首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of electroacupuncture (EAP) and intravenous injection of morphine (5 mg/kg) on evoked potentials (EP) elicited in the second somatosensory (S2) and orbitofrontal areas of the brain cortex by nociceptive (the pulp of the upper canine) and non-nociceptive (the upper lip) stimulation were studied in acute experiments on cats. After EAP the EP elicited by nociceptive stimulation of the S2 and orbital gyrus were inhibited 75 and 58%, respectively, with reference to the control level, whereas the EP elicited by non-nociceptive stimulation of the S2 and orbital gyrus rose by 30 and 45%, respectively. Morphine injection produced the same effect on the EP: an increase in the EP during non-nociceptive stimulation and inhibition during nociceptive stimulation. It is suggested that by stimulating the release of endogenous opiates and other neurotransmitters EAP remodels the function of the CNS afferent systems, facilitating the transmission of the non-nociceptive signal through the rapid-conducting lemniscal system, thereby blocking the transmission of the nociceptive signals in the multi-synaptic extralemniscal system.  相似文献   

2.
The processing of nociceptive input that occurs at the spinal level represents the first stage of effective control over its access to higher regions of the central nervous system. Recent developments in both the anatomy and physiology of nociceptive processing pathways at this level are beginning to yield an integrated understanding of structure and function. Most small afferent axons terminate in the more superficial laminae of dorsal horn, but technical difficulties have, until recently, prevented analysis of the functional properties of identified small fibres. A direct input of nociceptive afferents on to particular dorsal horn neurons is difficult to establish in view of the slow impulse conduction in these fibres and the small size of target neurons in the substantia gelatinosa. The small cells themselves are being analysed for relations between structure and function, using physiological, intracellular staining and immunocytochemical techniques to characterize their properties. They appear to be a highly heterogeneous population with many sub-classes, whether typed according to the transmitter they contain, e.g. enkephalin, to their physiological responses: whether excitatory or inhibitory to nociceptive and other inputs, or to both. The multireceptive neurons that project out of the dorsal horn toward supraspinal regions are, in general, located in deeper laminae and are likely to receive nociceptive information through polysynaptic pathways. The nocireceptive neurons in lamina I, which receive exclusively nociceptive inputs from myelinated and non-myelinated afferents project, at least in part, to thalamic and brain stem regions. Polysynaptic nociceptive pathways in dorsal horn may be subject to different controls from neurons in laminae I and II. Tonic descending inhibition is operative on the former and it is becoming clearly established that descending systems such as those containing noradrenaline, can regulate the access of nociceptive information to higher levels. The mechanisms of such descending controls and the importance of their interaction with segmental control systems, such as those involving the dynorphin opioids, are just beginning to be understood. Many somatosensory neurons in dorsal horn, both the large cells, some of which project supraspinally, and the small cells of superficial laminae, receive convergent nociceptive and non-nociceptive inputs. Although solely nociresponsive neurons are clearly likely to fill a role in the processing and signalling of pain in the conscious central nervous system, the way in which such useful specificity could be conveyed by multireceptive neurons is difficult to appreciate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Xiong W  Gao L  Sapra A  Yu LC 《Regulatory peptides》2005,132(1-3):85-90
The present study investigated the role of galanin in the transmission of nociceptive information in the spinal cord of rats with inflammation. Bilateral decreases in hindpaw withdrawal latencies (HWLs) to thermal and mechanical stimulation were observed after acute inflammation induced by injection of carrageenan into the plantar region of the rat left hindpaw. Intrathecal injection of galanin induced significant increases in the HWLs to thermal and mechanical stimulation in rats with inflammation. The galanin-induced antinociceptive effect was more pronounced in rats with inflammation than that in intact rats. The antinociceptive effect of galanin was partly inhibited by intrathecal injection of naloxone. Furthermore, intrathecal administration of galantide, an antagonist of galanin receptor, could attenuate the antinociceptive effect induced by intraperitoneal injection of morphine, suggesting an involvement of opioid systems in the galanin-induced antinociception. The results indicate that galanin plays an important role in the transmission of nociceptive information in the spinal cord of rats with inflammation, and opioid systems are involved in the galanin-induced antinociception.  相似文献   

