首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was found that fructose 1,6-diphosphate, the main intermediate of glycolysis, was able to act as a coenzyme of yeast phosphoglucomutase reaction. The mechanism of the coenzymatic activity of fructose 1,6-diphosphate was studied. It was indicated in the fructose 1,6-diphosphate dependent reaction that glucose 1,6-diphosphate was formed by the phosphate-transfer of fructose 1,6-diphosphate to glucose 1-phosphate in the first step, and in the second step the conversion of glucose 1-phosphate to glucose 6-phosphate, the original mutase reaction, occurred in the presence of glucose 1,6-diphosphate. The kinetic constants in the reaction of the first step were determined from the time courses of the fructose 1,6-diphosphate dependent reaction.  相似文献   

2.
6-Phosphofructo-1-kinase and fructose-1,6-bisphosphatase are rate-limiting enzymes for glycolysis and gluconeogenesis respectively, in the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver. The effect of ribose 1,5-bisphosphate on the enzymes was investigated. Ribose 1,5-bisphosphate synergistically relieved the ATP inhibition and increased the affinity of liver 6-phosphofructo-1-kinase for fructose 6-phosphate in the presence of AMP. Ribose 1,5-bisphosphate synergistically inhibited fructose-1,6-bisphosphatase in the presence of AMP. The activating effect on 6-phosphofructo-1-kinase and the inhibitory effect on fructose-1,6-bisphosphatase suggest ribose 1,5-bisphosphate is a potent regulator of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle in the liver.  相似文献   

3.
Four kinds of the enzyme reactions have been reported for the synthesis of Glc-1,6-P2. However, any activity of Glc-1-P dismutase and phosphoglucokinase was not observed in the beef liver homogenate. When the liver homogenate was incubated with Glc-1-P and Fru-1,6-P2, a significant amount of Glc-1,6-P2 was formed. The Glc-1,6-P2 synthesis activity from Glc-1-P and Fru-1,6-P2 was caused by the action of phosphoglucomutase present in the liver homogenate. The most remarkable activity for Glc-1,6-P2 synthesis was observed when the homogenate was incubated with Glc-1-P and glycerate-1,3-P2. The Glc-1,6-P2 synthesis activity from Glc-1-P and glycerate-1,3-P2 was separated from the major peak of phosphoglucomutase activity by DEAE-Sephadex chromatography. The peak of Glc-1,6-P2 synthesis activity, however, still retained phosphoglucomutase activity.

Glc-1,6-P2 phosphatase activity was mainly observed in the mitochondria and microsome fraction. The properties of Glc-1,6-P2 phosphatase were differentiated from those of acid phosphatase and Glc-6-P phosphatase.  相似文献   

4.
Glycogen debranching enzyme (GDE) has two enzymatic activities, 4-alpha-glucanotransferase and amylo-alpha-1,6-glucosidase. Products with 6-O-alpha-glucosyl structures formed from phosphorylase limit dextrin by the 4-alpha-glucanotransferase activity are hydrolyzed to glucose by the amylo-alpha-1,6-glucosidase activity. Here, we probed the active site of amylo-alpha-1,6-glucosidase in porcine liver GDE using various 6-O-alpha-glucosyl-pyridylamino (PA)-maltooligosaccharides, with structures (Glcalpha1-4)(m)(Glcalpha1-6)Glcalpha1-4(Glcalpha1-4)(n)GlcPA (GlcPA, 1-deoxy-1-[(2-pyridyl)amino]-D-glucitol residue). Fluorogenic dextrins were prepared from 6-O-alpha-glucosyl-alpha-, beta-, or gamma-cyclodextrin through partial acid hydrolysis, followed by fluorescent tagging of the reducing-end residues of the hydrolysates and separation by gel filtration and reversed-phase HPLC. Porcine liver GDE hydrolyzed dextrins with the structure Glcalpha1-4(Glcalpha1-6)Glcalpha1-4Glc to glucose and the corresponding PA-maltooligosaccharides, whereas other dextrins were not hydrolyzed. Thus, substrates must have two glucosyl residues sandwiching the isomaltosyl moiety to be hydrolyzed. The rate of hydrolysis increased as m increased and reached maximum at m = 4. The rates were the highest when n = 1 but did not vary much with changes in n. Of the dextrins examined, Glcalpha1-4Glcalpha1-4Glcalpha1-4Glcalpha1-4(Glcalpha1-6)Glcalpha1-4Glcalpha1-4GlcPA (6(3)-O-alpha-glucosyl-PA-maltoheptaose) was hydrolyzed most rapidly, suggesting that it fits the best in the amylo-alpha-1,6-glucosidase active site. It is likely that the active site accommodates 6(2)-O-alpha-glucosyl-maltohexaose and that the interactions of seven glucosyl residues with the active site allow the most rapid hydrolysis of the alpha-1,6-glucosidic linkage of the isomaltosyl moiety.  相似文献   

