首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A previous study of the T442S mutant Shaker channel revealed activation-coupled subconductance levels that apparently represent kinetic intermediates in channel activation (Zheng, J., and F.J. Sigworth. 1997. J. Gen. Physiol. 110:101–117). We have now extended the study to heteromultimeric channels consisting of various numbers of mutant subunits as well as channels without mutant subunits, all in the background of a chimeric Shaker channel having increased conductance. It has been found that activation-coupled sublevels exist in all these channel types, and are traversed in at least 80% of all deactivation time courses. In symmetric K+ solutions, the currents in the two sublevels have a linear voltage dependence, being 23–44% and 54–70% of the fully open conductance. Sublevels in different channel types share similar voltage dependence of the mean lifetime and similar ion selectivity properties. However, the mean lifetime of each current level depends approximately geometrically on the number of mutant subunits in the channel, becoming shorter in channels having fewer mutant subunits. Each mutant subunit appears to stabilize all of the conducting states by ∼0.5 kcal/mol. Consistent with previous results in the mutant channel, sublevels in channels with two or no mutant subunits also showed ion selectivities that differ from that of the fully open level, having relatively higher K+ than Rb+ conductances. A model is presented in which Shaker channels have two coupled activation gates, one associated with the selectivity filter and a second associated with the S6 helix bundle.  相似文献   

2.
The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that is CSQ2 independent and does not distinguish between luminal Ca2+ and Mg2+. This mechanism modulates the maximal efficacy of cytosolic Ca2+ activation. The second luminal Ca2+ regulatory mechanism is CSQ2 dependent and distinguishes between luminal Ca2+ and Mg2+. It does not depend on CSQ2 oligomerization or CSQ2 monomer Ca2+ binding affinity. The key Ca2+-sensitive step in this mechanism may be the Ca2+-dependent CSQ2 interaction with triadin. The CSQ2-dependent mechanism alters the cytosolic Ca2+ sensitivity of the channel. The R33Q CSQ2 mutant can participate in luminal RyR2 Ca2+ regulation but less effectively than wild-type (WT) CSQ2. CSQ2-L167H does not participate in luminal RyR2 Ca2+ regulation. The disparate actions of these two catecholaminergic polymorphic ventricular tachycardia (CPVT)-linked mutants implies that either alteration or elimination of CSQ2-dependent luminal RyR2 regulation can generate the CPVT phenotype. We propose that the RyR2-resident, CSQ2-independent luminal Ca2+ mechanism may assure that all channels respond robustly to large (>5 muM) local cytosolic Ca2+ stimuli, whereas the CSQ2-dependent mechanism may help close RyR2 channels after luminal Ca2+ falls below approximately 0.5 mM.  相似文献   

3.
Voltage-dependent K+ channels like Shaker use an intracellular gate to control ion flow through the pore. When the membrane voltage becomes more positive, these channels traverse a series of closed conformations before the final opening transition. Does the intracellular gate undergo conformational changes before channel opening? To answer this question we introduced cysteines into the intracellular end of the pore and studied their chemical modification in conditions favoring each of three distinct states, the open state, the resting closed state, and the activated-not-open state (the closed state adjacent to the open state). We used two independent ways to isolate the channels in the activated-not-open state. First, we used mutations in S4 (ILT; Smith-Maxwell, C.J., J.L. Ledwell, and R.W. Aldrich. 1998. J. Gen. Physiol. 111:421–439; Ledwell, J.L., and R.W. Aldrich. 1999. J. Gen. Physiol. 113:389–414) that separate the final opening step from earlier charge-movement steps. Second, we used the open channel blocker 4-aminopyridine (4-AP), which has been proposed to promote closure of the intracellular gate and thus specifically to stabilize the activated-not-open state of the channels. Supporting this proposed mechanism, we found that 4-AP enters channels only after opening, remaining trapped in closed channels, and that in the open state it competes with tetraethylammonium for binding. Using these tools, we found that in the activated-not-open state, a cysteine located at a position considered to form part of the gate (Shaker 478) showed higher reactivity than in either the open or the resting closed states. Additionally, we have found that in this activated state the intracellular gate continued to prevent access to the pore by molecules as small as Cd2+ ions. Our results suggest that the intracellular opening to the pore undergoes some rearrangements in the transition from the resting closed state to the activated-not-open state, but throughout this process the intracellular gate remains an effective barrier to the movement of potassium ions through the pore.  相似文献   

