首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methylation of the active-site lysine of rhodopsin   总被引:2,自引:0,他引:2  
C Longstaff  R R Rando 《Biochemistry》1985,24(27):8137-8145
Purified bovine rhodopsin was reductively methylated with formaldehyde and pyridine/borane with the incorporation of approximately 20 methyl groups in the protein. Rhodopsin contains 10 non-active-site lysines, which account for the uptake of the 20 methyl groups. The permethylated rhodopsin thus formed is active toward bleaching, regeneration with 11-cis-retinal, and the activation of the GTPase (G protein) when photolyzed. The critical active-site lysine of permethylated rhodopsin can be liberated by photolysis. This lysine can be reductively methylated at 4 degrees C. Methylation under these conditions leads to the incorporations of approximately 1.5 methyl groups per opsin molecule using radioactive formaldehyde, with the ratio of epsilon-dimethyllysine:epsilon-monomethyllysine:lysine being approximately 5:4:1. The modified opsin(s) can regenerate with 11-cis-retinal to produce a mixture of active-site methylated and unmethylated rhodopsins having a lambda max = 512 nm. Using [14C]formaldehyde and [3H]retinal followed by reduction of the Schiff base, digestion, and chromatography showed that the active-site N-methyllysine was bound to the retinal. Treatment of the methylated opsin mixture (containing 1.5 active-site methyl groups) with o-phthalaldehyde/mercaptoethanol to functionalize the opsin bearing unreacted lysine, followed by regeneration with 11-cis-retinal and chromatographic separation, led to the preparation of the pure active-site epsilon-lysine monomethylated rhodopsin with a lambda max = 520 nm, significantly shifted bathochromically from rhodopsin or permethylated rhodopsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Tsutsui K  Imai H  Shichida Y 《Biochemistry》2007,46(21):6437-6445
A visual pigment consists of an opsin protein and a chromophore, 11-cis-retinal, which binds to a specific lysine residue of opsin via a Schiff base linkage. The Schiff base chromophore is protonated in pigments that absorb visible light, whereas it is unprotonated in ultraviolet-absorbing visual pigments (UV pigments). To investigate whether an unprotonated Schiff base can undergo photoisomerization as efficiently as a protonated Schiff base in the opsin environment, we measured the quantum yields of the bovine rhodopsin E113Q mutant, in which the Schiff base is unprotonated at alkaline pH, and the mouse UV pigment (mouse UV). Photosensitivities of UV pigments were measured by irradiation of the pigments followed by chromophore extraction and HPLC analysis. Extinction coefficients were estimated by comparing the maximum absorbances of the original pigments and their acid-denatured states. The quantum yield of the bovine rhodopsin E113Q mutant at pH 8.2, where the Schiff base is unprotonated, was significantly lower than that of wild-type rhodopsin, whereas the mutant gave a quantum yield almost identical to that of the wild type at pH 5.5, where the Schiff base is protonated. These results suggest that Schiff base protonation plays a role in increasing quantum yield. The quantum yield of mouse UV, which has an unprotonated Schiff base chromophore, was significantly higher than that of the unprotonated form of the rhodopsin E113Q mutant, although it was still lower than the visible-absorbing pigments. These results suggest that the mouse UV pigment has a specific mechanism for the efficient photoisomerization of its unprotonated Schiff base chromophore.  相似文献   

3.
A Cooper  C A Converse 《Biochemistry》1976,15(14):2970-2978
A sensitive technique for the direct calorimetric determination of the energetics of photochemical reactions under low levels of illumination, and its application to the study of primary processes in visula excitation, are described. Enthlpies are reported for various steps in the bleaching of rhodopsin in intact rod outer segment membranes, together with the heats of appropriate model reactions. Protonation changes are also determined calorimetrically by use of buffers with differing heats of proton ionization. Bleaching of rhodopsin is accompanied by significant uptake of heat energy, vastly in excess of the energy required for simple isomerization of the retinal chromophore. Metarhodopsin I formation involves the uptake of about 17 kcal/mol and no net change in proton ionization of the system. Formation of metarhodopsin II requires an additional energy of about 10 kcal/mol and involves the uptake on one hydrogen ion from solution. The energetics of the overall photolysis reaction, rhodopsin leads to opsin + all-trans-retinal, are pH dependent and involve the exposure of an additional titrating group on opsin. This group has a heat of proton ionization of about 12 kcal/mal, characteristic of a primary amine, but a pKa in the region of neutrality. We suggest that this group is the Schiff base lysine of the chromophore binding site of rhodopsin which becomes exposed on photolysis. The low pKa for this active lysine would result in a more stable retinal-opsin linkage, and might be induced by a nearby positively charged group on the protein (either arginine or a second lysine residue). This leads to a model involving intramolecular protonation of the Schiff base nitrogen in the retinal-opsin linkage of rhodopsin, which is consistent with the thermodynamic and spectroscopic properties of the system. We further propose that the metarhodopsin I leads to metarhodopsin II step in the bleaching sequence involves reversible hydrolysis of the Schiff base linkage in the chromophore binding site, and that subsequent steps are the result of migration of the chromophore from this site.  相似文献   

