin into nonparenchymal liver cells, was followed by means of subcellular fractionation. Isolated nonparenchymal rat liver cells were prepared by means of differential centrifugation. The cells were homogenized in a sonifier and the cytoplasmic extract subjected to isopycnic centrifugation in a sucrose gradient. The intracellular movement of the labelled albumin was followed by comparing the distribution profile of radioactivity in the sucrose gradient with those of marker enzymes for plasma membrane and lysosomes. The distribution profiles for radioactivity after the cells had been exposed to the labelled denatured albumin for different time periods indicated that the radioactivity was first associated with subcellular fractions of lower modal densities than the lysosomes. With time of incubation the radioactivity moved towards higher densities. After prolonged incubations in the absence of extracellular labelled denatured albumin the radioactivity peak coincided with that of the lysosomal marker β-acetylglucosaminidase. When the cells were treated with the lysosomal inhibitor leupeptin, degradation of the labelled albumin was decreased, resulting in a massive intracellular accumulation of radioactivity. The radioactivity peak coincided with the peak of activity for the lysosomal marker β-acetylglucosaminidase, suggesting lysosomal degradation.  相似文献   

7.
We developed a technique that yields isolated adult rat myocytes, 70% of which are elongated and morphologically similar to intact tissue. Electrophysiological studies showed most of these cells were quiescent, Ca2+-tolerant and exhibited normal action potentials accompanied by contractions. We analyzed 45Ca2+ uptake data in terms of instantaneous, fast and slow compartments. 69% of total exchangeable Ca2+ was found in the slow compartment; the rest was almost equally divided between the instantaneous and fast compartments. Replacement of extracellular Na+ by Li+ or Tris increased 45Ca2+ uptake by the fast compartment; high [K+]o increased this uptake further. These increases appeared to be related also to internal concentrations of Na+. This conclusion was supported by experiments with digitonin-treated cells. Our results indicate that the way Na+-dependent 45Ca2+ uptake is affected by [Na+]o, [Na+]i and [K+]o is compatible with the Na+-Ca2+ exchange mechanism. Our preparation should prove useful in studies of regulation of Ca2+ transport in cardiac muscles.  相似文献   

8.
Receptor sites for insulin on GH3 cells were characterized. Uptake of 125I-labeled insulin by the cells was dependent upon time and temperature, with apparent steady-states reached by 120, 20 and 10 min at 4, 23 and 37°C, respectively. The binding sites were sensitive to trypsin, suggesting that the receptors contain protein. Insulin competed with 125I-labeled insulin for binding sites, with half-maximal competition observed at 5 nM insulin. Neither adrenocorticotropic hormone nor growth hormone competed for 125I-labeled insulin binding sites. 125I-labeled insulin binding was reversible, and saturable with respect to hormone concentration. 125I-labeled insulin was degraded at both 4 and 37°C by GH3 cells, but not by medium conditioned by these cells. After a 5 min incubation at 37°C, products of 125I-labeled insulin degradation could be recovered from the cells but were not detected extracellularly. Extending the time of incubation resulted in the recovery of fragments of 125I-labeled insulin from both cells and the medium. Native insulin inhibited most of the degradation of 125I-labeled insulin suggesting that degradation resulted, in part, from a saturable process. At steady-state, degradation products of 125I-labeled insulin, as well as intact hormone, were recovered from GH3 cells. After 30 min incubation at 37°C, 80% of the cell-bound radioactivity was not extractable from GH3 cells with acetic acid.  相似文献   

9.
The activity of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34), obtained from cultured human IM-9 lymphoid cells or freshly isolated human peripheral blood leukocytes, is modulated by a phosphorylation/dephosphorylation mechanism. Addition of MgATP + ADP to IM-9 cell microsomal reductase leads to a time-dependent loss of enzyme activity. Inactivated reductase is reactivated by rat liver reductase phosphatase. Kinase-dependent IM-9 cell microsomal reductase, prepared by heating IM-9 microsomes for 15 min at 50°C, is inactivated in the presence of MgATP and ADP only after addition of cytosolic reductase kinase from either IM-9 cells, freshly isolated leukocytes or rat liver. Inactivation is time-dependent and dependent on the cytosolic protein concentration. Inactivated reductase is reactivated by rat liver reductase phosphatase. For cultured IM-9 cells and freshly isolated leukocytes incubated with culture medium for 2 h, the ratios of active (unphosphorylated) to total (phosphorylated + unphosphorylated) reductase activity are 0.22 and 0.43, respectively. Thus, in addition to its regulation by changes in the amount of total enzyme protein, human leukocyte reductase activity is also modulated by a phosphorylation/dephosphorylation mechanism.  相似文献   