4.
Calcium signaling in myocytes is dependent on the cardiac ryanodine receptor (RyR2) calcium release channel and the calcium buffering protein in the sarcoplasmic reticulum, cardiac calsequestrin (CSQ2). The overall properties of CSQ2 and its regulation of RyR2 have not been explored in detail or directly compared with skeletal CSQ1 and its regulation of the skeletal RyR1, with physiological ionic strength and Ca2+ concentrations. We find that there are major differences between the two isoforms under these physiological conditions. Ca2+ binding to CSQ2 is 50% lower than to CSQ1. Only ~30% of CSQ2 is bound to cardiac junctional face membrane (JFM), compared with ~70% of CSQ1 and the ratio of CSQ2 to RyR2 is only 50% of the CSQ1/RyR1 ratio. Chemical crosslinking shows that CSQ2 is mostly monomer/dimer, while CSQ1 is mostly polymerized. In single channel lipid bilayer experiments, CSQ2 monomers and/or dimers increase the open probability of both RyR1 and RyR2 channels, while CSQ1 polymers decrease the activity of RyR1. We speculate that CSQ2 facilitates high rates of Ca2+ release through RyR2 during systole, while CSQ1 curtails RyR1 opening in response to a single action potential to maintain Ca2+ and allow repeated Ca2+ release and graded activation with increased stimulation frequency.  相似文献   

5.
Arrhythmogenic point mutations in RyR2 result in abnormal Ca(2+) release following cardiac stimulation, leading to sudden cardiac death (SCD). Recently, we have demonstrated that significant functional differences exist between SCD-linked RyR2 mutations. Here, we investigated the molecular basis of this heterogeneity and determined the sensitivity of mutant RyR2 channels to cytoplasmic [Ca(2+)] ([Ca(2+)](c)) in living cells. Using streptolysin-O permeabilised human embryonic kidney cells, [Ca(2+)](c) was clamped in cells expressing GFP-tagged wild-type (WT) or SCD-linked RyR2 mutants (L(433)P, N(2386)I, and R(176)Q/T(2504)M). Although resting [Ca(2+)](c) was comparable in all cells, RyR2 mutants were characterised by a profound loss of Ca(2+)-dependent inhibition following caffeine stimulation when compared with WT channels. The ER Ca(2+) store was not perturbed in these experiments. Our findings support the hypothesis that SCD-linked mutational loci may be an important mechanistic determinant of RyR2 dysfunction and indicate that there is unlikely to be a unifying mechanism for channel dysfunction in SCD.  相似文献   

6.
Age-related loss of muscle mass and force (sarcopenia) contributes to disability and increased mortality. Ryanodine receptor 1 (RyR1) is the skeletal muscle sarcoplasmic reticulum calcium release channel required for muscle contraction. RyR1 from aged (24?months) rodents was oxidized, cysteine-nitrosylated, and depleted of the channel-stabilizing subunit calstabin1, compared to RyR1 from younger (3-6?months) adults. This RyR1 channel complex remodeling resulted in "leaky" channels with increased open probability, leading to intracellular calcium leak in skeletal muscle. Similarly, 6-month-old mice harboring leaky RyR1-S2844D mutant channels exhibited skeletal muscle defects comparable to 24-month-old wild-type mice. Treating aged mice with S107 stabilized binding of calstabin1 to RyR1, reduced intracellular calcium leak, decreased reactive oxygen species (ROS), and enhanced tetanic Ca(2+) release, muscle-specific force, and exercise capacity. Taken together, these data indicate that leaky RyR1 contributes to age-related loss of muscle function.  相似文献   