5.
Summary Two methods to determine fructose-1,6-diphosphatase activity histochemically were tested on liver, intestine, skeletal muscle and heart of rats. Using lead ions to precipitate inorganic phosphate, according to Wachstein and Meisel, the addition of the specific inhibitor adenosine monophosphate caused an increase of phosphate precipitation. Therefore this method is often not suitable. A coupled assay, used to detect fructose-6-phosphate formed after conversion to glucose-6-phosphate (which in its turn may reduce tetrazolium dyes in the glucose-6-phosphate dehydrogenase reaction), was found to be satisfactory in liver to demonstrate specific fructose-1,6-diphosphatase activity, since adenosine monophosphate was strongly inhibitory. In intestine acid- and alkaline phosphatases, however, were found to interfere. In the latter organ, added adenosine monophosphate itself strongly stimulates formazan formation, which is probably due to high xanthine oxidase activity.In muscle, where a high aldolase activity is present, monoiodoacetate must be included in the incubation medium. Since fructose-1,6-diphosphatase activity in muscle is low compared with that of liver, the results obtained with muscle are often difficult to interpret.  相似文献   

6.
Rabbit liver fructose-1,6-bisphosphatase, a tetramer of identical subunits was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The second-order rate constant for the inactivation was 30 M-1s-1. Fructose-1,6-bisphosphatase was completely protected from inactivation by the substrate--fructose-1,6-diphosphate but not by the allosteric effector--adenosine monophosphate. The absorption spectrum (lambda max 337 nm) and, fluorescence excitation (lambda max 360 nm) and fluorescence emission spectra (lambda max 405 nm) were consistent with the formation of an isoindole derivative in the subunit between a cysteine and a lysine residue about 3A apart. About 4 isoindole groups per mol of the bisphosphatase were formed following complete loss of the phosphatase activity. This suggests that the amino acid residues of the biphosphatase participating in reaction with o-phthalaldehyde more likely reside at or near the active site instead of allosteric site. The molar transition energy of fructose-1,6-bisphosphatase--o-phthalaldehyde adduct was estimated 121 kJ/mol and compares favorably with 127 kJ/mol for the synthetic isoindole, 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl) isoindole in hexane. It is, thus, concluded that the cysteine and lysine residues participating in isoindole formation in reaction between fructose-1,6-bisphosphatase and o-phthalaldehyde are located in a hydrophobic environment.  相似文献   

7.
Fructose 1,6-bisphosphatase and glucose 6-phosphatase were induced in organ cultures of liver tissues from 15- and 19-day-old fetal mice, using a culture method that allowed the tissues to be maintained for 7 days in the absence of serum. In cultures from 15-day-old fetal liver, both enzyme activities increased significantly per milligram of DNA after a lag period of 1 to 3 days. In cultures from 19-day-old fetal liver only glucose 6-phosphatase increased in the absence of inducer. N6,O2'-Dibutyryladenosine 3',5'-monophosphate enhanced the rate of increase in fructose 1,6-bisphosphatase and glucose 6-phosphatase activities. The minimum effective concentration of the cyclic nucleotide was approximately 10(-6) M. Dexamethazone inhibited the increase in fructose 1,6-bisphosphatase during culture for 7 days. Glucose 6-phosphatase activity was enhanced by dexamethazone in cultures from 19-day-old fetal liver, but was without effect on glucose 6-phosphatase in cultures from 15-day-old fetal liver. The minimum inhibitory concentration of dexamethazone was less than 10(-8) M. The results suggest a complicated effect of the cyclic nucleotide on the two enzymes in fetal mouse liver as well as different mechanisms of action of dexamethazone on the induction of two enzymes.  相似文献   

