首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
l-[14C]Leucine transport into Saccharomyces cerevisiae protoplasts involves two systems (1 and 2) with different kinetic parameters. The KT values for these systems are of the same order as those for intact yeast cells. These results suggest that the proteins related to the affinity constants are located in the cytoplasmic membrane.  相似文献   

2.
WI-38 fibroblasts cultivated in vitro were homogenized and their subcellular organelles analysed by the techniques of differential centrifugation and isopycnic equilibration in density gradient. In these experiments, the assayed enzymes were known to be specifically associated with subcellular components in other cells types. In most cases, their behaviour and properties corresponded with observations made in earlier studies and we could consider them as being representative of the specific subcellular organelles.Some significant differences were observed between young and old fibroblasts. The specific activity of alkaline phosphodiesterase was lower in the old cells whereas for the other enzymes it was identical or higher, especially for the 5′-nucleotidase; also the particulate fractions obtained by differential centrifugation contained more material. After equilibration in density gradient, the average density of the 5′-nucleotidase, alkaline phosphodiesterase and N-acetyl-β-D-glucosaminidase was less in the old than in the young cells, whereas that of the galactosyltransferase of Golgi apparatus was greater. For mitochondria, endolasmic reticulum and peroxisomes, the differences observed were small.  相似文献   

3.
Both rho+ and rho? cells were capable of accumulating l-serine against a concentration gradient; however, the extent of serine accumulation differed between these two strains. About 60% of the total accumulation of serine was reduced in rho? cells which were shown to lack functional mitochondria. The transport of serine was mediated via a specific and an inducible system. It was also derepressible under nitrogen-starved conditions. The derepression of l-serine uptake was also evident under conditions where general amino-acid permease is not expressed.  相似文献   

4.
Defects in the inner mitochondrial membrane of petite mutants of yeast resulted not only in respiratory deficiency, but also in changes in cell surface characteristics. These were (1) concanavalin A agglutinability, (2) cell movement in a biphasic polymer system, (3) cell adhesion. Genetic analysis indicated that the control exerted by the mitochondria was on nuclear genes or on the products of these genes which were presumably specifying cell surface components. These findings ascribe a new role to mitochondria but also have implications for neoplastic transformation.  相似文献   

5.
In this study, we investigated methionine synthase from Candida albicans (CaMET 6p) and Saccharomyces cerevisiae (ScMET 6p). We describe the cloning of CaMet 6 and ScMet 6, and the expression of both the enzymes in S. cerevisiae. CaMET 6p is able to complement the disruption of met 6 in S. cerevisiae. Following the purification of ScMET 6p and CaMET 6p, kinetic assays were performed to determine substrate specificity. The Michaelis constants for ScMET 6p with CH(3)-H(4)PteGlu(2), CH(3)-H(4)PteGlu(3), CH(3)-H(4)PteGlu(4), and l-homocysteine are 108, 84, 95, and 13 microM, respectively. The Michaelis constants for CaMET 6p with CH(3)-H(4)PteGlu(2), CH(3)-H(4)PteGlu(3), CH(3)-H(4)PteGlu(4), and l-homocysteine are 113, 129, 120, and 14 microM, respectively. Neither enzyme showed activity with CH(3)-H(4)PteGlu(1) as a substrate. We conclude that ScMET 6p and CaMET 6p require a minimum of two glutamates on the methyltetrahydrofolate substrate, similar to the bacterial metE homologs. The cloning, purification, and characterization of these enzymes lay the groundwork for inhibitor-design studies on the cobalamin-independent fungal methionine synthases.  相似文献   