7.
Activation of the cardiac ryanodine receptor (RyR2) by Ca(2)+ is an essential step in excitation-contraction coupling in heart muscle. However, little is known about the molecular basis of activation of RyR2 by Ca(2)+. In this study, we investigated the role in Ca(2)+ sensing of the conserved glutamate 3987 located in the predicted transmembrane segment M2 of the mouse RyR2. Single point mutation of this conserved glutamate to alanine (E3987A) reduced markedly the sensitivity of the channel to activation by Ca(2)+, as measured by using single-channel recordings in planar lipid bilayers and by [(3)H]ryanodine binding assay. However, this mutation did not alter the affinity of [(3)H]ryanodine binding and the single-channel conductance. In addition, the E3987A mutant channel was activated by caffeine and ATP, was inhibited by Mg(2)+, and was modified by ryanodine in a fashion similar to that of the wild-type channel. Coexpression of the wild-type and mutant E3987A RyR2 proteins in HEK293 cells produced individual single channels with intermediate sensitivities to activating Ca(2)+. These results are consistent with the view that glutamate 3987 is a major determinant of Ca(2)+ sensitivity to activation of the mouse RyR2 channel, and that Ca(2)+ sensing by RyR2 involves the cooperative action between ryanodine receptor monomers. The results of this study also provide initial insights into the structural and functional properties of the mouse RyR2, which should be useful for studying RyR2 function and regulation in genetically modified mouse models.  相似文献   

8.
Calmodulin (CaM) is a ubiquitous Ca2+-binding protein that regulates the ryanodine receptors (RyRs) by direct binding. CaM inhibits the skeletal muscle ryanodine receptor (RyR1) and cardiac muscle receptor (RyR2) at >1 microm Ca2+ but activates RyR1 and inhibits RyR2 at <1 microm Ca2+. Here we tested whether CaM regulates RyR2 by binding to a highly conserved site identified previously in RyR1. Deletion of RyR2 amino acid residues 3583-3603 resulted in background [35S]CaM binding levels. In single channel measurements, deletion of the putative CaM binding site eliminated CaM inhibition of RyR2 at Ca2+ concentrations below and above 1 microm. Five RyR2 single or double mutants in the CaM binding region (W3587A, L3591D, F3603A, W3587A/L3591D, L3591D/F3603A) eliminated or greatly reduced [35S]CaM binding and inhibition of single channel activities by CaM depending on the Ca2+ concentration. An RyR2 mutant, which assessed the effects of 4 amino acid residues that differ between RyR1 and RyR2 in or flanking the CaM binding domain, bound [35S]CaM and was inhibited by CaM, essentially identical to wild type (WT)-RyR2. Three RyR1 mutants (W3620A, L3624D, F3636A) showed responses to CaM that differed from corresponding mutations in RyR2. The results indicate that CaM regulates RyR1 and RyR2 by binding to a single, highly conserved CaM binding site and that other RyR type-specific sites are likely responsible for the differential functional regulation of RyR1 and RyR2 by CaM.  相似文献   

9.
10.
S-Adenosyl-l-methionine (SAM) is the biological methyl-group donor for the enzymatic methylation of numerous substrates including proteins. SAM has been reported to activate smooth muscle derived ryanodine receptor calcium release channels. Therefore, we examined the effects of SAM on the cardiac isoform of the ryanodine receptor (RyR2). SAM increased cardiac sarcoplasmic reticulum [3H]ryanodine binding in a concentration-dependent manner by increasing the affinity of RyR2 for ryanodine. Activation occurred at physiologically relevant concentrations. SAM, which contains an adenosine moiety, enhanced ryanodine binding in the absence but not in the presence of an ATP analogue. S-Adenosyl-l-homocysteine (SAH) is the product of the loss of the methyl-group from SAM and inhibits methylation reactions. SAH did not activate RyR2 but did inhibit SAM-induced RyR2 activation. SAH did not alter adenine nucleotide activation of RyR2. These data suggest SAM activates RyR2 via a site that interacts with, but is distinct from, the adenine nucleotide binding site.  相似文献   

11.
Ca(2+) release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca(2+) to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation-contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca(2+) release during excitation-contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca(2+) release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca(2+) release during excitation-contraction coupling in skeletal muscle.  相似文献   