8.
1. Fructose 1,6-bisphosphatase was assayed in crude extracts of physiologically important organs and tissues in the ostrich. 2. Highest activity was found in liver and lowest in brain tissue. 3. No activity was detected in the heart, gizzard or adrenals. 4. The enzyme was purified in homogeneous, apparently undegraded form from liver utilizing Blue dextran-Sepharose affinity chromatography. 5. The enzyme is similar to mammalian fructose 1,6-bisphosphatase in many respects including its indispensability of Mg2+ for catalytic activity. 6. Relative molecular weight of the native enzyme and its subunit is about 150,000 and 35,000 respectively. 7. The amino acid composition of ostrich liver fructose 1,6-bisphosphatase is distinctly different from that of the chicken muscle enzyme, but compares favourably with the composition of the rabbit liver enzyme. 8. The purified enzyme is devoid of tryptophan.  相似文献   

9.
The localization of fructose-1,6-bisphosphatase (Fru-1,6-Pase EC 3.1.3.11) in human alveolar epithelium was determined immunohistochemically using a polyclonal antibody raised against the enzyme purified from human liver. The immunohistochemical analysis revealed that the Fru-1,6-Pase was localized in pneumocytes II and was absent in pneumocytes I. Hypothetically Fru-1,6-Pase participating in glucose-6-phosphate synthesis from noncarbohydrate precursors increases NADPH level which is used for surfactant synthesis and for glutathione redox cycle.  相似文献   

10.
1. The method proposed by Rognstad & Katz [(1976) Arch, Biochem, Biophys, 177, 337-345] for the determination of the fructose 6-phosphate/fructose 1,6-bisphosphate cycle by the randomization of carbon between C-1 and C-6 of glucose glucose formed from [1-14C] galactose was applied to anaesthetized rats and conscious mice. 2. It was checked that the hydrolysis of fructose 6-phosphate by glucose 6-phosphatase is too weak to invalidate the method. The participation of the Cori cycle in the randomization was negligible within the short experimental period used (2-4 min). 3. No detectable randomization of carbon was observed in starved animals, indicating that phosphofructokinase is inactive in this experimental condition. 4. Randomization of carbon was detected as soon as 1 min after administration of [1-14C] galactose to fed animals and was maximal at about 3-4 min. It was calculated that on average 15% of the glucose formed by the liver to fed rats was recycled through the triose phosphates. The extent of cycling was quite variable. Recycling was also observed in starved rats in which glucose had been administered intravenously 10 min previously. In these animals, recycling was completely inhibited by glucagon. 5. The main factors that appear to be responsible for the very large changes in recycling observed in various experimental conditions are the concentrations of fructose 1,6-bisphosphate and of fructose 6-phosphate and also the affinity of phosphofructokinase for fructose 6-phosphate. The concentration of nucleotides does not seem to play a role.  相似文献   

11.
1. Dietary excess histidine caused an increase in the total activity of fructose 1,6-bisphosphatase, and a decrease in 6-phosphofructokinase in the liver. 2. The hepatic concentrations of free histidine and lysine were higher in rats fed a histidine-excess diet. 3. The addition of histidine, lysine or arginine to the assay mixture for fructose 1,6-bisphosphatase resulted in a significant increase in its activity. The 6-phosphofructokinase activity in the liver was not enhanced by the addition of histidine to the assay mixture.  相似文献   

12.
Glucose 1,6-biphosphate (G1,6P2) was measured in human, pig, cow, rabbit, rat and sheep red blood cells. Mean values are variable among the species and range from 33 to 122 nmol/ml RBC for pig and rabbit erythrocytes, respectively. The activities of G1,6P2 synthase, phosphoglucomutase (PGM) and phosphoribomutase (PRM) have also been assayed in red cell haemolysates of the same species. The correlations between the biphosphate content and the occurrence of the three enzymatic activities have been studied in order to gain an insight into the regulation of the G1,6P2 turnover in mammalian erythrocytes.  相似文献   