6.
A multitude of metabolic regulations occur in yeast, particularly under dynamic process conditions, such as under sudden glucose excess. However, quantification of regulations and classification of yeast strains under these conditions have yet to be elucidated, which requires high-frequency and consistent quantification of the metabolic response. The present study aimed at quantifying the dynamic regulation of the central metabolism of strains Saccharomyces cerevisiae, S. kluyveri, and Kluyveromyces lactis upon sudden glucose excess, accomplished by a shift-up in dilution rate inside of the oxidative region using a small metabolic flux model. It was found that, under transient growth conditions, S. kluyveri behaved like K. lactis, while classification using steady-state conditions would position S. kluyveri close to S. cerevisiae. For transient conditions and based on the observation whether excess glucose is initially used for catabolism (energy) or anabolism (carbon), we propose to classify strains into energy-driven, such as S. cerevisiae, and carbon-driven, such as S. kluyveri and K. lactis, strains. Furthermore, it was found that the delayed onset of fermentative catabolism in carbon-driven strains is a consequence of low catabolic flux and the initial shunt of glucose in non-nitrogen-containing biomass constituents. The MFA model suggests that energy limitation forced the cell to ultimately increase catabolic flux, while the capacity of oxidative catabolism is not sufficient to process this flux oxidatively. The combination of transient experiments and its exploitation with reconciled intrinsic rates using a small metabolic model could corroborate earlier findings of metabolic regulations, such as tight glucose control in carbon-driven strains and transient changes in biomass composition, as well as explore new regulations, such as assimilation of ethanol before glucose. The benefit from using small metabolic flux models is the richness of information and the enhanced insight into intrinsic metabolic pathways without a priori knowledge of adaptation kinetics. Used in an online context, this approach serves as an efficient tool for strain characterization and physiological studies.  相似文献   

7.
The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacoular proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40–110 nm; bouyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100–250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae.  相似文献   

8.
为了提高原生质体的再生率,用正交实验筛选了制备营养缺陷型酿酒酵母PW208菌株原生质体的条件。最佳条件为用柠檬酸缓冲液配制1%蜗牛酶,在30℃酶解60min后再经后处理可得99%的形成率和43%的再生率。  相似文献   

9.
α淀粉酶和糖化酶在酿酒酵母中的表达和分泌   总被引:2,自引:0,他引:2  
将地衣芽孢杆菌α-淀粉酶基因及黑曲霉糖化酶cDNA重组进大肠杆菌-酵母穿梭质粒,转化酿酒酵母,构建能分解淀粉的酵母工程菌。酶活力测定和酶学性质分析的结果显示:在酵母MF-α1因子及磷酸甘油酸激酶基因的启动子和终止信号的调控下,α-淀粉酶和糖化酶基因在酵母中获得高表达并向胞外分泌这两种酶。构建的酵母工程菌在含10%淀粉的培养基中6天内能水解97%的淀粉,重组质粒能在酵母中较稳定地存在。  相似文献   

10.
A novel technique for differential extraction of subcellular ion pools from Saccharomyces cerevisiae was developed. Glyceraldehyde-3-phosphate dehydrogenase and carboxypeptidase Y were chosen as biochemical markers for the cytoplasmic and vacuolar fractions, respectively. Approximately 70% of cytosolic and vacuolar markers were detected in the relevant fractions. Sr2+, Mn2+ and Cd2+ were localised using this method.  相似文献   

11.
微生物降酸是现代葡萄酒酿造工艺中重要环节之一。利用现代生物技术将粟酒裂殖酵母中的苹果酸酶基因和苹果酸通透酶基因共同转化到酿酒酵母中,构建苹果酸-酒精酵母,使之既能进行酒精发酵,又能分解苹果酸。主要对近些年粟酒裂殖酵母苹果酸酶性质、基因结构及其转化酿酒酵母的研究做了回顾与总结,并指出了有待于解决的问题。  相似文献   

12.
AIMS: To develop a multiplex PCR assay for the specific identification and differentiation of Saccharomyces cerevisiae, S. bayanus and their hybrids. METHODS AND RESULTS: Two sets of primers with sequences complementary to the region YBR033w were used. A single amplicon of 1710 bp or 329 bp was obtained with species S. cerevisiae and S. bayanus, respectively, while the presence of both bands was observed in S. pastorianus because of its hybrid nature. Both amplification products were also obtained after amplification from DNA of several laboratory S. cerevisiae x S. bayanus hybrid strains. CONCLUSIONS: Multiplex PCR was optimized for the rapid and reliable identification of S. cerevisiae, S. bayanus and their hybrids. SIGNIFICANCE AND IMPACT OF THE STUDY: The procedure may be used for routine detection of the most common Saccharomyces sensu stricto yeasts involved in industrial fermentation processes, overcoming the problems of conventional techniques.  相似文献   