4.
In cats, we studied the influences of stimulation of the periaqueductal gray (PAG) and locus coeruleus (LC) on postsynaptic processes evoked in neurons of the somatosensory cortex by stimulation of nociceptive (intensive stimulation of the tooth pulp) and non-nociceptive (moderate stimulations of the infraorbital nerve and ventroposteromedial nucleus of the thalamus) afferent inputs. Twelve cells activated exclusively by nociceptors and 16 cells activated by both nociceptive and non-nociceptive influences (hereafter, nociceptive and convergent neurons, respectively) were recorded intracellularly. In neurons of both groups, responses to nociceptive stimulation (of sufficient intensity) looked like an EPSP-spike-IPSP (the latter, of significant duration, up to 200 msec) complex. Electrical stimulation of the PAG (which could itself evoke activation of the cortical neurons under study) resulted in long-term suppression of synaptic responses evoked by excitation of nociceptors (inhibition reached its maximum at a test interval of 600 to 800 msec). We observed a certain parallelism between conditioning influences of PAG activation and effects of systemic injections of morphine. Isolated stimulation of LC by a short high-frequency train of stimuli evoked primary excitatory responses (complex EPSPs) in a part of the examined cortical neurons, while in other cells high-amplitude and long-lasting IPSP (up to 120 msec) were observed. Independently of the type of the primary response to PAG stimulation, the latter resulted in long-term (several seconds) suppression of the responses evoked in cortical cells by stimulation of the nociceptive inputs. The mechanisms of modulatory influences coming from opioidergic and noradrenergic brain systems to somatosensory cortex neurons activated due to excitation of high-threshold (nociceptive) afferent inputs are discussed.Neirofiziologiya/Neurophysiology, Vol. 37, No. 1, pp. 61–73, January–February, 2005.  相似文献   

5.
Nociceptive responses were evoked in cats by electrical transcutaneous stimulation of the forepaw or electrical stimulation of respective brain structures; these responses could be modulated (intensified or suppressed) by combined electrical stimulation of different brain structures or by neurochemical influences upon these structures. Intensification of nociceptive responses was observed after stimulation of the noradrenergic orP-ergic systems localized in the ventral zone of the central gray (vl SGC) and the structures monosynaptically connected with the latter: the posterior and lateral hypothalamic nuclei (Hp andHl) and preoptic region (RPO). Similar effects were induced by suppression of the serotoninergic system concentrated within the dorsolateral central gray (dl SGC), dorsal raphe nucleus (Rd), and closely related structures: the ventromedial, dorsomedial, and paraventricular hypothalamic nuclei (Hvm, Hdm, andHpv), septum (Sep), basolateral amygdalar nucleus (Am bl), fields 3–4 of the hippocampus (CA3–4), and cingular cortex (GC). Suppression of the serotoninergic system resulted in a decrease in the levels of functioning of the met-enkephalin- and β-endorphinergic systems and facilitation of theP-ergic system. Moderation of nociceptive responses, i.e., an analgesic effect, was observed after either stimulation of the serotonin-, met-enkephalin-, and β-endorphinergic systems localized in thedl SGC, Rd, Hvm, Hdm, Sep, Am bl, CA3–4, andGC, or suppression of the noradrenergic system. The latter influence resulted in inhibition of theP-ergic system and a rise in the functional activity of the met-enkephalin- and β-endorphinergic systems. The composition of two antagonistic brain systems, nociceptive and antinociceptive, is considered. The antinociceptive system includes serotonin-, met-enkephalin-, and β-endorphinergic elements. Leu-enkephalin is a nonspecific activator of the met-enkephalin-, β-endorphin-, andP-ergic systems. The nociceptive system consists of thevl SGC, Hp, Hl, andRPO, while the antinociceptive system includes thedl SGC, Rd, Hvm, Hdm, Hpv, Sep, Am dl, CA3–4, andGC.  相似文献   