12.
Flecainide blocks ryanodine receptor type 2 (RyR2) channels in the open state, suppresses arrhythmogenic Ca2+ waves and prevents catecholaminergic polymorphic ventricular tachycardia (CPVT) in mice and humans. We hypothesized that differences in RyR2 activity induced by CPVT mutations determines the potency of open-state RyR2 blockers like flecainide (FLEC) and R-propafenone (RPROP) against Ca2+ waves in cardiomyocytes. Using confocal microscopy, we studied Ca2+ sparks and waves in isolated saponin-permeabilized ventricular myocytes from two CPVT mouse models (Casq2-/-, RyR2-R4496C+/-), wild-type (c57bl/6, WT) mice, and WT rabbits (New Zealand white rabbits). Consistent with increased RyR2 activity, Ca2+ spark and wave frequencies were significantly higher in CPVT compared to WT mouse myocytes. We next obtained concentration-response curves of Ca2+ wave inhibition for FLEC, RPROP (another open-state RyR2 blocker), and tetracaine (TET) (a state-independent RyR2 blocker). Both FLEC and RPROP inhibited Ca2+ waves with significantly higher potency (lower IC50) and efficacy in CPVT compared to WT. In contrast, TET had similar potency in all groups studied. Increasing RyR2 activity of permeabilized WT myocytes by exposure to caffeine (150 µM) increased the potency of FLEC and RPROP but not of TET. RPROP and FLEC were also significantly more potent in rabbit ventricular myocytes that intrinsically exhibit higher Ca2+ spark rates than WT mouse ventricular myocytes. In conclusion, RyR2 activity determines the potency of open-state blockers FLEC and RPROP for suppressing arrhythmogenic Ca2+ waves in cardiomyocytes, a mechanism likely relevant to antiarrhythmic drug efficacy in CPVT.  相似文献   

13.
Ryanodine receptor types 1 (RyR1) and 2 (RyR2) are calcium release channels that are highly enriched in skeletal and cardiac muscle, respectively, where they play an essential role in excitation-contraction coupling. Apocalmodulin (apo-CaM) weakly activates RyR1 but inhibits RyR2, whereas Ca(2+)-calmodulin inhibits both isoforms. Previous cryo-EM studies showed distinctly different binding locations on RyR1 for the two states of CaM. However, recent studies employing FRET appear to challenge these findings. Here, using cryo-EM, we have determined that a CaM mutant that is incapable of binding calcium binds to RyR1 at the apo site, regardless of the calcium concentration. We have also re-determined the location of RyR1-bound Ca(2+)-CaM using uniform experimental conditions. Our results show the existence of the two overlapping but distinct binding sites for CaM in RyR1 and imply that the binding location switch is due to Ca(2+) binding to CaM, as opposed to direct effects of Ca(2+) on RyR1. We also discuss explanations that could resolve the apparent conflict between the cryo-EM and FRET results. Interestingly, apo-CaM binds to RyR2 at a similar binding location to that of Ca(2+)-CaM on RyR1, in seeming agreement with the inhibitory effects of these two forms of CaM on their respective receptors.  相似文献   

14.
Diffusion of cardiac ryanodine receptors (RyR2) in lipid bilayers was characterized. RyR2 location was monitored by imaging fluo-3 fluorescence due to Ca2+ flux through RyR2 channels or fluorescence from RyR2 conjugated with Alexa 488 or containing green fluorescent protein. Single channel currents were recorded to ensure that functional channels were studied. RyR2 exhibited an apparent diffusion coefficient (DRyR) of 1.2 × 10−8 cm2 s−1 and a mean path length of 5.0 μm. Optimal use of optical methods for analysis of RyR2 channel function requires that RyR2 diffusion be limited. Therefore, we tested the effect of annexin 12, which interacts with anionic phospholipids in a Ca2+-dependent manner. Addition of annexin 12 (0.25–4.0 μM) to the trans side of bilayers containing an 80:20 ratio of phosphatidylethanolamine/phosphatidylserine decreased RyR2 diffusion in a concentration-dependent manner. Annexin 12 (2 μM) decreased the apparent DRyR 683-fold from 1.2–10−8 to 1.8 × 10−11 cm2 s−1 and the mean path length 10-fold from 5.0 to 0.5 μm without obvious changes in the conductance of the native bilayer or in activation of RyR2 channels by Ca2+ or suramin. Thus, annexin 12 may provide a useful tool for optimizing optical analysis of RyR2 channels in lipid bilayers.  相似文献   