13.
Abstract: In contrast to the predominantly participate, Ca2+/calmodulin-dependent nitric oxide (NO) synthase in endothelial cells, the corresponding neuronal isoenzyme is considered to be mainly soluble, presumably owing to the lack of a posttranslational myristoylation. However, preliminary findings from this and other laboratories suggest that a substantial portion of the neuronal NO synthase activity may in fact be membrane bound. We have therefore investigated the distribution of this enzyme among subcellular fractions of the rat and rabbit cerebellum in more detail. Up to 60% of the total NO synthase activity was found in the particulate fraction and, according to density gradient ultracentrifugation, associated mainly with the endoplasmic reticulum fraction. There was no apparent difference between the soluble and particulate enzymes with respect to their specific activity, Ca2+ and pH dependency, inhibitor sensitivity, or immunoreactivity, suggesting that both rat and rabbit cerebella contain a single Ca2+/calmodulin-dependent NO synthase. The inhibition by the cytochrome P450 inhibitor SKF-525A of the NO synthase activity in these subcellular fractions (IC50= 90 μ M ) and the fact that mammalian cytochrome P450 enzymes are endoplasmic reticulum-bound proteins support the notion that the cerebellar NO synthase is a cytochrome P450-type hemoprotein. Moreover, the aforementioned findings suggest that posttranslational myristoylation may not be the only factor determining the intracellular localization of NO synthase.  相似文献   

14.
We have studied the intracellular trafficking of Sit1 [ferrioxamine B (FOB) transporter] and Enb1 (enterobactin transporter) in Saccharomyces cerevisiae using green fluorescent protein (GFP) fusion proteins. Enb1 was constitutively targeted to the plasma membrane. Sit1 was essentially targeted to the vacuolar degradation pathway when synthesized in the absence of substrate. Massive plasma membrane sorting of Sit1 was induced by various siderophore substrates of Sit1, and by coprogen, which is not a substrate of Sit1. Thus, different siderophore transporters use different regulated trafficking processes. We also studied the fate of Sit1-mediated internalized siderophores. Ferrioxamine B was recovered in isolated vacuolar fractions, where it could be detected spectrophotometrically. Ferrioxamine B coupled to an inhibitor of mitochondrial protoporphyrinogen oxidase (acifluorfen) could not reach its target unless the cells were disrupted, confirming the tight compartmentalization of siderophores within cells. Ferrioxamine B coupled to a fluorescent moiety, FOB-nitrobenz-2-oxa-1,3-diazole, used as a Sit1-dependent iron source, accumulated in the vacuolar lumen even in mutants displaying a steady-state accumulation of Sit1 at the plasma membrane or in endosomal compartments. Thus, the fates of siderophore transporters and siderophores diverge early in the trafficking process.  相似文献   

15.
Xylose is a second‐most abounded sugar after glucose in lignocellulosic hydrolysates and should be efficiently fermented for economically viable second‐generation ethanol production. Despite significant progress in metabolic and evolutionary engineering, xylose fermentation rate of recombinant Saccharomyces cerevisiae remains lower than that for glucose. Our recent study demonstrated that peroxisomedeficient cells of yeast Ogataea polymorpha showed a decrease in ethanol production from xylose. In this work, we have studied the role of peroxisomes in xylose alcoholic fermentation in the engineered xylose‐utilizing strain of S. cerevisiae. It was shown that peroxisome‐less pex3Δ mutant possessed 1.5‐fold decrease of ethanol production from xylose. We hypothesized that peroxisomal catalase Cta1 may have importance for hydrogen peroxide, the important component of reactive oxygen species, detoxification during xylose alcoholic fermentation. It was clearly shown that CTA1 deletion impaired ethanol production from xylose. It was found that enhancing the peroxisome population by modulation the peroxisomal biogenesis by overexpression of PEX34 activates xylose alcoholic fermentation.  相似文献   

16.
Nowadays, proteomics is recognized as one of the fastest growing tools in many areas of research. This is especially true for the study of Saccharomyces cerevisiae, as it is considered to be a model organism for eukaryotic cells. Proteomic analysis provides an insight into global protein expressions from identification to quantitation, from localization to function, and from individual to network systems. Moreover, many methods for identification and quantitation of proteins based on tandem mass spectrometry workflows have recently been developed and widely applied in S. cerevisiae. The current methods and issues in the proteomic analysis of S. cerevisiae are reviewed here.  相似文献   