10.
Fluxes catalyzed by soluble creatine kinase (MM) in equilibrium in vitro and by the creatine kinase system in perfused rat hearts were studied by 31P-NMR saturation transfer method. It was found that in vitro both forward and reverse fluxes through creatine kinase at equilibrium were almost equal and very stable to changes in phosphocreatinecreatine ratio (from 0.2 to 3.0) as well as to changes in pH (from 7.4 to 6.5 or 8.1), free Mg2+ concentration and 2-fold decrease of total adenine nucleotides and creatine pools (from 8.0 to 4.0 mM and from 30 to 14 mM, respectively). In the rat hearts perfused by the Langendorff method the creatine kinase-catalyzed flux from phosphocreatine to ATP was increased by 50% when oxygen consumption grew from 8 to 55 μmol/min per g of dry wt. due to transition from rest to high workload. These changes could not be exclusively explained on the basis of the equilibrium model by activation of heart creatine kinase due to some decrease in [phosphocreatine][creatine] ratio (from 1.8 to 0.8) observed during transition from rest to high workload. Analysis of our data showed that an increase in the flux via creatine kinase is correlated with an increase in the rate of ATP synthesis with a linearity coefficient higher than 1.0. These data are more consistent with the concept of energy channeling by phosphocreatine shuttle than with that of the creatine kinase equilibrium in the heart.  相似文献   

11.
The [32P]phosphoamino acids in proteins of first-trimester and term-cultured human placentas have been separated and their relative amounts have been measured. Significant phosphorylation of tyrosine residues could be detected in the cultured placental tissue at different stages of gestation. The phosphotyrosine accounts for 2–4% of the total acid-stable phosphate in the phosphoamino acids after partial acid hydrolysis. The difference in the extent of [32P]tyrosine in various placentas seems to be a function of biological variation of the individual placentas, rather than a function of placental age and stage of gestation. In contrast, a significant difference in the phosphorylation ratio of serine and threonine could be measured between first-trimester and term placentas. As more evidence is accumulating that protein phosphorylation of tyrosine is involved in the processes of cellular growth and proliferation, our findings of the relatively high tyrosine phosphorylation in human placenta strongly suggest that this type of protein phosphorylation may play an important role in the placental growth and development. Furthermore, these findings may correlate with the existence of the endogenous RNA virus-like particles found in normal human placenta.  相似文献   

12.
Interferon-treated mouse and human cells show enhanced levels of a protein kinase activity which is manifested by the phosphorylation of endogenous 67,000 and 72,000 Mr proteins, respectively. Enhanced levels of such kinase activity are also detectable in the plasma of patients treated with interferon and in the plasma and tissues of interferon-treated mice. A rapid and efficient method of assay for these protein kinase activities is described. The samples are first incubated with heparin (100 units/ml), which results in the inhibition of different protein kinase activities, but not the one mediated by interferon. The latter one is then assayed after partial purification on poly(rI):(rC)-Sepharose or poly(rG)-Sepharose. The protein kinase from human and mouse cells in culture and from the different tissues of mice binds specifically to poly(rI):(rC)-Sepharose. On the other hand, the protein kinase activity from both mouse and human plasma shows a higher affinity toward poly(rG)-Sepharose. These methods are successfully applied for the determination of the interferon-mediated protein kinase activity from tissue extracts and plasma.  相似文献   