13.
Naught LE  Tipton PA 《Biochemistry》2005,44(18):6831-6836
The interconversion of glucose 1-phosphate and glucose 6-phosphate, catalyzed by Pseudomonas aeruginosa phosphomannomutase/phosphoglucomutase, has been studied by transient-state kinetic techniques. Glucose 1,6-bisphosphate is formed as an intermediate in the reaction, but an obligatory step in the catalytic cycle appears to be the formation of an enzyme-glucose 1,6-bisphosphate complex that is not competent to form either glucose 1-phosphate or glucose 6-phosphate directly. We suggest that during the lifetime of this complex the glucose 1,6-bisphosphate intermediate undergoes the 180 degrees reorientation that is required for completion of the catalytic cycle. The formation of glucose 1,6-bisphosphate from glucose 1-phosphate is in rapid equilibrium relative to the rest of the reaction, where K(eq) = 0.14. In the opposite direction, glucose 1,6-bisphosphate is formed from glucose 6-phosphate with a rate constant of 12 s(-)(1), and the reverse step occurs with a rate constant of 255 s(-)(1). The interconversion of the productive and nonproductive glucose 1,6-bisphosphate complexes occurs with a rate constant of 64 s(-)(1) in one direction and 48 s(-)(1) in the other direction. Glucose 1,6-bisphosphate remains associated with the enzyme during reorientation. Isotope trapping studies indicate that it partitions to form glucose 1-phosphate or glucose 6-phosphate 14.3 times more frequently than it dissociates from the enzyme.  相似文献   

14.
The occurrence of specific fructose-1,6-bisphosphatase [D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11] (Fru-1,6-P2ase) in the small intestine was confirmed. 1. Fru-1,6-P2ase was isolated from mouse small intestine by a simple method. The isolated enzyme preparation was an electrophoretically homogeneous protein. 2. The molecular weight and subunit molecular weight were 140,000 and 38,000, respectively. 3. The intestinal enzyme was electrophoretically distinct from the liver enzyme. 4. The kinetic properties of the purified intestinal enzyme were compared with those of the mouse liver and muscle enzymes. 5. Mouse intestinal and muscle Fru-1,6-P2ases hydrolyzed ribulose-1,5-bisphosphate in addition to fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate.  相似文献   

15.
Three distinct lines of evidence suggest interaction and possible complex formation between fructose 1,6-biphosphate aldolase (EC 4.1.2.13) and fructose 1,6-biphosphatase (EC 3.1.3.11) from rabbit liver. (1) Fructose 1,6-biphosphatase, which does not contain tryptophan, causes changes in the fluorescence emission spectrum of tryptophan in rabbit liver aldolase. (2) Aldolase reduces the affinity of binding of Zn2+ to the two high-affinity sites of fructose 1,6-biphosphatase. (3) Gel penetration coefficients are decreased for both enzymes when they are tested together, as compared to the coefficients observed when each is tested separately. These interactions were not observed when either liver enzyme was replaced by the corresponding enzyme purified from rabbit muscle; this specificity for enzymes purified from the same tissue excludes effects attributable to the catalytic activities of the enzyme. Maximum interaction was observed in the pH range between 8.0 and 8.5 and appeared to require the presence of two fructose 1,6-biphosphatase tetramers per tetramer of aldolase. The change in fluorescence emission spectrum was also observed, to a smaller extent, when muscle fructose 1,6-biphosphatase was added to a solution of muscle aldolase.  相似文献   