17.
The steady-state behavior of a glucose-limited, aerobic, continuous cultivation of Saccharomyces cerevisiae CEN.PK113-7D was investigated around the critical dilution rate. Oxido-reductive steady states were obtained at dilution rates up to 0.09 h(-1) lower than the critical dilution rate by operating the bioreactor as a productostat, where the dilution rate was controlled on the basis of an ethanol measurement. Thus, the experimental investigations revealed that multiple steady states exist in a region of dilution rates below the critical dilution rate. The existence of multiple steady states was attributed to two distinct physiological effects occurring when growth changed from oxidative to oxido-reductive: (i) a decrease in the efficiency of ATP production and utilization (at ethanol concentrations below 3 g/L) and (ii) repression of the oxidative metabolism (at higher ethanol concentrations). The first effect was best observed at low ethanol concentrations, where multiple steady states were observed even when no repression of the oxidative metabolism was evident, i.e., the oxidative capacity was constant. However, at higher ethanol concentrations repression of the oxidative metabolism was observed (the oxidative capacity decreased), and this resulted in a broader range of dilution rates where multiple steady states could be found.  相似文献   

18.
Thermal damage, high osmolarity, and ethanol toxicity in the yeast Saccharomyces cerevisiae limit titer and productivity in fermentation to produce ethanol. We show that long-term adaptive laboratory evolution at 39.5°C generates thermotolerant yeast strains, which increased ethanol yield and productivity by 10% and 70%, in 2% glucose fermentations. From these strains, which also tolerate elevated-osmolarity, we selected a stable one, namely a strain lacking chromosomal duplications. This strain (TTY23) showed reduced mitochondrial metabolism and high proton efflux, and therefore lower ethanol tolerance. This maladaptation was bolstered by reestablishing proton homeostasis through increasing fermentation pH from 5 to 6 and/or adding potassium to the media. This change allowed the TTY23 strain to produce 1.3–1.6 times more ethanol than the parental strain in fermentations at 40°C with glucose concentrations ~300 g/L. Furthermore, ethanol titers and productivities up to 93.1 and 3.87 g·L −1·hr −1 were obtained from fermentations with 200 g/L glucose in potassium-containing media at 40°C. Albeit the complexity of cellular responses to heat, ethanol, and high osmolarity, in this study we overcome such limitations by an inverse metabolic engineering approach.  相似文献   

19.
AIMS: Artificial genes, which encode 48 or 64 repeats of a tripeptide, glutamyl-tryptophanyl-lysine have been cloned to the yeast expression vector pAM82 containing the PHO5 promoter and expressed in Saccharomyces cerevisiae AH22. METHODS AND RESULTS: When the yeast cells harbouring recombinant plasmids pALTG6-2 and pALTG4-4 were derepressed in Burkholder minimal medium (Toh-e, A., Ueda, Y., Kakimoto, S.I. and Oshima, Y. (1973) Journal of Bacteriology113, 727-738) containing low phosphate (0.03 g l-1 KH2PO4 and 1.5 g l-1 KCl), the expression was the highest after 24 h induction and the artificial polypeptides were synthesized to about 10% (pALTG6-2) and 14% (pALTG4-4) of the total cell protein. CONCLUSIONS: The artificial polypeptides produced in yeast were made to react with the rabbit antiserum against the polypeptide purified from Escherichia coli and found only in the pellet fraction of cell lysates, indicating the formation of inclusion body. Artificial polypeptide consisting of Glu-Trp-Lys may be useful as partial supplement in food and feeds. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of single cell enriched with homopolymers of an essential amino acid in yeast might be an important tool of supplementing cereal diets and feed grain rations and could be used as means for improvement of the amino acid profile of single cell protein and production of pharmaceutical peptides.  相似文献   

20.
Abstract The higher homologues of cadaverine, aminopropylcadaverine (APC) and N , N - bis (3-aminopropyl)cadaverine (3APC) were formed by a wild-type strain of Saccharomyces cerevisiae , and by two mutant strains, spe 3-1 and spe 4-1, exhibiting point mutations in the genes for spermidine synthase and spermine synthase, respectively. This, together with the incomplete inhibition of APC and 3 APC formation in the presence of inhibitors of 5-adenosylmethionine decarboxylase and spermidine synthase, suggests that the cadaverine derivatives are formed partly by the operation of a different route. However, the yeast strains were unable to utilise [14C]aspartate and lysine to form APC and 3APC. Since the ornithine decarboxylase inhibitor adifluoromethylomithine (DFMO) greatly reduced the formation of APC and 3APC, it is suggested that these compounds are formed preferentially in these yeast strains from cadaverine formed by ODC. APC and 3APC formation in the yeast strains was increased substantially following exposure to 37 °C for 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号