4.
The studies reported are concerned with the functional consequences of the chemical modifications of the lysines and carboxyl-containing amino acids of bovine rhodopsin. The 10 non-active-site lysine residues of rhodopsin can be completely dimethylated and partially acetimidated (8-9 residues) with no loss in the ability of the proteins to activate the G protein when photolyzed or to regenerate with 11-cis-retinal. These modifications do not alter the net charge on the protein. Surprisingly, heavy acetylation of these lysines (eight to nine residues) with acetic anhydride, which neutralizes the positive charges of the lysine residues, yields a modified rhodopsin fully capable of activating the G protein and being regenerated. It is concluded that the non-active-site lysine residues of rhodopsin are not importantly and directly involved in interactions with the G protein during photolysis. However, this is not to say that they are unimportant in maintaining the tertiary structure of the protein because heavy modification of these residues by succinylation and trinitrophenylation produces proteins incapable of G protein activation, although the succinylated protein still regenerated. The active-site lysine of rhodopsin was readily modified and prevented from regenerating with 11-cis-retinal and with o-salicylaldehyde and o-phthalaldehyde/mercaptoethanol, two sterically similar aromatic aldehyde containing reagents which react by entirely different mechanisms. It is suggested that rhodopsin contains an aromatic binding site within its active-site region. Monoethylation, but not monomethylation, of the active-site lysine also prevented regeneration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Competitive labelling with[14C]acetic anhydride over a range of pH values has been used to explore the surface topography of the apovitellenin I moiety in emu egg yolk low-density lipoprotein. The reaction of the lysine xi-amino groups with acetic anhydride has been related to pH in a set of titration curves; from these, the reactivities relative to alanine and the ionization constants of all but the amino terminal lysines have been determined. All lysines have near normal pKa values around 10, and lower than normal reactivities (except the amino terminal lysine). At pH values above 10, the titration curves show breaks where the epsilon-amino groups become much more reactive, except for lysine 71 which in this regard behaves like a normally ionizing lysine in not showing a discontinuity. Most of the basic residues in this apoprotein may occur clustered at the surface of the molecule. This accounts best for the observed low reactivities and pKa values. The amino terminal lysine residue is presumably completely exposed to the aqueous environment.  相似文献   

6.
A unique resonance in the 13C NMR spectrum of [13C]methylated ribonuclease A has been assigned to a N epsilon, N-dimethylated active site residue, lysine 41. The chemical shift of this resonance was studied over the pH range 3 to 11, and the titration curve showed two inflection points, at pH 5.7 and 9.0. The higher pKa, designated pKa1, was assigned to the ionization of the lysyl residue itself while the pKa of 5.7, designated pKa2, was assigned on the basis of its pKa to the ionization of a histidyl residue which is somehow coupled to lysine 41. Both pKa values are measurably perturbed by the binding of active site ligands including nucleotides, nucleosides, phosphate, and sulfate. In most cases, the alterations in pKa values induced by the ligands were larger for pKa2. The ligand-induced perturbations in pKa2 generally paralleled those reported for histidine 12, another active site residue (Griffin, J. H., Schechter, A. N., and Cohen, J. S. (1973) Ann. N. Y. Acad. Sci. 222, 693-708). The sensitivity of the N epsilon, N-dimethylated lysine 41 resonance to the histidyl ionization may result from a conformational change in the active site region of ribonuclease which is coupled to the histidyl ionization. This coupling between lysine 41 and another ribonuclease residue, which has not been documented previously, offers new insight into the interrelationship between residues in the active site of this well characterized enzyme.  相似文献   