16.
Characterization of rat muscle fructose 1,6-bisphosphatase   总被引:1,自引:0,他引:1  
Fructose 1,6-bisphosphatase has been purified from rat muscle. Although the specific activity of the enzyme in the crude extract of rat muscle was extremely low, purification by the present procedure is highly reproducible. The purified enzyme showed a single band in SDS-polyacrylamide gel electrophoresis. The subunit molecular weight of the muscle enzyme was 37,500 in contrast to 43,000 in the case of the liver enzyme. Immunoreactivity of the muscle enzyme to anti-muscle and anti-liver fructose 1,6-bisphosphatase sera was clearly distinct from that of the liver enzyme. All one-dimensional peptide mappings of the muscle enzyme with staphylococcal V8 protease, chymotrypsin, and papain showed different patterns from those of the liver enzyme. When incubated with subtilisin, the extent of activation of muscle fructose 1,6-bisphosphatase at pH 9.1 was smaller than that of the liver enzyme. The subtilisin digestion pattern of the muscle enzyme on SDS-polyacrylamide gel electrophoresis was distinct from that of the liver enzyme. The AMP-concentration giving 50% inhibition of the muscle enzyme was 0.54 microM, whereas that of the liver enzyme was 85 microM. The concentrations of fructose 2,6-bisphosphate that gave 50% inhibition of rat muscle and liver enzymes were 6.3 and 1.5 microM, respectively. Fructose 1,6-bisphosphatase protein was not detected in soleus muscle by immunoelectroblotting with anti-muscle fructose 1,6-bisphosphatase serum.  相似文献   

17.
Rat and rabbit muscle fructose 1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) are inhibited by fructose 2,6-bisphosphate. In contrast with the liver isozyme, the inhibition of muscle fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is not synergistic with that of AMP. Activation of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate has been observed at high concentrations of substrate. An attempt is made to correlate changes in concentrations of hexose monophosphate, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate with changes in fluxes through 6-phosphofructokinase and fructose-1,6-bisphosphatase in isolated epitrochlearis muscle challenged with insulin and adrenaline.  相似文献   

18.
Human liver fructose-1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) has been purified 1200-fold using a heat treatment step followed by absorption on phosphocellulose at pH 8 and specific elution with buffer containing the substrate (fructose 1,6-bisphosphate) and allosteric effector (AMP). The enzyme is homogeneous in electrophoresis in polyacrylamide gel, in the presence and absence of denaturing agent. It has a molecular weight of 144 000 and is composed of four identical or nearly identical subunits. Fluorescence spectra indicate that the enzyme does not contain tryptophan residues. The pH optimum is 7.5 and the Km is determined as 0.8 microM. The enzyme is inhibited by AMP in cooperative manner with a K0 x 5 of 6 microM.  相似文献   

19.
Human erythrocytes overloaded with glucose 1,6-bisphosphate were prepared in order to establish the metabolic significance of this phosphorylated sugar in the intact red cell. The intracellular glucose 1,6-bisphosphate concentration was increased six- and twofold over the normal level by encapsulating (i) the commercially available compound and (ii) the glucose 1,6-bisphosphate synthase obtained from rabbit skeletal muscle, respectively. In both experimental conditions, a reduction of glucose utilization by the loaded cells was observed after reequilibration to the steady state. At the steady state, the concentrations of the glycolytic intermediates and of the adenine nucleotides appeared substantially unmodified when compared with those of controls, with the exception of a 50% reduction of glucose and fructose 6-phosphate measured in erythrocytes encapsulated with exogenous glucose 1,6-bisphosphate. Under the considered experimental conditions, the elevated intracellular glucose 1,6-bisphosphate appears to display an inhibitory effect on hexokinase that overcomes the possible activation of phosphofructokinase or pyruvate kinase.  相似文献   

20.
Nucleoside 5'-triphosphates, 5'-diphosphates and 5'-monophosphates are inhibitors of the 6-phosphogluconate dehydrogenase enzyme from bass liver. The 2'- and 3'-monophosphates of adenosine and guanosine are also inhibitory, the 2'-isomers being especially potent inhibitors. The catalytic activity of 6-phosphogluconate dehydrogenase has been found to be markedly inhibited by fructose 1, 6 bisphosphate. As the Km for 6-phosphogluconate, the Ki for fructose 1,6 bisphosphate and the concentration of both compounds in bass liver are all comparable, it appears that the inhibition of 6-phosphogluconate dehydrogenase by fructose 1,6 bisphosphate may be of significance in the regulation of carbohydrate metabolism in bass liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号