15.
Skeletal muscle excitation-contraction coupling involves activation of homotetrameric ryanodine receptor ion channels (RyR1s), resulting in the rapid release of Ca(2+) from the sarcoplasmic reticulum. Previous work has shown that Ca(2+) release is impaired by mutations in RyR1 linked to Central Core Disease and Multiple Minicore Disease. We studied the consequences of these mutations on RyR1 function, following their expression in human embryonic kidney 293 cells and incorporation in lipid bilayers. RyR1-G4898E, -G4898R, and -DeltaV4926/I4927 mutants in the C-terminal pore region of RyR1 and N-terminal RyR1-R110W/L486V mutant all showed negligible Ca(2+) permeation and loss of Ca(2+)-dependent channel activity but maintained reduced K(+) conductances. Co-expression of wild type and mutant RyR1s resulted in Ca(2+)-dependent channel activities that exhibited intermediate Ca(2+) selectivities compared with K(+), which suggested the presence of tetrameric RyR1 complexes composed of wild type and mutant subunits. The number of wild-type subunits to maintain a functional heterotetrameric channel differed among the four RyR1 mutants. The results indicate that homozygous RyR1 mutations associated with core myopathies abolish or greatly reduce sarcoplasmic reticulum Ca(2+) release during excitation-contraction coupling. They further suggest that in individuals, expressing wild type and mutant alleles, a substantial portion of RyR1 channels is able to release Ca(2+) from sarcoplasmic reticulum.  相似文献   

16.

Background

This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6).

Methods

Wild-type (WT) RyR2 central domain constructs (G2236to G2491) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation.

Results

The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~ 200–400 μM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found.

Conclusions

The RyR2 central domain, expressed as a ‘correctly’ folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP.

General significance

Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.  相似文献   

17.
We analyzed the distribution of ryanodine receptor (RyR) and Cav1.2 clusters in adult rat ventricular myocytes using three-dimensional object-based colocalization metrics. We found that ∼75% of the Cav1.2 clusters and 65% of the RyR clusters were within couplons, and both were roughly two and a half times larger than their extradyadic counterparts. Within a couplon, Cav1.2 was concentrated near the center of the underlying RyR cluster and accounted for ∼67% of its size. These data, together with previous findings from binding studies, enable us to estimate that a couplon contains 74 RyR tetramers and 10 copies of the α-subunit of Cav1.2. Extradyadic clusters of RyR contained ∼30 tetramers, whereas the extradyadic Cav1.2 clusters contained, on average, only four channels. Between 80% and 85% of both RyR and Cav1.2 molecules are within couplons. RyR clusters were in the closest proximity, with a median nearest-neighbor distance of 552 nm; comparable values for Cav1.2 clusters and couplons were 619 nm and 735 nm, respectively. Extradyadic RyR clusters were significantly closer together (624 nm) and closer to the couplons (674 nm) than the couplons were to each other. In contrast, the extradyadic clusters of Cav1.2 showed no preferential localization and were broadly distributed. These results provide a wealth of morphometric data that are essential for understanding intracellular Ca2+ regulation and modeling Ca2+ dynamics.  相似文献   

18.
Rapid mobilization of neutrophils from vasculature to the site of bacterial/viral infections and tissue injury is a critical step in successful resolution of inflammation. The chemokine CXCL8 plays a central role in recruiting neutrophils. A characteristic feature of CXCL8 is its ability to reversibly exist as both monomers and dimers, but whether both forms exist in vivo, and if so, the relevance of each form for in vivo function is not known. In this study, using a ‘trapped’ non-associating monomer and a non-dissociating dimer, we show that (i) wild type (WT) CXCL8 exists as both monomers and dimers, (ii) the in vivo recruitment profiles of the monomer, dimer, and WT are distinctly different, and (iii) the dimer is essential for initial robust recruitment and the WT is most active for sustained recruitment. Using a microfluidic device, we also observe that recruitment is not only dependent on the total amount of CXCL8 but also on the steepness of the gradient, and the gradients created by different CXCL8 variants elicit different neutrophil migratory responses. CXCL8 mediates its function by binding to CXCR2 receptor on neutrophils and glycosaminoglycans (GAGs) on endothelial cells. On the basis of our data, we propose that dynamic equilibrium between CXCL8 monomers and dimers and their differential binding to CXCR2 and GAGs mediates and regulates in vivo neutrophil recruitment. Our finding that both CXCL8 monomer and dimer are functional in vivo is novel, and indicates that the CXCL8 monomer-dimer equilibrium and neutrophil recruitment are intimately linked in health and disease.  相似文献   