13.
Short-term synthesis of radioactivity labeled melanin (using dl-[2-14C]tyrosine or 2-[2-14C]thiouracil) by chick retinal pigment tissues in vitro was not influenced by inhibitors of protein synthesis, puromycin and cyloheximide. Co-ordinate synthesis of protein is, therefore, unnecessary for melanin synthesis, and melanoproteins must represent secondary interactions between melanin and protein. Melanin was isolated from chick embryo feather germs by extracting the proteins with hot dodecyl sulfate/mercaptoethanol. Melanin isolated from tissues incubated previously in l-[U-14C]valine medium had no associated radioactivity compared to the radioactivity of melanin prepared from tissues incubated in dl-[2-14C]tyrosine or 2-[2-14C]thiouracil. If melanoproteins exist at all, they are non-covalently bonded associations of melanin and melanosomal proteins.  相似文献   

14.
The antiproliferative effects of 5′-methylthioadenosine and the 5′-methylthioadenosine analogs, 5′-isobutylthioadenosine, 5′-deoxyadenosine and 5′-methylthiotubercidin were examined using two mouse cell lines, one 5′-methylthioadenosine phosphorylase-deficient the other containing 5′-methylthioadenosine phosphorylase. All of the compounds were found to be growth inhibitory to both cell lines, demonstrating that these compounds need not be degraded to exert their inhibitory effects. A correlation was observed between the potency of the growth inhibitory effect and the ability of the cells to degrade these compounds. 5′-Methylthioadenosine, 5′-deoxyadenosine and 5′-isobutylthioadenosine, all of which are substrates for the 5′-methylthioadenosine phosphorylase in vitro, were more growth inhibitory to the 5′-methylthioadenosine phosphorylase-deficient cells than to the 5′-methylthioadenosine phosphorylase-containing cells, whereas, the 7-deaza analog, 5′-methylthiotubercidin, a nondegradable inhibitor of the 5′-methylthioadenosine phosphorylase, was a more potent inhibitor of the 5′-methylthioadenosine phosphorylase-containing cell line. Due to the inhibition by 5′-methylthiotubercidin on 5′-methylthioadenosine phosphorylase in vitro the disposition of cellularly-synthesized 5′-methylthioadenosine was explored using both cell types. 5′-Methylthiotubercidin inhibited the accumulation of exogenous 5′-methylthioadenosine from 5′-methylthioadenosine phosphorylase-deficient cells with no effect on intracellular 5′-methylthioadenosine. In contrast, 5′-methylthiotubercidin caused a large accumulation of extracellular 5′-methylthioadenosine with a concomitant smaller increase intracellularly in 5′-methylthioadenosine phosphorylase-containing cells. That cellularly-synthesized 5′-methylthioadenosine as well as the cellular excretion of this nucleoside are altered in response to treatment with 5′-methylthiotubercidin suggests two possible sites at which 5′-methylthiotubercidin may exert its effect.  相似文献   

15.
In this study we investigated the interaction of liposomes with rat Kupffer cells in maintenance culture by using the lysosomotropic amines ammonium chloride and chloroquine as inhibitors of intralysosomal degradation. The liposomes (large unilamellar vesicles) contained either the metabolically inert 3H-labeled inulin or the degradable 125I-labeled bovine serum albumin. In control incubations, the cells released nearly all accumulated protein label and about 30% of the lipid label when they were incubated in the absence of liposomes, after an initial uptake period of 1 h in the presence of liposomes. This release of label was, for the greater part, suppressed in the presence of ammonia or chloroquine. When the inhibitors were present during the initial uptake period, a several-fold increase in the amount of protein label accumulating in the cells and a smaller, but still marked, increase in lipid label accumulation were observed. The effect of ammonia when present during uptake was readily reversible in contrast to that of chloroquine. Experiments with encapsulated inulin revealed that both lysosomotropic agents also affected the uptake process per se to some extent, probably as a result of impaired membrane/receptor recycling. Labeled liposomes adsorbed to the cells at 4°C were effectively internalized and processed intracellulary after shifting the temperature to 37°C, even when a 500-fold excess of unlabeled liposomes was present in the medium during the 37°C incubation. The observed effects of ammonia and chloroquine indicate that, after uptake, the liposomes are degraded within lysosomes, thus confirming our previous conclusion that endocytosis is the major uptake mechanism at 37°C. From the temperature-change experiments we conclude that, at 4°C, the liposomes are bound with high affinity to the cells, remaining firmly attached to the cell-surface structures which initiate their internalization when the temperature is raised to 37°C.  相似文献   