7.
Vertebrate rhodopsin shares with other retinal proteins the 11-cis-retinal chromophore and the light-induced 11-cis/trans isomerization triggering its activation pathway. However, only in rhodopsin the retinylidene Schiff base bond to the apoprotein is eventually hydrolyzed, making a complex regeneration pathway necessary. Metabolic regeneration cannot be short-cut, and light absorption in the active metarhodopsin (Meta) II intermediate causes anti/syn isomerization around the retinylidene linkage rather than reversed trans/cis isomerization. A new deactivating pathway is thereby triggered, which ends in the Meta III "retinal storage" product. Using time-resolved Fourier transform infrared spectroscopy, we show that the identified steps of receptor activation, including Schiff base deprotonation, protein structural changes, and proton uptake by the apoprotein, are all reversed. However, Schiff base reprotonation is much faster than the activating deprotonation, whereas the protein structural changes are slower. The final proton release occurs with pK approximately 4.5, similar to the pK of a free Glu residue and to the pK at which the isolated opsin apoprotein becomes active. A forced deprotonation, equivalent to the forced protonation in the activating pathway, which occurs against the unfavorable pH of the medium, is not observed. This explains properties of the final Meta III product, which displays much higher residual activity and is less stable than rhodopsin arising from regeneration with 11-cis-retinal. We propose that the anti/syn conversion can only induce a fast reorientation and distance change of the Schiff base but fails to build up the full set of dark ground state constraints, presumably involving the Glu(134)/Arg(135) cluster.  相似文献   

8.
Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through 13C and 15N NMR. To our knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by 13C or 15N NMR. Here we extend our 13C NMR studies to PBGS complexes with [3,3-2H2,3-13C]ALA and report 15N NMR studies of [15N]ALA bound to PBGS. As in our previous 13C NMR studies, observation of enzyme-bound 15N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pKa is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent (kexchange greater than 10(2) s-1). For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C4 of ALA and an active-site lysine. The 13C chemical shift of [3,3-2H2,3-13C]ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between [15N]ALA and hydrazine or hydroxylamine, the 15N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation; again the protons are in rapid exchange with solvent. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C4 of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.  相似文献   

9.
The pH optima of family 11 xylanases are well correlated with the nature of the residue adjacent to the acid/base catalyst. In xylanases that function optimally under acidic conditions, this residue is aspartic acid, whereas it is asparagine in those that function under more alkaline conditions. Previous studies of wild-type (WT) Bacillus circulans xylanase (BCX), with an asparagine residue at position 35, demonstrated that its pH-dependent activity follows the ionization states of the nucleophile Glu78 (pKa 4.6) and the acid/base catalyst Glu172 (pKa 6.7). As predicted from sequence comparisons, substitution of this asparagine residue with an aspartic acid residue (N35D BCX) shifts its pH optimum from 5.7 to 4.6, with an approximately 20% increase in activity. The bell-shaped pH-activity profile of this mutant enzyme follows apparent pKa values of 3.5 and 5.8. Based on 13C-NMR titrations, the predominant pKa values of its active-site carboxyl groups are 3.7 (Asp35), 5.7 (Glu78) and 8.4 (Glu172). Thus, in contrast to the WT enzyme, the pH-activity profile of N35D BCX appears to be set by Asp35 and Glu78. Mutational, kinetic, and structural studies of N35D BCX, both in its native and covalently modified 2-fluoro-xylobiosyl glycosyl-enzyme intermediate states, reveal that the xylanase still follows a double-displacement mechanism with Glu78 serving as the nucleophile. We therefore propose that Asp35 and Glu172 function together as the general acid/base catalyst, and that N35D BCX exhibits a "reverse protonation" mechanism in which it is catalytically active when Asp35, with the lower pKa, is protonated, while Glu78, with the higher pKa, is deprotonated. This implies that the mutant enzyme must have an inherent catalytic efficiency at least 100-fold higher than that of the parental WT, because only approximately 1% of its population is in the correct ionization state for catalysis at its pH optimum. The increased efficiency of N35D BCX, and by inference all "acidic" family 11 xylanases, is attributed to the formation of a short (2.7 A) hydrogen bond between Asp35 and Glu172, observed in the crystal structure of the glycosyl-enzyme intermediate of this enzyme, that will substantially stabilize the transition state for glycosyl transfer. Such a mechanism may be much more commonly employed than is generally realized, necessitating careful analysis of the pH-dependence of enzymatic catalysis.  相似文献   