6.
We studied the effects of a new analgesic agent, D57 (a pyrrolimidazol derivative), on sodium currents in isolated afferent neurons of the trigeminal and spinal ganglia of rats. It is demonstrated that D57 exerts both tonic and phasic effects on sodium currents. In the neurons of a nociceptive system influenced by D57, phasic blocking provides suppression of more than 50% of the currents that persisted after the development of tonic blocking. At the same time, in the neurons supposedly belonging to other afferent systems, the contribution of phasic blocking was only about 20%. We hypothesize that high intensity of phasic blocking of sodium ion currents in the neurons of the nociceptive system represents a factor responsible for analgesic properties of D57.  相似文献   

7.
Neurones were recorded with extracellular micropipettes, in the parabrachial area located in the dorsolateral region of the pons of anaesthetized rats. All the neurones were identified by antidromic stimulation from the nucleus centralis of the amygdala. Numerous parabrachio-amygdala neurones (70%) were exclusively affected by noxious stimuli applied to several areas of the body. The rest of the neurones (30%) were not activated by any of these stimuli. The "nociceptive" neurones were classified in two groups: the neurones in the first group ("specific nociceptive", 55% of the whole population), responded to mechanical nociceptive and thermal nociceptive stimulation (threshold greater than 44 degrees C), with a strong and sustained activation. The neurones in the second group (15% of the whole population) responded by a strong inhibition to the nociceptive stimulation. Transcutaneous electrical stimulation demonstrated that the specific nociceptive parabrachial neurones received messages from A delta and C fibres. These results demonstrate that a spino-(trigemino)-ponto-amygdala nociceptive pathway exists which could be implicated in the emotional responses to noxious events.  相似文献   

8.
Structural changes of nociceptive response after separate lesions of the oral and caudal trigeminal nuclei were studied in chronic experiments on adult cats. The lesion of the oral nucleus was shown to increase pain response and that of the caudal nucleus--to cause its inhibition. A relationship between the specific and non-specific projection systems of the brain in the development of pain is discussed.  相似文献   

9.
Many studies indicate that blood pressure control systems can attenuate pain (hypoalgesia) of short duration; however, we recently found exaggerated nociceptive responses (hyperalgesia) of persistent duration in the spontaneously hypertensive rat (SHR). Here, we used SHR, Dahl Salt-Sensitive (SS), and normotensive control rats to evaluate the contribution of sustained elevations in arterial pressure to nociceptive responses. Compared with Sprague-Dawley and/or Wistar-Kyoto controls, SHR were 1) hypoalgesic in the hot plate test and 2) hyperalgesic in longer latency tail and paw-withdrawal tests and in two models of inflammatory nociception. These differences were not observed between SS and salt-resistant controls fed a high-salt diet. Inflammatory hyperalgesia in SHR was correlated with neither paw edema nor the number of Fos-positive spinal cord neurons. Our results indicate that "pain" phenotype of the SHR is not restricted to hypoalgesia. This phenotype is related to genetic factors or to the autonomic systems that control blood pressure and not to sustained elevations in blood pressure, differences in spinal neuron activity, or inflammatory edema.  相似文献   