19.
Calsequestrin is by far the most abundant Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It allows the Ca2+ required for contraction to be stored at total concentrations of up to 20mM, while the free Ca2+ concentration remains at approximately 1mM. This storage capacity confers upon muscle the ability to contract frequently with minimal run-down in tension. Calsequestrin is highly acidic, containing up to 50 Ca(2+)-binding sites, which are formed simply by clustering of two or more acidic residues. The Kd for Ca2+ binding is between 1 and 100 microM, depending on the isoform, species and the presence of other cations. Calsequestrin monomers have a molecular mass of approximately 40 kDa and contain approximately 400 residues. The monomer contains three domains each with a compact alpha-helical/beta-sheet thioredoxin fold which is stable in the presence of Ca2+. The protein polymerises when Ca2+ concentrations approach 1mM. The polymer is anchored at one end to ryanodine receptor (RyR) Ca2+ release channels either via the intrinsic membrane proteins triadin and junctin or by binding directly to the RyR. It is becoming clear that calsequestrin has several functions in the lumen of the SR in addition to its well-recognised role as a Ca2+ buffer. Firstly, it is a luminal regulator of RyR activity. When triadin and junctin are present, calsequestrin maximally inhibits the Ca2+ release channel when the free Ca2+ concentration in the SR lumen is 1mM. The inhibition is relieved when the Ca2+ concentration alters, either because of small changes in the conformation of calsequestrin or its dissociation from the junctional face membrane. These changes in calsequestrin's association with the RyR amplify the direct effects of luminal Ca2+ concentration on RyR activity. In addition, calsequestrin activates purified RyRs lacking triadin and junctin. Further roles for calsequestrin are indicated by the kinase activity of the protein, its thioredoxin-like structure and its influence over store operated Ca2+ entry. Clearly, calsequestrin plays a major role in calcium homeostasis that extends well beyond its ability to buffer Ca2+ ions.  相似文献   

20.
Liu YL  Chiang YH  Liu GY  Hung HC 《PloS one》2011,6(6):e21314
Peptidylarginine deiminase 4 (PAD4) is a homodimeric enzyme that catalyzes Ca2+-dependent protein citrullination, which results in the conversion of arginine to citrulline. This paper demonstrates the functional role of dimerization in the regulation of PAD4 activity. To address this question, we created a series of dimer interface mutants of PAD4. The residues Arg8, Tyr237, Asp273, Glu281, Tyr435, Arg544 and Asp547, which are located at the dimer interface, were mutated to disturb the dimer organization of PAD4. Sedimentation velocity experiments were performed to investigate the changes in the quaternary structures and the dissociation constants (K d) between wild-type and mutant PAD4 monomers and dimers. The kinetic data indicated that disrupting the dimer interface of the enzyme decreases its enzymatic activity and calcium-binding cooperativity. The K d values of some PAD4 mutants were much higher than that of the wild-type (WT) protein (0.45 µM) and were concomitant with lower k cat values than that of WT (13.4 s−1). The K d values of the monomeric PAD4 mutants ranged from 16.8 to 45.6 µM, and the k cat values of the monomeric mutants ranged from 3.3 to 7.3 s−1. The k cat values of these interface mutants decreased as the K d values increased, which suggests that the dissociation of dimers to monomers considerably influences the activity of the enzyme. Although dissociation of the enzyme reduces the activity of the enzyme, monomeric PAD4 is still active but does not display cooperative calcium binding. The ionic interaction between Arg8 and Asp547 and the Tyr435-mediated hydrophobic interaction are determinants of PAD4 dimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号