10.
The retinal chromophores of both rhodopsin and bacteriorhodopsin are bound to their apoproteins via a protonated Schiff base. We have employed continuous-flow resonance Raman experiments on both pigments to determine that the exchange of a deuteron on the Schiff base with a proton is very fast, with half-times of 6.9 +/- 0.9 and 1.3 +/- 0.3 ms for rhodopsin and bacteriorhodopsin, respectively. When these results are analyzed using standard hydrogen-deuteron exchange mechanisms, i.e., acid-, base-, or water-catalyzed schemes, it is found that none of these can explain the experimental results. Because the exchange rates are found to be independent of pH, the deuterium-hydrogen exchange can not be hydroxyl (or acid-)-catalyzed. Moreover, the deuterium-hydrogen exchange of the retinal Schiff base cannot be catalyzed by water acting as a base because in that case the estimated exchange rate is predicted to be orders of magnitude slower than that observed. The relatively slow calculated exchange rates are essentially due to the high pKa values of the Schiff base in both rhodopsin (pKa > 17) and bacteriorhodopsin (pKa approximately 13.5). We have also measured the deuterium-hydrogen exchange of a protonated Schiff base model compound in aqueous solution. Its exchange characteristics, in contrast to the Schiff bases of the pigments, is pH-dependent and consistent with the standard base-catalyzed schemes. Remarkably, the water-catalyzed exchange, which has a half-time of 16 +/- 2 ms and which dominates at pH 3.0 and below, is slower than the exchange rate of the Schiff base in rhodopsin and bacteriorhodopsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A visual pigment is composed of retinal bound to its apoprotein by a protonated Schiff base linkage. Light isomerizes the chromophore and eventually causes the deprotonation of this Schiff base linkage at the meta II stage of the bleaching cycle. The meta II intermediate of the visual pigment is the active form of the pigment that binds to and activates the G protein transducin, starting the visual cascade. The deprotonation of the Schiff base is mandatory for the formation of meta II intermediate. We studied the proton binding affinity, pKa, of the Schiff base of both octopus rhodopsin and the gecko cone pigment P521 by spectral titration. Several fluorinated retinal analogs have strong electron withdrawing character around the Schiff base region and lower the Schiff base pKa in model compounds. We regenerated octopus and gecko visual pigments with these fluorinated and other retinal analogs. Experiments on these artificial pigments showed that the spectral changes seen upon raising the pH indeed reflected the pKa of the Schiff base and not the denaturation of the pigment or the deprotonation of some other group in the pigment. The Schiff base pKa is 10.4 for octopus rhodopsin and 9.9 for the gecko cone pigment. We also showed that although the removal of Cl- ions causes considerable blue-shift in the gecko cone pigment P521, it affects the Schiff base pKa very little, indicating that the lambda max of visual pigment and its Schiff base pKa are not tightly coupled.  相似文献   

12.
We consider the problem of color regulation in visual pigments for both bovine rhodopsin (lambda max = 500 nm) and octopus rhodopsin (lambda max = 475 nm). Both pigments have 11-cis-retinal (lambda max = 379 nm, in ethanol) as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 +/- 3000 M-1 cm-1 at 475 nm. The absorption maxima of bovine artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.  相似文献   

13.
R D Calhoon  R R Rando 《Biochemistry》1985,24(12):3029-3034
The stoichiometry of the reaction between [14C]-9-cis-retinoyl fluoride, a close isostere of 9-cis-retinal, and bovine opsin and the biochemical and spectral properties of this new pigment were investigated. The stoichiometry of retinoid incorporation is approximately one in dodecyl maltoside, a detergent in which opsin is capable of regeneration with 11-cis-retinal. Interestingly, in Ammonyx LO, a detergent that does not permit rhodopsin regeneration, the stoichiometry of binding is still approximately one. By contrast, heat-denatured opsin does not irreversibly bind substantial [14C]retinoyl fluoride. This result strongly suggests that the nucleophilicity of the active site lysine is retained in Ammonyx LO but that further conformational changes in the protein, required to form rhodopsin, are not possible. These results are all consistent with an active site directed mechanism for the irreversible reaction of 9-cis-retinoyl fluoride with opsin probably at the active site lysine residue. The ultraviolet spectra of 9-cis-retinoylopsin and its all-trans congener show gamma max's at 373 and 380 nm, respectively, somewhat bathochromically shifted from their respective model N-butylretinamides which absorb at 347 and 351 nm. Photolysis of both 9-cis- and all-trans-retinoylopsins leads to the same photostationary state. This shows that, as expected, photoisomerization without bleaching occurs. The photolysis of either 9-cis- or all-trans-retinoylopsin in the presence of the G protein (transducin) does not lead to the activation of the latter. This is consistent with the notion that a protonated Schiff base is critical for the function of rhodopsin.  相似文献   