10.
Kazakov  V. N.  Panova  T. I.  Andreeva  V. F. 《Neurophysiology》2001,33(2):118-124
In chronic experiments on 20 awake cats, we studied modulation of nociceptive responses to intense noxious stimulation of the skin of the hindlimb (electrical cutaneous stimulation, ECS) after electrical stimulation of some parts of the brainstem had been applied through chronically implanted electrodes. The stimulated structures were as follows: the nucleus raphe dorsalis, RD, and the dorsolateral zone of the rostral section or the ventrolateral zone of the middle section of the midbrain central gray matter (substantia grisea centralis, SGC), dl SGC and vl SGC, respectively. Freely moving animals were subjected to ECS applied either in isolation or against the background of stimulation of one of the above-mentioned brainstem structures. Integral intensity of nociceptive responses was scored on a four-point scale. In this case, the characteristics of the motor (drawing back of the leg and generalized motor reactions, i.e., change in the posture, episodes of pace, etc.), autonomic (changes in the heart rate, respiratory rate, and respiration depth), and emotional (vocalization, reactions of anxiety and aggression) components of the nociceptive response were taken into account. The strength of standard isolated ECS was selected such that it caused a nociceptive response of the level 3. The same ECS strength, but applied against the background of preliminary stimulation of the vl SGC, in 85% of the tests caused the development of a significantly more intense response (level 4). Under the influence of ECS against the background of stimulation of the dl SGC or RD, in the overwhelming majority of cases, only level-1 responses developed. To obtain a nociceptive level-3 response against the background of stimulation of the dl SGC and RD, the ECS strength should be increased at least twice. Isolated vl SGC stimulation caused nociceptive responses, which as a whole corresponded to level 2. Control isolated stimulation of the dl SGC and RD either did not result in any noticeable behavioral change or evoked minimum responses. We conclude that the SGC with respect to the nociceptive/antinociceptive systems is heterogeneous; the vl SGC should be considered the nociceptive zone, while the dl SGC and RD should be considered the antinociceptive brainstem zones.  相似文献   

11.
The nature of responses of neurones in substance nigra reticular (SNR) part of cats to nociceptive electrical stimulations and change of these responses under the action of electroacupuncture (EA) in the area corresponding to the Tsui-Sang-Li point in man have been studied. The most of the neurons studied (72.1%) responded to nociceptive stimulation either with excitation of inhibition of the impulsive activity. The EA eliminated or changed the effect of nociceptive stimulation in 73.2% of the SNR nociceptive responsive neurones. Intravenous naloxone administration blocked the effect of EA depending on a dose. A conclusion has been made that the SNR neurones are involved in the modulation of nociceptive transmission and that the EA action is directed to some restoration of the nociceptive disturbed balance between the excitatory and inhibitory processes in the SNR neuronal population.  相似文献   

12.
Nitric oxide and nitric oxide synthases are key players in synaptic plasticity events in spinal cord (SC), which underlies the chronic pain states. To date, little is known about the molecular mechanisms regulating the activity of nitric oxide synthases in nociceptive systems. The present study was aimed at the determination of the gene expression of nNOS-interacting DHHC domain-containing protein with dendritic mRNA (NIDD), a recently identified protein regulating nNOS enzyme activity, in rat SC and dorsal root ganglia (DRG) and studying its regulation in states of nociceptive hypersensitivity in a rat model of neuropathic or inflammatory pain. It was found that NIDD mRNA was predominantly expressed in nociceptive primary neurons and in neurons of the spinal dorsal horn (DH) and the number of NIDD-positive neurons in the corresponding DRG or SC increased significantly following induction of chronic hyperalgesia. Meanwhile, remarkable changes of nNOS were detected under such pain conditions. Our data suggest a potential role for NIDD in the maintenance of thermal pain hypersensitivity possibly via regulating the nNOS activity. Meng-Ling Chen and Chun Cheng are contributed equally to this work.  相似文献   