16.
Adult rat heart muscle cells obtained by perfusion of the heart with collagenase have been used to characterize the insulin receptors by equilibrium binding and kinetic measurements. Binding of 125I-labelled insulin to heart cells exhibited a high degree of specificity; it was dependent on pH and temperature, binding at steady increased with decreasing temperatures. About 70% of the radioactivity bound at equilibrium at 25°C could be dissociated by addition of an excess of unlabelled insulin. 54 and 40% of 125I-labelled insulin was degraded by isolated heart cells after 2 h at 37°C and 4 h at 25°C, respectively. This degrading activity was effectively inhibited by high concentration of albumin.Equilibrium binding studies were conducted at 25°C using insulin concentrations ranging from 2.5 · 10?11 mol/l to 10?6 mol/l. Scatchard analysis of the binding data resulted in a curvilinear plot (concave upward), which was further analyzed using the average affinity profile. The empty site affinity constant was calculated to be 9.5 · 107 l/mol with a total receptor concentration of 3.4 · 106 sites per cell.The presence of site-site interactions of the negative cooperative type among the insulin receptors has been confirmed by kinetic experiments. The rate of dilution induced dissociation was enhanced in the presence of native insulin (5 · 10?9 mol/l), both, under conditions of low and high fractional saturation of receptors.  相似文献   

17.
Classical fractionation studies showed that chicken liver contains two enzymes which can oxidize DL-3-hydroxybutyrate. The cytosolic enzyme is specific for the L-(+) isomer and accounts for 60% of the total activity. The mitochondrial activity is specific for the D-(?) isomer and accounts for 40% of the total activity. Kinetic studies showed that L-gulonic acid is a competitive inhibitor of the enzyme. We conclude that the cytosolic enzyme is the previously described L-3-hydroxyacid dehydrogenase.  相似文献   

18.
The proton ejection coupled to electron flow from succinate and/or endogenous substrate(s) to cytochrome c using the impermeable electron acceptor ferricyanide is studied in tightly coupled mitochondria isolated from two strains of the yeast Saccharomyces cerevisiae. (1) The observed H+ ejection/2e? ratio approaches an average value of 3 when K+ (in the presence of valinomycin) is used as charge-compensating cation. (2) In the presence of the proton-conducting agent carbonyl cyanide m-chlorophenylhydrazone, an H+ ejection/2e? ratio of 2 is observed. (3) The low stoichiometry of 3H+ ejected (instead of 4) per 2e? and the high rate of H+ back-decay (0.1615 lnδ-(ngatom)H+s and a half-time of 4.6 s for 10 mg protein) into the mitochondrial matrix are related to the presence of an electroneutral K+/H+ antiporter which is demonstrated by passive swelling experiments in isotonic potassium acetate medium.  相似文献   

19.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

20.
Histamine-N-methyltransferase (EC 2.1.1.8) was purified 1700-fold with a yield of 9% from rat kidney. Purification included ammonium sulfate precipitation, linear gradient DEAE-cellulose chromotography and S-adenosylhomocysteine affinity chromotography. The purified enzyme preparation showed a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular weight of 35 000. The isoelectric point of the enzyme was at pH 5.2. The purified enzyme preparation did not contain detectable amounts of histamine. The purified enzyme was totally inhibited in 100 μM parahydroxymercuric benzoate and in 10 μM iodoacetamide, and it was found to be stabilized with dithiothreitol (1 mM), suggesting that the enzyme has an SH-group in the active center. The Km values for histamine and S-adenosylmethionine were 6.0 and 7.1 μM, respectively. 50% inhibition of histamine-N-methyltransferase was obtained at 28 μM S-adenosylhomocysteine and 100 μM methylhistamine. The purified enzyme was slightly inhibited in 1 mM methylthioadenosine. Histamine in concentrations higher than 25 μM caused substrate inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号