14.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

15.
The crystal structure of the staphylococcal nuclease mutant V66K, in which valine 66 is replaced by lysine, has been solved at 1.97 A resolution. Unlike lysine residues in previously reported protein structures, this residue appears to bury its side-chain in the hydrophobic core without salt bridging, hydrogen bonding or other forms of electrostatic stabilization. Solution studies of the free energy of denaturation, delta GH2O, show marked pH dependence and clearly indicate that the lysine residue must be deprotonated in the folded state. V66K is highly unstable at neutral pH but only modestly less stable than the wild-type protein at high pH. The pH dependence of stability for V66K, in combination with similar measurements for the wild-type protein, allowed determination of the pKa values of the lysine in both the denatured and native forms. The epsilon-amine of this residue has a pKa value in the denatured state of 10.2, but in the native state it must be 6.4 or lower. The epsilon-amine is thus deprotonated in the folded molecule. These values enabled an estimation of the epsilon-amine's relative change in free energy of solvation between solvent and the protein interior at 5.1 kcal/mol or greater. This implies that the value of the dielectric constant of the protein interior must be less than 12.8. Lysine is usually found with the methylene groups of its side-chain partly buried but is nevertheless considered a hydrophilic surface residue. It would appear that the high pKa value of lysine, which gives it a positive charge at physiological pH, is the primary reason for its almost exclusive confinement to the surface proteins. When deprotonated, this amino acid type can be fully incorporated into the hydrophobic core.  相似文献   

16.
The pH-dependent kinetics of lysyl oxidase catalysis was examined for evidence of an ionizable enzyme residue which might function as a general base catalyzing proton abstraction previously shown to be a component of the mechanism of substrate processing by this enzyme. Plots of log Vmax/Km for the oxidation of n-hexylamine versus pH yielded pKa values of 7.0 +/- 0.1 and 10.4 +/- 0.1. The higher pKa varied with different substrates, reflecting ionization of the substrate amino group. A van't Hoff plot of the temperature dependence of the lower pKa yielded a value of 6.1 kcal mol-1 for the enthalpy of ionization. This value as well as the pKa of 7.0 are consistent with those of histidine residues previously implicated as general base catalysts in enzymes. Incubation of lysyl oxidase with low concentrations of diethyl pyrocarbonate, a histidine-selective reagent, at 22 degrees C and pH 7.0 irreversibly inhibited enzyme activity by a pseudo first-order kinetic process. The inactivation of lysyl oxidase correlated with spectral and pH-dependent kinetic evidence for the chemical modification of 1 histidine residue/mol of enzyme, the pKa of which was 6.9 +/- 0.1, within experimental error of that seen in the plot of log Vmax/Km versus pH. Enzyme activity was restored by incubation of the modified enzyme with hydroxylamine, consistent with the ability of this nucleophile to displace the carbethoxy group from N-carbethoxyhistidine. The presence of the n-hexylamine substrate largely protected against enzyme inactivation by diethyl pyrocarbonate. These results thus indicate a functional role for histidine in lysyl oxidase catalysis consistent with that of a general base in proton abstraction.  相似文献   

17.
Artificial bovine rhodopsin pigments derived from synthetic retinal analogues carrying electron-withdrawing substituents (fluorine and chlorine) were prepared. The effects of the electron withdrawing substituents on the pKa values of the pigments and on the corresponding Schiff bases in solution were analyzed. The data suggest that the apparent pKa of the protonated Schiff base is above 16. However, the alternative possibility that the retinal Schiff base linkage in bovine rhodopsin is not accessible for titration from the aqueous bulk medium cannot be definitely ruled out.  相似文献   