13.
In experiments on cats, we studied the effects of electrical stimulation of the cerebral central grey (CG), locus coeruleus (LC), and substantia nigra (SN) on postsynaptic processes evoked by nociceptive volleys in somatosensory cortex neurons. Nineteen cells activated exclusively by stimulation of nociceptors (intense stimulation of the dental pulp) and 26 cells activated by both nociceptive and non-nociceptive (near-threshold) stimulations of the n. infraorbitalis and thalamic nucl. ventroposteromedialis (VPM) were intracellularly recorded (nociceptive and convergent cortical neurons, respectively). In neurons of both groups, stimulation of both nociceptive afferents and the VPM evoked complex responses having on EPSP-spike-IPSP patterns (duration of IPSPs about 200-300 msec). Electrical stimulation of the СG, which per se could activate the examined cortical neurons, induced prolonged suppression of synaptic responses evoked by stimulation of nociceptors; maximum inhibition was observed at 600- to 800-msec-long conditioning–test intervals. A certain parallelism was observed between the conditioning effects of СG stimulation and effects of systemic introduction of morphine. Isolated stimulations of the LC and SN by short high-frequency pulse series evoked primary complex EPSPs in a part of the examined cortical neurons, while high-amplitude IPSPs (up to 120 msec long) were observed in other units. Independently of the type of the primary response, conditioning stimulations of the LC and SN induced long-lasting (several seconds) suppression of synaptic responses evoked in cortical neurons by stimulation of nociceptive inputs. Mechanisms of modulating influences coming from opioidergic, noradrenergic, and dopaminergic cerebral systems to neurons of the somatosensory cortex activated upon excitation of high-threshold (nociceptive) afferent inputs are discussed.  相似文献   

14.
Guan JS  Xu ZZ  Gao H  He SQ  Ma GQ  Sun T  Wang LH  Zhang ZN  Lena I  Kitchen I  Elde R  Zimmer A  He C  Pei G  Bao L  Zhang X 《Cell》2005,122(4):619-631
Opioid and tachykinin systems are involved in modulation of pain transmission in the spinal cord. Regulation of surface opioid receptors on nociceptive afferents is critical for opioid analgesia. Plasma-membrane insertion of delta-opioid receptors (DORs) is induced by stimulus-triggered exocytosis of DOR-containing large dense-core vesicles (LDCVs), but how DORs become sorted into the regulated secretory pathway is unknown. Here we report that direct interaction between protachykinin and DOR is responsible for sorting of DORs into LDCVs, allowing stimulus-induced surface insertion of DORs and DOR-mediated spinal analgesia. This interaction is mediated by the substance P domain of protachykinin and the third luminal domain of DOR. Furthermore, deletion of the preprotachykinin A gene reduced stimulus-induced surface insertion of DORs and abolished DOR-mediated spinal analgesia and morphine tolerance. Thus, protachykinin is essential for modulation of the sensitivity of nociceptive afferents to opioids, and the opioid and tachykinin systems are directly linked by protachykinin/DOR interaction.  相似文献   

15.
The caudal ventrolateral reticular formation of the medulla oblongata is the first layer of visceral nociceptive processing. In experiments on rats, neuronal responses in this zone to nociceptive stimulation of the large intestine were examined and the effects of selective blockade of 5-HT3 receptors on these responses were assessed. By the character of responses to nociceptive colorectal stimulation (CRS), the recorded medullary neurons were divided into three groups—excited, inhibited and indifferent. Intravenous injection of 5-HT3 antagonist granisetron (1 and 2 mg/kg) as well as local application of this agent on the surface of the medulla oblongata (1.25 and 2.5 nmole) suppressed the background and evoked firing of CRS-excited reticular neurons in a dose-dependent manner but did not exert as pronounced influence on the cells inhibited by visceral nociceptive stimulation. Spike activity in the group of CRS-indifferent neurons under similar conditions was 5-HT3-independent. The results obtained provide evidence that 5-HT3 receptors mediate the facilitating effect of serotonin on supraspinal transmission of the abdominal nociceptive stimulus which, at least in part, is realized via selective activation of visceral medullary nociceptive neurons. A shutdown of this mechanism may underlie the analgesic effect of 5-HT3 antagonists in abdominal pain syndromes.  相似文献   

16.
The neurotransmitter(s) involved in the transmission of nociceptive information in the mesencephalic reticular formation (MRF) of the rat have not been identified. Acetylcholine (ACh), substance P (SP), neurotensin (NT), norepinephrine (NE) and dopamine (DA) have all been implicated as putative neurotransmitters involved in nociception. All of these compounds were microiontophoretically administered in the MRF of rats to determine which, if any, mimicked the effects produced by a nociceptive stimulus (foot pinch). This is only one of several criteria that a substance should meet to be considered a nociceptive neurotransmitter in the MRF. ACh and NE mimicked the effects of the nociceptive stimulus in 61% and 67% respectively of the cells tested; NT, DA and SP mimicked the effects of the nociceptive stimulus less frequently (33%, 30%, 23% respectively). Therefore, the nociceptive neurotransmitters in the MRF appear to be ACh and NE; NT, DA and SP may be neurotransmitters with a less important role in nociception in the MRF.  相似文献   

17.
Vanilloid receptor 1 belongs to the transient receptor potential ion channel family and transduces sensations of noxious heat and inflammatory hyperalgesia in nociceptive neurons. These neurons contain two vanilloid receptor pools, one in the plasma membrane and the other in the endoplasmic reticulum. The present experiments characterize these two pools and their functional significance using calcium imaging and 45Ca uptake in stably transfected cells or dorsal root ganglion neurons. The plasma membrane localized receptor is directly activated by vanilloids. The endoplasmic reticulum pool was demonstrated to be independently activated with 20 microm capsaicin or 1.6 microm resiniferatoxin using a bathing solution containing 10 microm Ruthenium Red (to selectively block plasma membrane-localized receptors) and 100 microm EGTA. We also demonstrate an overlap between the endoplasmic reticulum-localized vanilloid receptor regulated stores and thapsigargin-sensitive stores. Direct depletion of calcium via activation of endoplasmic reticulum-localized vanilloid receptor 1 triggered store operated calcium entry. Furthermore, we found that, in the presence of low extracellular calcium (10(-5) m), either 2 microm capsaicin or 0.1 nm-1.6 microm resiniferatoxin caused a pronounced calcium-induced calcium release in either vanilloid receptor-expressing neurons or heterologous expression systems. This phenomenon may allow new insight into how nociceptive neuron function in response to a variety of nociceptive stimuli both acutely and during prolonged nociceptive signaling.  相似文献   

18.
Electrophysiological, morphometric and behavioural studies have been made on the role of parafascicular complex in regulation of nociceptive sensitivity in 45 rabbits from the 1st to the 16th day of their postnatal life. The evoked potential to nociceptive stimulation was recorded already in 1-day animals. Analysis of amplitude-temporal parameters of the EPs in acute experiments revealed a sharp increase in their positive phase at the 7-8th day of life. As it was shown in the behavioural experiments, that is just the period of maximum generalized reaction to nociceptive stimulation. It was found that to this age, the surface of neurones in the complex significantly increases, their density remaining still high. The data obtained are discussed in relation to factors which account for ontogenetic changes in electrophysiological correlates of neuronal responses in the parafascicular complex to peripheral nociceptive stimulation.  相似文献   

19.
Effects of electroacupuncture (EAP) on the responses of different functional types of neurons of the oral trigeminal nucleus (OTN) by nociceptive and non-nociceptive stimulation were studied in acute experiments on adult cats. It was demonstrated that the main part of neurons of the OTN is a wide dynamic range of neurons. Characteristic feature of the OTN is neurons with low-threshold pulp afferent input. EAP inhibit nociceptive responses of neurons (preferentially nonspecific neurons), while responses to non-nociceptive stimulation are not changed at all. The results are discussed from the point of view that OTN takes part in nociceptive and non-nociceptive reactions.  相似文献   

20.
Cholinergic stimulation of the pontine parabrachial region (PBR) produces behavioral nociceptive suppression in the awake cat. This report shows that electrical stimulation of both PBR sites (verified to be associated with behavioral nociceptive suppression on cholinergic stimulation) and the periaqueductal gray (PAG) excites raphe-spinal neurons which have been implicated in descending nociceptive suppression. Although several lines of evidence have strongly indicated that pathways from the PBR and PAG for nociceptive suppression are anatomically as well as neurochemically distinct, the results of the present study appear to suggest that certain components of the pathways from the PBR may be synergic in function with those from the PAG with regard to the activity of raphe-spinal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号