18.
Retinochrome is a photoisomerase of the invertebrate visual system, which converts all-trans-retinal to the 11-cis configuration and supplies it to visual rhodopsin. In this paper, we studied light-induced structural changes in squid retinochrome by means of low-temperature UV-visible and Fourier transform infrared (FTIR) spectroscopy. In PC liposomes, lumi-retinochrome was stable in the wide temperature range between 77 and 230 K. High thermal stability of the primary intermediate in retinochrome is in contrast to the case in rhodopsins. FTIR spectroscopy suggested that the chromophore of lumi-retinochrome is in a relaxed planar 11-cis form, being consistent with its high thermal stability. The chromophore binding pocket of retinochrome appears to accommodate both all-trans and 11-cis forms without a large distortion, and limited protein structural changes between all-trans and 11-cis chromophores may be suitable for the function of retinochrome as a photoisomerase. The analysis of N-D and O-D stretching vibrations in D(2)O revealed that the hydrogen bond of the Schiff base is weaker in retinochrome than in bovine rhodopsin and bacteriorhodopsin, while retinochrome has a water molecule under strongly hydrogen-bonded conditions (O-D stretch at 2334 cm(-)(1)). The hydrogen bond of the water is further strengthened in lumi-retinochrome. The formation of meta-retinochrome accompanies deprotonation of the Schiff base, together with the peptide backbone alterations of alpha-helices, and possible formation of beta-sheets. It was found that the Schiff base proton is not transferred to its counterion, Glu181, but directly released to the aqueous phase in PC liposomes (pH 7.5). This suggests that the Schiff base environment is exposed to solvent in meta-retinochrome, which may be advantageous for the hydrolysis reaction of the Schiff base in the transport of 11-cis-retinal to its shuttle protein.  相似文献   

19.
The retinylidene Schiff base counterion in bacteriorhodopsin   总被引:9,自引:0,他引:9  
Previous studies of bacteriorhodopsin have indicated interactions between Asp-85, Asp-212, Arg-82, and the retinylidene Schiff base. The counterion environment of the Schiff base has now been further investigated by using single and double mutants of the above amino acids. Chromophore regeneration from bacterioopsin proceeds to a normal extent in the presence of a single aspartate or glutamate residue at position 85 or 212, whereas replacement of both charged amino acids in the mutant Asp-85----Asn/Asp-212----Asn abolishes the binding of retinal. This indicates that a carboxylate group at either residue 85 or 212 is required as counterion for formation and for stabilization of the protonated Schiff base. Measurements of the pKa of the Schiff base reveal reductions of greater than 3.5 units for neutral single mutants of Asp-85 but only decreases of less than 1.2 units for corresponding substitutions of Asp-212, relative to the wild type. Substitutions of Asp-85 show large red shifts in the absorption spectrum that are partially reversible upon addition of anions, whereas mutants of Asp-212 display minor red shifts or blue shifts. We conclude, therefore, that Asp-85 is the retinylidene Schiff base counterion in wild-type bacteriorhodopsin. In the mutant Asp-85----Asn/Asp-212----Asn formation of a protonated Schiff base chromophore is restored in the presence of salts. The spectral properties of the double mutant are similar to those of the acid-purple form of bacteriorhodopsin. Upon addition of salts the folded structure of wild-type and mutant proteins can be stabilized at low pH in lipid/detergent micelles. The data indicate that exogenous anions serve as surrogate counterions to the protonated Schiff base, when the intrinsic counterions have been neutralized by mutation or by protonation.  相似文献   

20.
Glutamic acid at position 113 in bovine rhodopsin ionizes to form the counterion to the protonated Schiff base (PSB), which links the 11-cis-retinylidene chromophore to opsin. Photoactivation of rhodopsin requires both Schiff base deprotonation and neutralization of Glu-113. To better understand the role of electrostatic interactions in receptor photoactivation, absorbance difference spectra were collected at time delays from 30 ns to 690 ms after photolysis of rhodopsin mutant E113Q solubilized in dodecyl maltoside at different pH values at 20 degrees C. The PSB form (pH 5. 5, lambda(max) = 496 nm) and the unprotonated Schiff base form (pH 8. 2, lambda(max) = 384 nm) of E113Q rhodopsin were excited using 477 nm or 355 nm light, respectively. Early photointermediates of both forms of E113Q were qualitatively similar to those of wild-type rhodopsin. In particular, early photoproducts with spectral shifts to longer wavelengths analogous to wild-type bathorhodopsin were seen. In the case of the basic form of E113Q, the absorption maximum of this intermediate was at 408 nm. These results suggest that steric interaction between the retinylidene chromophore and opsin, rather than charge separation, plays the dominant role in energy storage in bathorhodopsin. After lumirhodopsin, instead of deprotonating to form metarhodopsin I(380) on the submillisecond time scale as is the case for wild type, the acidic form of E113Q produced metarhodopsin I(480), which decayed very slowly (exponential lifetime = 12 ms). These results show that Glu-113 must be present for efficient deprotonation of the Schiff base and rapid visual transduction in vertebrate visual pigments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号